
COMMUNITY DETECTION IN CENSORED HYPERGRAPH

A Dissertation
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Bin Zhao

In Partial Fulfillment of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

Major Department:
Statistics

October 2023

Fargo, North Dakota

NORTH DAKOTA STATE UNIVERSITY
Graduate School

Title

COMMUNITY DETECTION IN CENSORED HYPERGRAPH

By

Bin Zhao

The supervisory committee certifies that this dissertation complies with North Dakota State Uni-

versity’s regulations and meets the accepted standards for the degree of

DOCTOR OF PHILOSOPHY

SUPERVISORY COMMITTEE:

Prof. Mingao Yuan
Chair

Prof. Megan Orr

Prof. Bong-Jin Choi

Prof. Lu Liu

Prof. Zhaohui Liu

Approved:
14 November 2023

Date

Prof. Rhonda Magel
Department Chair

ABSTRACT

Network, or graph, represent relationships between entities in various applications, such as

social networks, biological systems, and communication networks. A common feature in network

data is the presence of community structures, where groups of nodes exhibit higher connectivity

within themselves than with other groups. Identifying these community structures, a task known

as community detection, is essential for gaining valuable insights in diverse applications, includ-

ing uncovering hidden relationships in social networks, detecting functional modules in biological

systems, and identifying vulnerabilities in communication networks. However, real-world network

data may have missing values, significantly impacting the network’s structural properties. Existing

community detection methods primarily focus on networks without missing values, leaving a gap

in the analysis of censored networks. This study addresses the community detection problem in

censored m-uniform hypergraphs. Firstly, utilizing an information-theoretic approach, we obtain

a threshold that enables the exact recovery of the community structure. Then, we proposed a

two-stage polynomial-time algorithm, which encompasses a spectral algorithm complemented by a

refinement step, aiming to achieve exact recovery. Moreover, we introduce a semi-definite relaxation

algorithm, studying its operational performance as a standalone community detection algorithm,

without the integration of a refinement step. Lastly, in consideration of the effect of imputation

methods on censored hypergraphs, we propose several methods grounded in network properties. We

subsequently employ simulation to assess the performance of these methods. Finally, we apply the

proposed algorithm to real-world data, showcasing its practical utility in various settings.

iii

ACKNOWLEDGEMENTS

Completing this Ph.D. dissertation has been a profound journey, one that would not have

been possible without the guidance, support, and encouragement of many. I am immensely grateful

to a number of individuals whose contributions were invaluable to my academic pursuit.

Foremost, I extend my deepest gratitude to my advisor, Dr. Mingao Yuan, whose expertise

and insightful critiques were instrumental in sculpting this research. His unwavering support and

patience throughout the research process have been pillars of strength for me.

I am also indebted to my committee members, Dr. Megan Orr, Dr. Bong-Jin Choi, Dr. Lu

Liu, and Dr. Zhaohui Liu, as well as Dr. Lauren Hanna, for their invaluable feedback and rigorous

standards, which significantly contributed to the depth and quality of this work and my previous

research. Their willingness to share knowledge and invest time has enriched my learning experience

profoundly.

To my family, who has provided me with an unwavering foundation of love and support,

I owe an immense debt of gratitude. A special mention goes to my wife, Xin Xin, whose love,

patience, and encouragement have been my sanctuary. Her belief in me often gave me the strength

to persevere when challenges arose.

My time in Fargo has been made all the more memorable by friends who have become like

family. I am particularly thankful to Yun Zhou, Tong Lin, and all the people from Red River Valley

Chinese Christian Church, whose kindness and readiness to help at any moment have been a source

of comfort and joy. The selflessness and camaraderie they have shown have made all the difference

during my studies.

To all my friends, colleagues, and the academic community at Fargo, who have contributed

to my journey in ways big and small, I am forever appreciative.

Lastly, I acknowledge all those who have indirectly influenced this work with their presence

and goodwill. To everyone who has been a part of my journey, thank you for being the trellis on

which I have grown academically and personally.

iv

TABLE OF CONTENTS

ABSTRACT . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

1. INTRODUCTION . 1

1.1. Literature Review . 1

1.2. Missing Values in Networks . 5

1.2.1. Missing Data in Medical Field . 5

1.2.2. Missing Data in Engineering Field . 7

1.3. Community Detection in Censored Networks . 8

1.4. Organization of the Content . 10

2. MAIN RESULTS . 11

2.1. The Censored Hypergraph Stochastic Block Model 11

2.2. Sharp Threshold for Exact Recovery . 13

2.3. Efficient Spectral Algorithm for Exact Recovery . 14

2.4. Semi-Definite Relaxation Algorithm . 16

2.5. Imputation Methods . 18

2.5.1. Imputation Using Network Density . 19

2.5.2. Imputation Using Community Density . 20

2.5.3. Imputation Using Degree . 20

3. PROOF OF THEOREMS . 22

3.1. Proof of Theorem 2.1 . 22

3.2. Proof of Theorem 2.2 . 27

3.3. Proof of Theorem 2.3 . 31

v

3.4. Proof of Theorem 2.4 . 34

4. NUMERICAL SIMULATION . 39

4.1. Simulation of the Efficient Spectral Algorithm . 40

4.1.1. When p=0.425, q=0.075 . 40

4.1.2. When p=0.400, q=0.100 . 41

4.1.3. When p=0.375, q=0.125 . 42

4.1.4. When p=0.350, q=0.150 . 43

4.1.5. Summary of Efficient Spectral Algorithm . 43

4.2. Simulation of the Semi-Definite Programming Algorithm 47

4.2.1. When p=0.425, q=0.075 . 47

4.2.2. When p=0.400, q=0.100 . 48

4.2.3. When p=0.375, q=0.125 . 49

4.2.4. When p=0.350, q=0.150 . 50

4.2.5. Summary of Semi-Definite Programming Algorithm 50

4.2.6. Comparison of the Two Proposed Algorithms 54

4.3. Simulation of the Imputation Methods . 54

4.3.1. Simulation Results of the Network Density Method 55

4.3.2. Simulation Results of the Community Density Method 57

4.3.3. Simulation Results of the Degree Method . 60

4.3.4. Conclusions of the Simulation of Imputation Methods 61

4.4. Community Detection in Multi-Community Hypergraph 61

4.4.1. Algorithm Detail and Measurement . 62

4.4.2. Simulation Results of the Multi-Community Case 63

5. REAL DATA APPLICATION . 66

6. DISCUSSION AND CONCLUSIONS . 70

REFERENCES . 72

vi

LIST OF TABLES

Table Page

4.1. Error rates of Efficient Spectral algorithm simulation . 43

4.2. Error rates of Semi-Definite Programming algorithm simulation 50

5.1. List of attributes in real data . 69

vii

LIST OF FIGURES

Figure Page

1.1. An undirected graph . 1

1.2. Graphs sampled from stochastic block model. Note: we sampled the nodes in the left
graph from a uniform distribution, and sampled the nodes in the right graph with a
within-cluster probability of 3/10 and an across-cluster probability of 1/20. The afore-
mentioned probabilities are the probabilities that the nodes from the same community
and nodes from different communities can form an edge. 2

1.3. An undirected hypergraph . 4

1.4. A hypergraph without communities . 5

1.5. A two-community hypergraph . 5

1.6. Hypergraph construction for medical data. We construct the hypergraph using the
nearest-neighbor algorithm based on the attributes that a patient has. 7

1.7. Hypergraph construction for engineering data. We construct the hypergraph by calcu-
lating the attribute similarity based on the attributes that a node in the engineering
data has. 8

2.1. Regions for exact recovery with m = 2, 3 and q = 0.2. Gray: exact recovery is impossible.
White: exact recovery is possible. 14

4.1. Comparison of error rate from Efficient Spectral algorithm at p=0.425, q=0.075. Note:
p is the in-community connectivity probability, indicating the probability that vertices in
the same community connect with each other; and q is the cross-community connectivity
probability, indicating the probability that vertices in different communities connect with
each other; α is the reveal rate, indicating the probability that if a hyperedge is observed
or not. Same below. 40

4.2. Comparison of error rate from Efficient Spectral algorithm at p=0.400, q=0.100 41

4.3. Comparison of error rate from Efficient Spectral algorithm at p=0.375, q=0.125 42

4.4. Comparison of error rate from Efficient Spectral algorithm at p=0.350, q=0.150 43

4.5. Comparison of error rate from Efficient Spectral algorithm at all settings 46

4.6. Comparison of error rate from Semi-Definite Programming algorithm at p=0.425, q=0.075 47

4.7. Comparison of error rate from Semi-Definite Programming algorithm at p=0.400, q=0.100 48

4.8. Comparison of error rate from Semi-Definite Programming algorithm at p=0.375, q=0.125 49

4.9. Comparison of error rate from Semi-Definite Programming algorithm at p=0.350, q=0.150 50

viii

4.10. Comparison of error rate from Semi-Definite Programming algorithm at all settings . . . 53

4.11. Comparison of error rate from censored and imputed hypergraph based on network
density, when p = 0.375 and q = 0.125 . 55

4.12. Comparison of error rate from censored and imputed hypergraph based on network
density, when p = 0.350 and q = 0.150 . 55

4.13. Comparison of error rate from censored and imputed hypergraph based on network
density, when p = 0.300 and q = 0.200 . 56

4.14. Comparison of error rate from censored and imputed hypergraph based on community
density, when p = 0.375 and q = 0.125 . 57

4.15. Comparison of error rate from censored and imputed hypergraph based on community
density, when p = 0.350 and q = 0.150 . 57

4.16. Comparison of error rate from censored and imputed hypergraph based on community
density, when p = 0.300 and q = 0.200 . 58

4.17. Comparison of error rate from censored and imputed hypergraph based on degree, when
p = 0.375 and q = 0.125 . 60

4.18. Comparison of error rate from censored and imputed hypergraph based on degree, when
p = 0.350 and q = 0.150 . 60

4.19. Comparison of error rate from censored and imputed hypergraph based on degree, when
p = 0.300 and q = 0.200 . 61

4.20. Comparison of error rate from censored and imputed hypergraph based on community
density of multi-community data, when p = 0.400 and q = 0.100 63

4.21. Comparison of error rate from censored and imputed hypergraph based on community
density of multi-community data, when p = 0.375 and q = 0.125 63

4.22. Comparison of error rate from censored and imputed hypergraph based on community
density of multi-community data, when p = 0.350 and q = 0.150 64

4.23. Comparison of error rate from censored multi-community data at all settings 64

5.1. Visualization of the censored hypergraph constructed from the credit approval dataset . 67

ix

1. INTRODUCTION

1.1. Literature Review

A simple graph, denoted as G = (V,E), is a mathematical structure comprised of two finite

sets: the vertex set V and the edge set E. The vertex set V is non-empty and contains distinct ele-

ments known as vertices or nodes, while the edge set E consists of distinct unordered pairs of distinct

vertices. An exemplification of such a structure is depicted in Figure 1.1. In this graph, the vertex

set is V = {1, 2, 3, 4, 5, 6}, and the edge set is E = {(1, 2), (1, 5), (2, 3), (2, 5), (3, 4), (4, 5), (4, 6)}.

Networks have found extensive applications across diverse fields (Chen and Yuan (2006);

Costa et al. (2011); Fortunato, S. (2010)). In application, vertices symbolize independent entities

and edges represent the relationships or interactions between these entities. For instance, in trans-

portation systems, a network graph might comprise locations (nodes) and routes (edges) (De Bona

et al. (2021)). In biological systems, we can construct a protein-protein interaction network wherein

proteins are represented as nodes and pairs of physical interactions between these proteins as edges.

Similarly, we can model the internet as a graph, with webpages serving as nodes and hyperlinks

between pages forming edges (Ángeles et al. (2006)). Due to wide applications, network analysis

has become a focal point in statistical and machine learning communities, spawning a rich array of

research.

Figure 1.1. An undirected graph

One of the most popular topics in network data mining is to understand which items are

similar to each other. This concept is grounded on the premise of a community structure (Abbe

1

(2018)), where nodes within the same community are densely connected, while connections between

different communities are sparse. In essence, community structure reflects a high degree of homo-

geneity within communities and heterogeneity between them. Concretely, Figure 1.2 illustrates the

community structure within a graph comprised of 100 vertices. In the graph on the left, no com-

munity structure exists, as the edges are uniformly distributed without any discernible clustering.

Conversely, the graph on the right displays two distinct communities, with nodes of the same color

forming a single community. It’s evident that nodes within the same community exhibit denser

connections in comparison to nodes across different communities, highlighting the presence of a

well-defined community structure.

Figure 1.2. Graphs sampled from stochastic block model. Note: we sampled the nodes in the left
graph from a uniform distribution, and sampled the nodes in the right graph with a within-cluster
probability of 3/10 and an across-cluster probability of 1/20. The aforementioned probabilities are
the probabilities that the nodes from the same community and nodes from different communities
can form an edge.

Community detection (Abbe (2018); Amini et al. (2013); Bickel, P. J., and Sarkar, P.

(2016)), seeks to discern the inherent structure in networks by grouping similar nodes into commu-

nities. Community detection is widely used in analyses of social networks (Goldenberg et al. (2010);

Zhao et al. (2011)). Community detection in social networks identifies groups of nodes (representing

individuals or organizations) with strong connections within the group and weak connections to the

rest of the network. This process facilitates the revelation of underlying structural patterns and

relationships within social networks. It enables the pinpointing of influential nodes and improves

the performance of recommendation systems. Community detection is an invaluable tool in the

2

realm of biological sciences, particularly in the analysis of protein-to-protein interaction networks

(Chen and Yuan (2006)). In such networks, proteins serve as nodes, while the edges denote physical

or functional interactions between them, allowing for a deeper understanding of protein function

and cellular processes. By examining protein-to-protein interaction networks, researchers may re-

veal protein complexes, functional units, and disease-related subnetworks. Community detection

also finds application in image segmentation (Shi and Malik (1997)). By modeling an image as

a graph—with pixels acting as nodes and relationships between pixels forming edges—community

detection algorithms can identify pixel clusters corresponding to the same object or image section.

This methodology offers several advantages, including the ability to manage large images, incorpo-

rate prior information, and capture complex structures. Community detection also plays a pivotal

role in improving recommendation systems. It empowers algorithms to deliver more precise predic-

tions of user preferences, informed by item popularity within a community. Additionally, community

detection enhances network visualization techniques. By enabling the coloring or labeling of the

network, it facilitates a more intuitive understanding of network structure and the relationships

among its components.

In summary, community detection is a crucial tool for analyzing and understanding complex

systems, as it provides valuable insights into the structure of social networks, biological networks,

economic networks, and infrastructure networks. By detecting communities in these networks,

researchers and practitioners can understand the relationships between individuals or organizations,

how information spreads, and the underlying patterns in these systems.

A hypergraph is an extension of graphs that offers a higher level of complexity. While a

graph allows for relationships between pairs of nodes through edges, it may not fully encapsulate

the complexity of interactions in some systems. Specifically, it falls short in representing multi-

way interactions among more than two nodes simultaneously. A node in a hypergraph represents

an individual entity within the system, and the edges in a hypergraph, referred to as hyperedges,

extend beyond the binary relationships encapsulated in traditional graph theory. They can connect

any number of nodes, providing a mechanism to model complex, multi-way relationships among

entities.

A hypergraph H = (V,E) consists of a set V of vertices and a set E of hyperedges. Unlike

an edge in a graph, a hyperedge can connect any number of nodes, not just two. In a hypergraph,

3

as shown in Figure 1.3, the concepts of edges take on a slightly different form. Concretely, in Figure

1.3, the vertex set is defined as V = {V1, V2, V3, V4, V5, V6, V7}, and the hyperedge set is denoted

as E = {e1, e2, e3, e4}. Specifically, hyperedge e1 forms a connection between vertices V1, V2, and

V3; hyperedge e2 connects vertices V2 and V3; hyperedge e3 forms a link between V3, V5, and V6;

and hyperedge e4 establishes a connection exclusively with V4. This detailed representation illus-

trates the versatility of hypergraphs, where hyperedges can connect varying numbers of vertices.

The ability to form such complex connections makes hypergraphs an invaluable tool in modeling

and analyzing systems where multi-way interactions are inherent. This feature allows for a more

accurate representation of multi-way relationships prevalent in many real-world systems. For in-

stance, in social networks, a co-authorship or a collaborative project involves multi-way interactions

(Estrada and odriguez-velasquez (2005); Newman (2001); Ouvrard and Marchand-Maillet (2017))

that can be effectively represented as a hyperedge in a hypergraph. Similarly, in a login network

(Ghoshdastidar and Dukkipati (2017)), an edge may represent a (user, remote host, login time,

logout time) structure that goes beyond pairwise interactions, making hypergraphs a fitting choice

for representation. The community structure within a hypergraph is defined similarly to that within

a graph, as demonstrated in Figure 1.2. Specifically, Figure 1.4 presents a hypergraph without a

distinct community structure, while Figure 1.5 displays a hypergraph with a clear two-community

structure. These illustrations effectively represent the range of possible community configurations

in a hypergraph.

Figure 1.3. An undirected hypergraph

4

Figure 1.4. A hypergraph without communities Figure 1.5. A two-community hypergraph

Existing studies on community detection in graph or hypergraph can be classified into two

categories: (1) those that derive an information-theoretic threshold to recover the community struc-

ture (Abbe et al. (2016); Mossel et al. (2015); Mossel et. al (2017); Chien et al. (2018); Dhara et al.

(2021); Hajek et al. (2018); Yuan and Shang (2021)); and (2) those that devise efficient algorithms

to recover the community structure (Ghoshdastidar and Dukkipati (2014, 2017); Luo and Zhang

(2020); Liu et al. (2015); Ke et al. (2020); Yuan and Qu (2021); Ahn et al. (2018, 2019); Hajek

et al. (2016); Gao et al. (2016); Weng and Feng (2021); Zhen and Wang (2021); Lei and Rinaldo

(2015); Jin (2015)); see Abbe (2018); Bi et al. (2021) for additional references. The aforementioned

methods all apply to networks without missing values.

1.2. Missing Values in Networks

In practice, network data may not always be fully observed. For instance, in a social network,

missingness can occur due to the non-responsiveness of actors, leading to absent ties (Huisman, M.

(2009); Gile and Handcock (2016)). In the field of medical imaging, specifically in MRI networks,

missingness can arise from the high costs associated with PET scanning (Liu et al. (2018)). In

the following sections, we introduce two specific hypergraphs characterized by missing values. We

emphasize their unique features and detail the methodologies applied in their construction.

1.2.1. Missing Data in Medical Field

Hypergraphs have emerged as a valuable tool in modeling medical data, largely due to their

inherent capacity to portray polyadic interactions amongst entities. This quality makes them apt

5

for the exploration of intricate systems wherein entities perform unique roles. Cai et al. (2022)

proposed a method rooted in hypergraph structure to extract patient representations from elec-

tronic health records, where individual nodes stand for medical codes, and the hyperedges represent

patients. Furthermore, Dai, Q. and Gao, Y. (2023) unveiled four archetypical applications of hyper-

graph computation in medical and biological scenarios, wherein, during computer-aided diagnosis,

nodes symbolize medical images or patches and hyperedges signify feature similarity or high-order

topological links.

The development of hypergraphs can be facilitated via straightforward algorithms like the

nearest neighbor method. It offers computational efficiency and a certain level of data density, by

creating a hyperedge from each vertex to its k nearest neighbors, based on attribute similarity. The

total count of hyperedges in the resulting hypergraph hinges on the selection of neighbor size and

vertex quantity, as illustrated in Figure 1.6.

In a medical data context, these attributes could encompass various patient-centric factors

like PET, CSF, and MRI (structural magnetic resonance imaging) values. Nevertheless, in certain

situations, all attributes might not be accessible for every patient. Such incompleteness could be

attributed to numerous reasons, such as the elevated cost of PET scans, inferior data quality, or

patient attrition during the testing process, which inhibits further data collection, leading to missing

values. Consequently, the resulting hypergraphs are incomplete, with certain nodes lacking specific

attributes. Notably, a hypergraph regularized transductive learning method has been applied to

incomplete multi-modality data in the ADNI database for automatic diagnosis of brain diseases

(Liu et al. (2018)), underscoring the feasibility and potential of handling incomplete hypergraphs

in medical data analysis.

Later sections will elaborate on the approach to handling these missing values within the

context of censored hypergraph algorithms.

6

Figure 1.6. Hypergraph construction for medical data. We construct the hypergraph using the
nearest-neighbor algorithm based on the attributes that a patient has.

1.2.2. Missing Data in Engineering Field

Apart from the medical domain, engineering researchers also grapple with the issue of missing

data. Their solution often involves converting the raw data into hypergraphs, as noted by Hu and

Shi (2015). The concept of the neighborhood model was introduced by Lin in 1988 (Lin, T. Y.

(1998)). Subsequently, Hu et al. (2008) explored the properties of neighborhood approximation

spaces and proposed a neighborhood-based rough set model. Later, Hu et al. (2014) utilized the

neighborhood rough set to classify data by calculating the neighborhood threshold for samples based

on the Minkowski distance, encompassing all the attribute values of the calculated sample.

This approach diverges from the previous example where hypergraphs were created using

the nearest neighbor algorithm. Instead, it constructs hypergraphs based on attribute similarity

between samples, coupled with the theory of neighborhood rough sets. When a threshold is defined,

and the attribute similarity between two samples falls beneath this threshold, they are grouped

within the same hyperedge, leading to the formation of a hypergraph. If certain attributes contain

missing values, the associated hyperedges are either absent or missing. Figure 1.7 visually represents

this process of hypergraph construction in engineering data.

7

Figure 1.7. Hypergraph construction for engineering data. We construct the hypergraph by calcu-
lating the attribute similarity based on the attributes that a node in the engineering data has.

1.3. Community Detection in Censored Networks

Missing values have non-negligible effects on the structural properties of a network (Huisman,

M. (2009); Smith et al. (2018)), and most existing algorithms for community detection apply to

uncensored networks. Thus, a natural question is how to recover communities in a censored network.

Researchers can deal with missing values, typically present in data gathered for empirical research,

in various methods. The simplest course of action is simply ignoring the missing data and focusing

on the observed replies. However, some researchers (Little and Rubin (2019)) believe that ignoring

the missing values and only analyzing the observed data will result in a severe loss of information and

a decrease in statistical power. Except for the deletion method (we delete all missing values from

the graph or hypergraph), weighting procedures, and model-based procedures, some imputation

methods are also proposed to deal with missing data. For instance, in Huisman, M. (2009); Smith

et al. (2018)’s work, they illustrated several simple imputation methods.

One of the interesting research topics is to study the effect of missing values on the perfor-

mance of community detection algorithms. To the best of our knowledge, Abbe et al. (2014) was the

first to theoretically examine community detection in a censored graph, obtaining an information-

theoretic threshold for the exact recovery of communities. Recently, Dhara et al. (2021) introduced

8

a censored stochastic block model for censored community detection, specifically applicable to sce-

narios with two communities. In their model, most of the edges are missing, with only a small

fraction of potential edges being observed. An information-theoretic threshold is established in

their study, if this threshold is not met, the successful recovery of communities by any algorithm is

impossible. They propose a spectral algorithm to recover communities when the threshold is met,

they also illustrate the limitations of this spectral algorithm in the context of an asymmetric case,

which is characterized by differing connection probabilities within the two communities.

Hypergraph learning with missing values has recently attracted much attention. Hu and

Shi (2015) introduced a unique classification algorithm tailored to incomplete information systems.

Their approach is founded on the integration of a hypergraph model and rough set theory. Liu

et al. (2017, 2018) employed a multi-hypergraph to represent higher-order relationships among

subjects in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The purpose of

this representation was to segregate the subjects into distinct groups based on the availability of

their respective data modalities. Their approaches demonstrate how hypergraphs can be effectively

utilized to manage and analyze missing data, providing a basis for our subsequent exploration.

In this study, we are interested in detecting communities in censored hypergraphs. It is

not immediately clear how the results obtained by (Dhara et al. (2021)) changes in the case of a

censored hypergraph. Our contributions to the literature are summarized as follows. We derive

an information-theoretic threshold for the exact recovery of a community structure in a censored

uniform hypergraph. Interestingly, the threshold is larger, in general, than that in the graph case.

In this sense, community detection in a censored hypergraph is more difficult than it is in the case of

a censored graph. In addition, we propose a polynomial-time algorithm that can exactly recover the

community structure up to the information-theoretic threshold. The proposed algorithm consists

of a spectral algorithm plus a refinement step. We also study whether a single spectral algorithm

without refinement can achieve the threshold as the censored graph case (Dhara et al. (2021)). To

this end, we study the semi-definite relaxation algorithm and provide a sufficient condition for the

algorithm to achieve exact recovery. Moreover, we propose several methods to impute the missing

values in hypergraphs and use simulation to evaluate their performance.

9

1.4. Organization of the Content

The rest of this paper is structured as follows. Section 2 provides a summary of the key

results of the censored hypergraph stochastic block model. The proofs for these theorems are given

in Section 3. Section 4 shares the results of numerical simulations conducted for our proposed

clustering algorithms, evaluates the performance of the suggested imputation methods and presents

the simulation outcomes for community detection in multi-community hypergraphs. In Section 5,

we demonstrate the real-world applicability of our proposed algorithm by using it on an actual

dataset. Lastly, we give an overall summary of this study in section 6, stating our contributions

and conclusions.

10

2. MAIN RESULTS

In this section, we delineate an information-theoretic threshold for the exact recovery in the

context of a Censored Hypergraph Stochastic Block Model (CHSBM). We subsequently introduce

the Efficient Spectral algorithm, which is a two-stage method designed for the exact recovery of

the community structure. Additionally, we propose a one-stage algorithm based on Semi-Definite

Programming. To complement these, we also present several imputation methods, each of which

leverages distinct network properties. This multifaceted approach provides a comprehensive exami-

nation of the tools and techniques integral to the analysis and manipulation of censored hypergraphs.

2.1. The Censored Hypergraph Stochastic Block Model

For a positive integer n, we define a set of nodes V = {1, 2, . . . , n} and a set of subsets

of V denoted by E . An undirected m-uniform hypergraph Hm = (V, E) is characterized by the

property that each hyperedge e ∈ E contains exactly m distinct nodes. We represent Hm as a

symmetric m-dimensional array A = (Ai1,...,im) ∈ {0, 1}⊗nm , where Ai1i2...im = 1 if {i1, i2, . . . , im}

forms a hyperedge, and Ai1i2...im = 0 otherwise. It should be noted that Ai1i2...im = Aj1j2...jm when

{i1, i2, . . . , im} = {j1, j2, . . . , jm}. In this paper, we exclude self-loops, meaning that Ai1i2...im = 0

when |{i1, i2, . . . , im}|< m. When m = 2, H2 represents a conventional graph widely employed in

community detection problems (Abbe (2018)). We specifically focus on the hypergraph derived from

the Censored m-uniform Hypergraph Stochastic Block Model (CHSBM) denoted as Hm(n, p, q, α)

throughout this paper.

Definition 2.1.1 (Censored m-uniform Hypergraph Stochastic Block Model (CHSBM)). Each node

i ∈ V is randomly and independently assigned a label σi with

P(σi = +1) = P(σi = −1) =
1

2
.

Let σ = (σ1, . . . , σn)
T be a column vector of labels, I+(σ) = {i|σi = +1} and I−(σ) = {i|σi = −1}.

The nodes in I+(σ) and I−(σ) constitute two communities. The distinct nodes i1, i2, . . . , im form a

hyperedge with probability p if {i1, i2, . . . , im} is a subset of I+(σ) or I−(σ) and q otherwise. Each

hyperedge status is revealed independently with probability α. A hyperedge of the resulting hypergraph

11

takes value in {1, 0, ∗}, where ∗ means a hyperedge is missing (the hyperedge status is not revealed).

This model is denoted as Hm(n, p, q, α).

In the censored hypergraph model Hm(n, p, q, α) with α < 1, each hyperedge can have one

of three possible states: 1 (present), 0 (absent), or ∗ (missing). When α = 1, the hypergraph

is uncensored, and Hm(n, p, q, 1) corresponds to the standard hypergraph stochastic block model

(Ghoshdastidar and Dukkipati (2014, 2017); Chien et al. (2018); Kim et al. (2018); Ke et al. (2020);

Yuan and Shang (2021)). The censored stochastic block model CSBM(p, q, α) studied in (Dhara

et al. (2021)) corresponds to H2(n, p, q, α). In this paper, we assume fixed constants p, q ∈ (0, 1)

where p > q, and α = t logn
nm−1 for a constant t > 0. We consider the order of α as logn

nm−1 because it is

the smallest order that allows for exact recovery (see Theorem 2.1 and Theorem 2.2).

For the in-community and cross-community probabilities aforementioned, assume we have

6 nodes in a 2-uniform hypergraph, the first 3 belong to one community, and the rest belong to the

other community. Then the probability matrix will be:

Pij =



0 0.4 0.4 0.1 0.1 0.1

0.4 0 0.4 0.1 0.1 0.1

0.4 0.4 0 0.1 0.1 0.1

0.1 0.1 0.1 0 0.4 0.4

0.1 0.1 0.1 0.4 0 0.4

0.1 0.1 0.1 0.4 0.4 0


where p = 0.4 and q = 0.1.

Given a hypergraph A generated from Hm(n, p, q, α), community detection refers to the

problem of recovering the unknown true label vector σ, or equivalently, identifying the sets I+(σ)

and I−(σ). We say an estimator σ̂ is an exact recovery of σ, σ̂ exactly recovers σ, or σ̂ achieves an

exact recovery if

P(∃s ∈ {±1} : σ̂ = sσ) = 1− o(1).

That is, the estimator σ̂ is equal to σ or −σ with probability 1− o(1). If there exists an estimator

σ̂ that exactly recovers σ, we say an exact recovery is possible. Otherwise, we say that an exact

recovery is not possible.

12

2.2. Sharp Threshold for Exact Recovery

In this subsection, we derive a sharp phase transition threshold for exact recovery. The first

result specifies a sufficient condition for the impossibility of exact recovery.

Theorem 2.1. For each fixed integer m ≥ 2, if t < Im(p, q), then P(σ̂ = σ) = o(1) for any estimator

σ̂. Here Im(p, q) is defined as

Im(p, q) =
2m−1(m− 1)!

(
√
p−√

q)2 + (
√
1− p−

√
1− q)2

. (2.1)

Theorem 2.1 establishes that if t < Im(p, q), no estimator can achieve exact recovery of

the true labels. In the case of m = 2, I2(p, q) corresponds to tc(p, q) as defined in (Dhara et al.

(2021)). Our result can be viewed as a nontrivial extension of Theorem 2.1 in (Dhara et al. (2021)).

Interestingly, when p and q are fixed, the region where t < I2(p, q) is smaller compared to the

region where t < Im(p, q) for m ≥ 3. A similar phenomenon is observed in the exact recovery of

communities within an uncensored hypergraph stochastic block model (Kim et al. (2018)). However,

it differs notably from the hypothesis testing scenario for communities. For instance, Yuan and

Shang (2021) derived the sharp boundary for testing the presence of a dense subhypergraph. When

the number of nodes in the dense subhypergraph is not excessively small, the region in which any

test becomes asymptotically powerless for m = 2 is larger than that for m ≥ 3.

The next result shows that the threshold Im(p, q) is actually sharp for exact recovery.

Theorem 2.2. For each fixed integer m ≥ 2, if t > Im(p, q), with Im(p, q) defined in (2.1), then

the MLE exactly recovers the true label with probability 1− o(1).

According to Theorem 2.2, when t > Im(p, q), we can use the Maximum Likelihood Esti-

mation (MLE) to exactly recover the true labels. By combining Theorem 2.1 and Theorem 2.2,

we establish the sharp boundary t = Im(p, q) for exact recovery, which forms a surface in R3. To

provide a visual representation, we illustrate the regions t > Im(p, q) and t < Im(p, q) for q = 0.2

and m = 2, 3 in Figure 2.1. The gray region represents t < Im(p, 0.2) where exact recovery is

impossible, while the white region corresponds to t > Im(p, 0.2) where exact recovery is possible.

It is evident that the white region for m = 3 is smaller than that for m = 2. Thus, as m increases,

exact recovery becomes more challenging.

13

Figure 2.1. Regions for exact recovery with m = 2, 3 and q = 0.2. Gray: exact recovery is impossible.
White: exact recovery is possible.

2.3. Efficient Spectral Algorithm for Exact Recovery

Due to the non-polynomial time complexity of Maximum Likelihood Estimation (MLE)

for exact recovery, we propose an efficient algorithm to reconstruct two communities up to the

information-theoretic threshold. The algorithm starts with a random splitting of the hypergraph

A into two parts. Then, we applied a spectral algorithm to the first part, followed by a refinement

based on the second part. We describe the algorithm in the following three steps.

In the first step, we randomly split the hypergraph A into two parts. Denote Mm =

{(i1, i2, . . . , im) | 1 ≤ i1 < · · · < im ≤ n}. Let S1 be a random subset of Mm obtained by in-

cluding each element of Mm in S1 with probability log logn
logn . Let S2 be the compliment of S1 in Mm,

that is, S2 = Mm − S1. Define a hypergraph Ã as

Ãi1i2...im =

 1[Ai1i2...im = 1], {i1, i2, . . . , im} ∈ S1,

0, otherwise.

14

Here, 1[E] is the indicator function of event E. Define hypergraph Ā as

Āi1i2...im =

 Ai1i2...im , {i1, i2, . . . , im} ∈ S2,

∗, otherwise.

Then, we randomly divided hypergraph A into two independent hypergraphs Ã and Ā.

In the second step, we apply the weak recovery algorithm HSC in (Ahn et al. (2018)) to

Ã. The HSC algorithm converts a hypergraph Ã to an n × n similarity matrix B using Bij =∑
1≤i3<i4<···<im≤n Ãiji3i4...im , and then applies geometric two-clustering to the top two eigenvectors

of B to output the communities Ĩ+(σ) and Ĩ−(σ). The sampling probability log logn
logn in the first step

ensures that the hyperedge probability of Ã has order log logn
logn α = t log logn

nm−1 (Here, the log logn factor

can be replaced by any an with an → ∞). According to Theorem 1 of Ahn et al. (2018), n− o(n)

of the nodes are correctly labeled by the HSC algorithm with probability 1− o(1).

The last step is to refine the communities Ĩ+(σ) and Ĩ−(σ) based on Ā. For a set S ⊂ [n],

define e(i, S) as

e(i, S) =
∑

i2,...,im∈S\{i}
i2<···<im

(
log

(
p

q

)
1[Āii2...im = 1] + log

(
1− p

1− q

)
1[Āii2...im = 0]

)
.

For each node i ∈ Ĩ+(σ), flip the label of i if

e(i, Ĩ+(σ)) < e(i, Ĩ−(σ)).

For each node j ∈ Ĩ−(σ), flip the label of j if

e(j, Ĩ−(σ)) < e(j, Ĩ+(σ)).

Let Î+(σ) and Î−(σ) be the resulting communities. If |Î+(σ)|≠ |Ĩ+(σ)|, output Ĩ+(σ) and Ĩ−(σ);

otherwise output Î+(σ) and Î−(σ).

The above algorithm is summarized in Algorithm 1.

Theorem 2.3. For each fixed integer m ≥ 2, if t > Im(p, q), with Im(p, q) defined in (2.1), then

Algorithm 1 exactly recovers the true label with probability 1− o(1).

15

The time complexity of Algorithm 1 is bounded by O(nm). This complexity analysis applies

to the random splitting in Step 1 as well as the refinement in Step 3, both of which have a time

complexity of at most O(nm). In Step 2, the weak recovery algorithm HSC proposed by Ahn et al.

(2018) also exhibits a time complexity of O(nm), as documented in the comments below Remark

1 of their publication. Consequently, Theorem 2.3 establishes that an algorithm with polynomial

time complexity can achieve the information-theoretic threshold.

Algorithm 1: Spectral algorithm plus refinement for exact recovery

1: Input: A censored m-uniform hypergraph A generated from Hm(n, p, q, α).

2: Step 1: random splitting.

Randomly select elements in Mm = {(i1, i2, . . . , im) | 1 ≤ i1 < · · · < im ≤ n} with

probability log logn
logn to form a subset S1 ⊂ Mm and let S2 = Mm − S1. Construct the

hypergraph Ã as Ãi1i2...im = 1[Ai1i2...im = 1], if i1, i2, . . . , im ∈ S1 and Ãi1i2...im = 0

otherwise. Construct the hypergraph Ā as Āi1i2...im = Ai1i2...im if i1, i2, . . . , im ∈ S2

and Āi1i2...im = ∗ otherwise.

3: Step 2: spectral algorithm.

Apply the weak recovery algorithm HSC in Ahn et al. (2018) to Ã, and denote the

community output as Ĩ+(σ), Ĩ−(σ).

4: Step 3: refinement.

Flip the label of i ∈ Ĩ+(σ) if e(i, Ĩ+(σ)) < e(i, Ĩ−(σ)).

Flip the label of j ∈ Ĩ−(σ) if e(j, Ĩ−(σ)) < e(j, Ĩ+(σ)).

Let Î+(σ) and Î−(σ) be the resulting communities.

5: Output: If |Î+(σ)|̸= |Ĩ+(σ)|, output Ĩ+(σ) and Ĩ−(σ);

otherwise output Î+(σ) and Î−(σ).

2.4. Semi-Definite Relaxation Algorithm

In subsection 2.3, we demonstrate that by employing a spectral algorithm with a refinement

step, we can achieve exact recovery. However, it is intriguing to investigate whether a single spectral

algorithm, without a subsequent refinement step, can reach the information-theoretic threshold. In

the case of graphs (m = 2), the answer is affirmative, as both the semi-definite relaxation algorithm

16

and the spectral algorithm have been shown to succeed without the need for a refinement step (Hajek

et al. (2016); Dhara et al. (2021)). Nevertheless, for hypergraphs (m ≥ 3), regardless of whether

they are censored or uncensored, this question remains an open problem. In this subsection, we

delve into the semi-definite relaxation algorithm and conduct an analysis of its performance. To

accomplish this, we introduce a new hypergraph derived from the given hypergraph A and transform

it into a weighted graph. Subsequently, we demonstrate that by applying the semi-definite relaxation

algorithm to the weighted graph, we can achieve exact recovery.

Define the hypergraph Ã based on A as

Ãi1i2...im = 1[Ai1i2...im = 1],

and Ãi1i2...im = 0 if |{i1, i2, . . . , im}|≤ m − 1. Each hyperedge Ãi1i2...im takes value in {1, 0}. The

hypergraph Ã shares the same community structure as that of A, because

E(Ãi1i2...im) =


pα, {i1, i2, . . . , im} ⊂ I+(σ) or I−(σ);

qα, otherwise.

Next, we construct a weighted graph G = [Gij] based on Ã by using

Gij =
∑

1≤i3<···<im≤n

Ãiji3...im .

Define the semi-definite program problem (SDP) as

max
Y

⟨G, Y ⟩

s.t. Y ⪰ 0

⟨Y, J⟩ = 0

Yii = 1, i ∈ [n],

(2.2)

where J is an n × n all-one matrix. Suppose σ is the true label, and denote Y0 = σσT . Let Ŷ be

the solution to the SDP (2.2). The following result provides a sufficient condition under which Ŷ is

an exact recovery of Y0.

17

Theorem 2.4. For each fixed integer m ≥ 2, let

Jm(p, q) =
2m+2(m− 2)! [mp− (m− 2m)q]

(p− q)2
.

If t > Jm(p, q), then P(Ŷ = Y) = 1− o(1), where Y = σσT , with true label σ.

Note that Jm(p, q) > Im(p, q), for each m ≥ 2. When m = 2 and the graph is uncensored,

Ŷ can exactly recover the true label up to the information-theoretic threshold (Hajek et al. (2016)).

However, for m ≥ 3, it is unclear whether Ŷ succeeds in the range Im(p, q) < t < Jm(p, q). A

similar gap exists in the uncensored hypergraph case (Kim et al. (2018)).

2.5. Imputation Methods

In the work by Huisman, M. (2009), the researchers explored several basic imputation meth-

ods in the graph context. These were categorized into four types of imputation procedures: un-

conditional mean imputation, conditional distribution imputation, conditional mean imputation,

and imputation from conditional distributions. The authors provided some examples of simple im-

putation methods in their paper, which were originally defined in Schafer and Graham (2002) as

follows:

1. Imputing the unconditional mean: This method imputes the average tie value over all

observed ties. For binary networks, this is equal to the network density.

2. Imputation by reconstruction: This method uses observed incoming relations of the miss-

ing actors to reconstruct the missing part of the network. If both ties in a dyad are missing,

additional imputations are necessary, which are performed randomly proportional to the ob-

served density.

3. Imputation using preferential attachment: This method assumes that the probability

that a missing actor will be connected to another actor is proportional to the indegree of that

actor. It preserves the degree distributions and is expected to perform well in social network

research.

4. Hot Deck imputation: This method uses completely observed donor actors to replace the

missing actor or missing ties of an incomplete actor. Actors are matched on a completely

observed attribute.

18

Motivated by the methods in Huisman, M. (2009), we propose several imputation methods

to impute missing values in hypergraphs.

2.5.1. Imputation Using Network Density

For hypergraphs, network density refers to the proportion of observed hyperedges to the

total possible number of hyperedges. We impute the missing values of censored hyperedges as

either one (present) if the density falls above a predetermined threshold or zero (absent), otherwise.

Let’s denote:

• Eo as the set of observed hyperedges in a hypergraph,

• V as the set of vertices in a hypergraph,

• Emax as the maximum possible number of hyperedges that could exist among vertices V ,

• d as the network density,

• emissing as the missing hyperedge values,

• T as a predetermined threshold.

Then, we can calculate the network density d in both graph and hypergraph as:

d =
|Eo|
Emax

where |Eo| represents the number of observed hyperedges.

We can represent the imputation of missing hyperedge values as:

emissing =


1 if d > T

0 otherwise

This indicates that missing values of censored hyperedges are imputed as either one (indi-

cating the hyperedge is present) or zero (indicating the hyperedge is absent) depending on whether

the network density falls below a predetermined threshold T .

19

2.5.2. Imputation Using Community Density

We propose a community density imputation methods as follows: we first apply a commu-

nity detection algorithm to the observed hypergraph, then calculate the in-community and cross-

community density. These densities are then used as the occurrence probabilities of Bernoulli

distributions B(p). Finally, we impute the missing hyperedges by random numbers drawn from

their respective Bernoulli Distributions, creating a new set of hyperedges.

The steps to implement this method are as follows:

1. Apply a community detection algorithm to the observed hypergraph (that is, the missing

hyperedges are set to be zero), thereby dividing it into a number of communities C =

{C1, C2, . . . , Cr}.

2. For each community Ci and each pair of communities (Ci, Cj), calculate the in-community

density dCi and the cross-community density dCiCj as the ratios of the number of observed

hyperedges to the maximum possible number of hyperedges within or between the respective

communities.

3. Use these calculated densities to form multiple Bernoulli distributions, B(p), where p = dCi

or p = dCiCj .

4. Impute the missing hyperedges by drawing from the Bernoulli distributions corresponding

to each missing hyperedge’s community or pair of communities. This forms a new set of

hyperedges.

2.5.3. Imputation Using Degree

We propose a new degree-based imputation method. The method uses the degree of each

vertex as an indicator of comparison. The degree of a node v is defined as deg(v) =
∑

e∈εHve,

which is simply the sum of the entries in the vth row of the incidence matrix H.

To impute the missing data, we first set the status of missing hyperedges Ai1,i2,...,im , where

i1, i2, . . . , im are distinct nodes, to 0, indicating the absence of connections between them. Next,

we calculate the degree of all vertices. We then set a threshold to reveal the status of the missing

hyperedges. If a missing hyperedge contains nodes with degrees greater than the average node

20

degree, we set the corresponding missing hyperedge to present (represented by 1 in the incidence

matrix); otherwise, it is set to absent (represented by 0 in the incidence matrix). These steps

complete the imputation process.

The implementation of this imputation method proceeds as follows:

1. Initially set the status of missing hyperedges Ai1,i2,...,im , where i1, i2, . . . , im are distinct nodes,

to 0, indicating the absence of hyperedges between these nodes.

2. Calculate the degree of all vertices in the hypergraph.

3. Determine a threshold based on the average node degree.

4. For each missing hyperedge, if it contains nodes with degrees exceeding the threshold, then set

the status of this hyperedge to 1 in the incidence matrix, indicating its presence. Otherwise,

set it to 0, indicating its absence.

21

3. PROOF OF THEOREMS

3.1. Proof of Theorem 2.1

In this section, we prove Theorem 2.1.

Proof of Theorem 2.1 : Let l(σ) denote the log-likelihood function associated with a label

σ. It is important to note that, according to Definition 2.1, the true label vector σ is uniformly and

independently selected from the set S = {±1}n. Proposition 4.1 in Dhara et al. (2021) states that

if there exist labels ηt (1 ≤ t ≤ kn), where kn → ∞, such that l(η1) = l(η2) = · · · = l(ηkn) = l(σ),

then the MLE fails to achieve exact recovery of the true label with a probability of 1− o(1). In our

proof, we construct labels ηt (1 ≤ t ≤ kn) under the condition t < Im(p, q), where kn → ∞.

First, we write down the explicit expression of the likelihood function. Note that for distinct

nodes i1, i2, . . . , im, we have

Ai1i2...im =


1 ,

0 ,

∗ .

For convenience, let 1[E] be the indicator function of event E and

1i1i2...im(σ) = 1[σi1 = σi2 = · · · = σim].

22

Then, the likelihood function for σ given an observation of hypergraph A from Hm(n, p, q, α) is

L =
∏

1≤i1<···<im≤n

(pα)1[Ai1i2...im
=1]1i1i2...im

(σ)[α(1− p)]1[Ai1i2...im
=0]1i1i2...im

(σ)

×(qα)1[Ai1i2...im
=1](1−1i1i2...im

(σ))[α(1− q)]1[Ai1i2...im
=0](1−1i1i2...im

(σ))(1− α)1[Ai1i2...im
=∗]

=
∏

1≤i1<···<im≤n

(1− α)1[Ai1i2...im
=∗](qα)1[Ai1i2...im

=1]

(
p

q

)
1[Ai1i2...im

=1]1i1i2...im
(σ)

×[α(1− q)]1[Ai1i2...im
=0]

(
1− p

1− q

)
1[Ai1i2...im

=0]1i1i2...im
(σ)

=
∏

1≤i1<···<im≤n

(1− α)1[Ai1i2...im
=∗](qα)1[Ai1i2...im

=1][α(1− q)]1[Ai1i2...im
=0]

×
∏

1≤i1<···<im≤n

(
p

q

)
1[Ai1i2...im

=1]1i1i2...im
(σ)(1− p

1− q

)
1[Ai1i2...im

=0]1i1i2...im
(σ)

.

We obtain the MLE by maximizing L with respect to σ. The first product factor of L does not

involve σ. Hence, we need only maximize the second product factor of L to obtain the MLE. Denote

l(σ) =
∑

1≤i1<···<im≤n

[
log

(
p

q

)
1[Ai1i2...im = 1]1i1i2...im(σ) + log

(
1− p

1− q

)
1[Ai1i2...im = 0]1i1i2...im(σ)

]
.

The log-likelihood function is equal to

logL = Rn + l(σ), (3.1)

where Rn is independent of σ.

Below, we construct labels ηt (1 ≤ t ≤ kn) with kn → ∞ under the condition t < Im(p, q).

Because Rn is independent of σ, we need only focus on l(σ).

Note that

l(σ) =

[
log

(
p

q

)
1[Ai1...im = 1] + log

(
1− p

1− q

)
1[Ai1...im = 0]

]
1[σi1 = · · · = σim = +1]

+

[
log

(
p

q

)
1[Ai1...im = 1] + log

(
1− p

1− q

)
1[Ai1...im = 0]

]
1[σi1 = · · · = σim = −1].

Let’s assume that i0 ∈ I+(σ) has exactly m1 present hyperedges and m2 absent hyperedges in

I+(σ), and it also has exactly m1 present hyperedges and m2 absent hyperedges in I−(σ). Similarly,

23

let’s consider j0 ∈ I−(σ), which has exactly m1 present hyperedges and m2 absent hyperedges in

I+(σ), as well as m1 present hyperedges and m2 absent hyperedges in I−(σ). It is worth noting

that flipping the labels of i0 and j0 does not alter the value of l(σ). Let σ̃ represent the label

configuration obtained by flipping the labels of i0 and j0. It can be verified that l(σ) = l(σ̃). To

prove this, let T1 = log
(
p
q

)
and T2 = log

(
1−p
1−q

)
; then,

l(σ) =

(
T1

∑
i1i2...im

1[Ai1i2...im = 1] + T2

∑
i1i2...im

1[Ai1i2...im = 0]

)
1[σi1 = · · · = σim = +1]

+

(
T1

∑
i1i2...im

1[Ai1i2...im = 1] + T2

∑
i1i2...im

1[Ai1i2...im = 0]

)
1[σi1 = · · · = σim = −1].

Further, l(σ) can be written as

l(σ) = T1

∑
i1i2...im∈I+(σ)
i1i2...im ̸=i0

1[Ai1i2...im = 1] + T1

∑
i2...im∈I+(σ)
i2...im ̸=i0

1[Ai0i2...im = 1]

+ T2

∑
i1i2...im∈I+(σ)
i1i2...im ̸=i0

1[Ai1i2...im = 0] + T2

∑
i2...im∈I+(σ)
i2...im ̸=i0

1[Ai0i2...im = 0]

+ T1

∑
i1i2...im∈I−(σ)
i1i2...im ̸=j0

1[Ai1i2...im = 1] + T1

∑
i2...im∈I−(σ)
i2...im ̸=j0

1[Aj0i2...im = 1]

+ T2

∑
i1i2...im∈I−(σ)
i1i2...im ̸=j0

1[Ai1i2...im = 0] + T2

∑
i2...im∈I−(σ)
i2...im ̸=j0

1[Aj0i2...im = 0],

and

l(σ̃) = T1

∑
i1i2...im∈I+(σ)
i1i2...im ̸=j0

1[Ai1i2...im = 1] + T1

∑
i2...im∈I+(σ)
i2...im ̸=j0

1[Aj0i2...im = 1]

+ T2

∑
i1i2...im∈I+(σ)
i1i2...im ̸=j0

1[Ai1i2...im = 0] + T2

∑
i2...im∈I+(σ)
i2...im ̸=j0

1[Aj0i2...im = 0]

+ T1

∑
i1i2...im∈I−(σ)
i1i2...im ̸=i0

1[Ai1i2...im = 1] + T1

∑
i2...im∈I−(σ)
i2...im ̸=i0

1[Ai0i2...im = 1]

+ T2

∑
i1i2...im∈I−(σ)
i1i2...im ̸=i0

1[Ai1i2...im = 0] + T2

∑
i2...im∈I−(σ)
i2...im ̸=i0

1[Ai0i2...im = 0]

24

Then l(σ) = l(σ̃) by the assumption of i0 and j0.

Next, we show there are kn (kn → ∞) such pairs. More specifically, we show that there exist

i1, i2, . . . , ik ∈ I+(σ) and j1, j2, . . . , jk ∈ I−(σ) with k ≫ 1 such that the likelihood function remains

unchanged if we flip the label of a pair (it, jt), for t = 1, 2, . . . , k. Let ηt be the label obtained by

flipping the label of it, jt in σ. Then, l(ηt) = l(σ), for 1 ≤ t ≤ k → ∞.

Let n1 = |I+(σ)| and n2 = |I−(σ)|. Then, n1, n2 =
n
2 (1+O(n− 1

3)) with probability 1−o(1).

Hence, we take n1 = n2 = n
2 below. Let S+ ⊂ I+(σ) be a random subset with |S+|= n

log2 n
, and

S− ⊂ I−(σ) be a random subset with |S−|= n
log2 n

. Denote S = S+ ∪ S−. Define

S0 =
{
i ∈ S|any i2, . . . , it ∈ S, it+1, . . . , im ∈ Sc, s.t. Aii2...itit+1...im = ∗, t ≥ 2

}
.

For each node i ∈ S0, the hyperedge Aii2...im is possibly revealed if and only if {i2, . . . , im} ⊂

I+(σ)− S or {i2, . . . , im} ⊂ I−(σ)− S.

We will show |S0|= 2n(1+o(1))

log2 n
with probability 1− o(1). Let

T =
m∑
t=2

∑
i1,...,it∈S

it+1,...,im∈Sc

1[Ai1i2...itit+1...im ̸= ∗].

The expectation of T is

ET =
m∑
t=2

(2n
log2 n

t

)(
n− 2n

log2 n

m− t

)
α

=

m∑
t=2

(2n
log2 n

t

)(
n− 2n

log2 n

m− t

)
t log n

nm−1

=
c · nm

log4 n

t log n

nm−1

≍ n

log3 n
.

Hence, by the Markov inequality, we have

P
(
T ≥ n

log2 n
√
log n

)
≤ 1

n
log2 n

√
logn

c · n
log3 n

=

√
log n

log n
= o(1).

Then, T < n
log2 n

√
logn

with probablity 1−o(1). Hence, |S0|= 2n
log2 n

(1+o(1)) with probability 1−o(1).

25

Let m1 =
√
pqt logn

2m−1(m−1)!
and m2 =

√
(1−p)(1−q)t logn

2m−1(m−1)!
. For some k ≫ 1, we show that there exists

it ∈ S0 ∩ S+, (1 ≤ t ≤ k) such that it has m1 present hyperedges and m2 absent hyperedges in

I+(σ) and I−(σ) respectively. Denote

ñ1 =
(n1− 2n

log2 n

m−1

)
∼ nm−1

2m−1(m−1)!
.

Let i0 ∈ S0 ∩ S+, the probability that i0 has m1 present hyperedges and m2 absent hyperedges in

I+(σ) and I−(σ) is,

p0 =
ñ1!

m1!m2! (ñ1 −m1 −m2)!
· (αp)m1 [α(1− p)]m2(1− α)(ñ1−m1−m2)

× ñ1!

m1!m2! (ñ1 −m1 −m2)!
· (αq)m1 [α(1− q)]m2(1− α)(ñ1−m1−m2)

∼ 1

m1!2m2!2

 ñ
ñ1+

1
2

1 e−ñ1

(ñ1 −m1 −m2)
ñ1−m1−m2+

1
2 e−ñ1+m1+m2

2

(α2pq)m1

× [α2(1− p)(1− q)]m2(1− α)2(ñ1−m1−m2)

=
1

m1!2m2!2

[
(ñ1 −m1 −m2)

m1+m2

em1+m2(1− m1+m2
ñ1

)ñ1+
1
2

]2
(α2pq)m1 [α2(1− p)(1− q)]m2(1− α)2(ñ1−m1−m2)

=
1

m1!2m2!2

[
ñm1+m2
1

em1+m2e−(m1+m2)

]2
(α2pq)m1

[
α2(1− p)(1− q)

]m2 e
− t logn

2m−2(m−1)!

=
ñ
2(m1+m2)
1

m1!2m2!2
e
− t logn

2m−2(m−1)! (α2pq)m1 [α2(1− p)(1− q)]m2

=
n
− t

2m−2(m−1)!

m1!2m2!2
(α2ñ2

1pq)
m1 [α2ñ2

1(1− p)(1− q)]m2

= n
− t

2m−2(m−1)!
e2(m1+m2)

4π2m1m2
(
α2ñ2

1pq

m2
1

)m1(
α2ñ2

1(1− p)(1− q)

m2
2

)m2

=
1

4π2m1m2
n
− t

2m−2(m−1)! e

√
pq+

√
(1−p)(1−q)

2m−2(m−1)!
t logn

=
1

4π2m1m2
n
− t

2m−2(m−1)!
[1−√

pq−
√

(1−p)(1−q)]

=
1

4π2m1m2
n
−t· (

√
p−√

q)2+(
√
1−p−

√
1−q)2

2m−1(m−1)! .

If t < 2m−1(m−1)!
(
√
p−√

q)2+(
√
1−p−

√
1−q)2

, then p0 ≫ n1−ϵ

n , for some ϵ ∈ (0, 1). Similarly, the probability that

j0 ∈ S0 ∩ S− has m1 present hyperedges and m2 absent hyperedges in I+(σ) and I−(σ) is equal to

p0.

26

For i ∈ S0, let 1i denote the event that i has m1 present hyperedges and m2 absent hyper-

edges in I+(σ) and I−(σ). Define two random variables

X =
∑

i∈S0∩S+

1i, Y =
∑

i∈S0∩S−

1i.

If 1i = 1j = 1 for i ∈ S0 ∩ S+ and j ∈ S0 ∩ S−, then the likelihood function remains unchanged if

we flip the labels of i and j. By Chebyshev’s inequality, given |S0 ∩ S+|, we have

P
(
X ≤ (1− ϵ)

2n

log2 n
p0

)
= P

(
X ≤ (1− ϵ)

2n

log2 n
p0

∣∣∣∣|S0 ∩ S+|≥
2n

log2 n
(1− o(1))

)
· P
(
|S0 ∩ S+|≥

2n

log2 n
(1− o(1))

)
+ P

(
X ≤ (1− ϵ)

2n

log2 n
p0

∣∣∣∣|S0 ∩ S+|<
2n

log2 n
(1− o(1))

)
P
(
|S0 ∩ S+|<

2n

log2 n

)
≤ P

(
X ≤ (1− ϵ)|S0 ∩ S+|p0

∣∣∣∣|S0 ∩ S+|≥
2n

log2 n
(1− o(1))

)
+ o(1)

≤ 1

ϵ2|S0 ∩ S+|p0
+ o(1).

Given that p0 ≫ n1−ϵ

n for some ϵ > 0 and |S0 ∩ S+|≥ 2n
log2 n

(1 − o(1)), we observe that

X ≥ |S0∩S+|p0 → +∞ with probability 1−o(1). Similarly, Y ≥ |S0∩S+|p0 → +∞ with probability

1− o(1). Consequently, we can establish the existence of pairs (it, jt) for 1 ≤ t ≤ kn → ∞. For each

t, flipping the labels of it and jt maintains the likelihood constant. By invoking Proposition 4.1 in

Dhara et al. (2021), the proof is completed.

3.2. Proof of Theorem 2.2

Proof of Theorem 2.2 : Let σ denote the MLE. Referring to the log-likelihood function

mentioned in (3.1), we ascertain that the MLE fails to achieve exact recovery if there exists a label

η for which l(η) ≥ l(σ) with a probability of at least δ, where δ is a positive constant. To establish

the desired result, our proof focuses on demonstrating that the probability of MLE failure is o(1).

We derive the MLE by maximizing logL in (3.1) with respect to σ. It is worth noting

that the first term in logL does not depend on σ. Therefore, to obtain the MLE, we only need to

maximize the second term in logL. Let σ represent the MLE. Recall that the MLE fails if there

exists a label η for which l(η) ≥ l(σ) with a probability of at least δ, where δ is a positive constant.

In the following, we demonstrate that the probability of MLE failure is o(1).

27

Let k be an even number and 1 ≤ k ≤ n
2 . Define the Hamming distance between two labels

σ and η as

d(σ, η) = min

{
n∑

i=1

1[σi ̸= ηi],
n∑

i=1

1[σi ̸= −ηi]

}
.

Let η be a label such that d(σ, η) = k, and denote

Ci1i2...im(A) = log
(
p
q

)
1[Ai1i2...im = 1] + log

(
1−p
1−q

)
1[Ai1i2...im = 0].

Then, log-likelihood difference at η and σ is

l(η)− l(σ) =
∑

1≤i1<···<im≤n

Ci1i2...im(A)(1i1...im(η)− 1i1...im(σ)).

We show that

P(∃k and d(σ, η) = k , s.t. l(η)− l(σ) ≥ 0) = o(1).

Recall I+(σ) and I−(σ). Denote 1i1...im(η) = I[ηi1 = ηi2 = · · · = ηim]. Note that

1i1...im(η)− 1i1...im(σ) =


1, i1 . . . im ⊂ I+(η) or I−(η), i1 . . . im ̸⊂ I+(σ) , I−(σ);

−1, i1 . . . im ⊂ I+(σ) or I−(σ), i1 . . . im ̸⊂ I+(η), I−(η);

0, otherwise.

Hence, l(η)− l(σ) is written as

l(η)− l(σ) =
∑

i1...im
i1...im⊂I+(η) or I−(η)
i1...im ̸⊂I+(σ),I−(σ)

Ci1...im(A)−
∑

i1...im
i1...im⊂I+(σ) or I−(σ)
i1...im ̸⊂I+(η),I−(η)

Ci1...im(A).

It is easy to verify that there are nk = 2
[(n

2
m

)
−
(k

2
m

)
−
(n−k

2
m

)]
hyperedges {i1, . . . , im} such that

{i1 . . . im} ⊂ 1+(η) or 1−(η) and {i1 . . . im} ̸⊂ 1+(σ),1−(σ). For convenience, define random

variables X and Y as

P(X = 1) = αp, P(X = 0) = α(1− p), P(X = −1) = 1− α.

P(Y = 1) = αq, P(Y = 0) = α(1− q), P(Y = −1) = 1− α.

Let Xi, Yi be independent and identically distributed (i.i.d) copies of X,Y , respectively, and

28

Wi = log
(
p
q

)
1[Xi = 1] + log

(
1−p
1−q

)
1[Xi = 0]

Vi = log
(
p
q

)
1[Yi = 1] + log

(
1−p
1−q

)
1[Yi = 0].

For any r > 0, by the Markov inequality, we have

P(l(η)− l(σ) ≥ 0) = P

(
nk∑
i=1

(Vi −Wi) ≥ 0

)

= P

(
nk∑
i=1

(Wi − Vi) ≤ 0

)

= P

e

nk∑
i=1

(−r)(Wi−Vi)
≥ 1


≤

[
E
(
e−rW1

)
E
(
erV1

)]nk .

Next, we find the explicit expression of expectations E
(
e−rW1

)
and E

(
erV1

)
.

E[e−rW1] = Ee−r
(
log

(
p
q

)
1[Xi=1]+log

(
1−p
1−q

)
1[Xi=0]

)

= e
−r log(p

q
)
αp+ e

−r log(1−p
1−q

)
α(1− p) + (1− α)

=

(
q

p

)r

αp+

(
1− q

1− p

)r

α(1− p) + (1− α)

E[erV1] = Eer
(
log(p

q
)1[Yi=1]+log(1−p

1−q
)1[Yi=0]

)

= e
r log(p

q
)
αq + e

r log(1−p
1−q

)
α(1− q) + (1− α)

=

(
p

q

)r

αq +

(
1− p

1− q

)r

α(1− q) + (1− α)

Taking r = 1
2 yields

E[e−rW1] = α
√
pq + α

√
(1− p)(1− q) + (1− α)

= 1 + α[
√
pq +

√
(1− p)(1− q)− 1],

E[erV1] = α
√
pq + α

√
(1− p)(1− q) + (1− α)

= 1 + α[
√
pq +

√
(1− p)(1− q)− 1].

29

Hence,

logP (l(η)− l(σ) ≥ 0) ≤ nk logE[e−rW1] + nk logE[erV1]

≤ nk[2α(
√
pq +

√
(1− p)(1− q)− 1)]

= nkα
[
(−1)

{
(
√
p−√

q)2 + (
√
1− p−

√
1− q)2

}]
= −nkα

[
(
√
p−√

q)2 + (
√

1− p−
√

1− q)2
]
. (3.2)

For k ≥ n
log logn , it is easy to check that nk ≥ 1

2m−1
n

log logn

(
n−1
m−1

)
. Hence by (3.2), we obtain

P (l(η)− l(σ) ≥ 0) ≤ e
−[(

√
p−√

q)2+(
√
1−p−

√
1−q)2] t logn

nm−1
1

2m−1
n

log logn
nm−1

(m−1)!

= e
−[(

√
p−√

q)2+(
√
1−p−

√
1−q)2] t

2m−1(m−1)!

n logn
log logn

= e
−c n logn

log logn ,

for some positive constant c. Clearly, there are
(n

2
k
2

)2
choices for η, with d(σ, η) = k. Note that(n

2
k
2

)2
≤ 2n. Then, the probability that there exists η with d(σ, η) = k for k ≥ n

log logn is upper

bounded by
n

2
· 2n · e−c n logn

log logn = e
n log 2+log n

2
−cn logn

log logn = o(1).

For k < n
log logn , we have nk = k

2m−1

(
n−1
m−1

)
. Then

P (l(η)− l(σ) ≥ 0) ≤ e
−[(

√
p−√

q)2+(
√
1−p−

√
1−q)2] t logn

nm−1
k

2m−1
nm−1

(m−1)!

= e
− (

√
p−√

q)2+(
√
1−p−

√
1−q)2

2m−1(m−1)!
tk logn

= n
− [

√
p−√

q]2+[
√
1−p−

√
1−q]2

2m−1(m−1)!
tk
.

There are
(n

2
k
2

)2
≤ nk choices for η, with d(σ, η) = k. Then the probability that there exists η with

d(σ, η) = k for k < n
log logn is upper bounded by

k ·
(n

2
k
2

)2

P (l(η)− l(σ) ≥ 0) ≤ knk · n− [
√
p−√

q]2+[
√
1−p−

√
1−q]2

2m−1(m−1)!
tk

≤ knkn−(1+ϵ)k

=
k

nϵk
= o(1),

30

where ϵ is a constant such that [
√
p−√

q]2+[
√
1−p−

√
1−q]2

2m−1(m−1)!
t = 1 + ϵ. This is possible by the condition

t > 2m−1(m−1)!
(
√
p−√

q)2+(
√
1−p−

√
1−q)2

. The proof is complete.

3.3. Proof of Theorem 2.3

The proof proceeds by showing the probability that there exists a mislabeled node goes to

zero. By the definition of the hypergraph Ã, we have

P(Ãi1i2...im = 1) =


log logn
logn · αp, {i1, i2, . . . , im} ⊂ I+(σ) or I−(σ),

log logn
logn · αq, otherwise.

=


tp log logn

nm−1 , {i1, i2, . . . , im} ⊂ I+(σ) or I−(σ),

tq log logn
nm−1 , otherwise.

As a result of the transformation, the hypergraph Ã maintains the same community struc-

ture as the original hypergraph A. In Ã, the order of hyperedge probabilities is log logn
nm−1 . With a

probability of 1 − o(1), the weak recovery algorithm described in Ahn et al. (2018) successfully

recovers the true labels of (1− δ)n nodes in Ã, where δ = o(1). Denoting the resulting communities

as Ĩ+(σ) and Ĩ− (σ), it follows that, with a probability of 1−o(1), δ
2n nodes in Ĩ+(σ) and Ĩ− (σ)

are mislabeled. In the refinement step, a node i among the correctly labeled 1−δ
2 n nodes in Ĩ+(σ)

is mislabeled if

e(i, Ĩ+(σ)) < e(i, Ĩ−(σ)).

A node among the mislabeled δ
2n nodes in Ĩ+(σ) remains mislabeled if

e(i, Ĩ+(σ)) ≥ e(i, Ĩ−(σ)).

A similar result holds for nodes in Ĩ−(σ). Let Xi, Yi,Wi and Vi be defined as in the proof of Theorem

2.2, and let W ′
i and V ′

i be i.i.d. copies of Wi and Vi, respectively. Then, a node i being mislabeled

is equivalent to

(
δ
2n

m−1)∑
i=1

Wi +

(
n
2

m−1)−(
δ
2n

m−1)∑
i=1

Vi ≥
((1−δ)n2

m−1)∑
i=1

W ′
i +

(
n
2

m−1)−(
(1−δ)n2
m−1)∑

i=1

V ′
i .

31

We bound the probability that node i is mislabeled and then apply the union bound. Let

r = 1

δ
√

log(1
δ
)
. Then, we have

pi = P(node i is mislabelled)

= P


(

δ
2n

m−1)∑
i=1

Wi +

(
n
2

m−1)−(
δ
2n

m−1)∑
i=1

Vi ≥
((1−δ)n2

m−1)∑
i=1

W ′
i +

(
n
2

m−1)−(
(1−δ)n2
m−1)∑

i=1

V ′
i



= P


(

n
2

m−1)−(
δ
2n

m−1)∑
i=1

(Vi −W ′
i) +

(
δ
2n

m−1)∑
i=1

Wi ≥
(

n
2

m−1)−(
(1−δ)n2
m−1)∑

i=1

V ′
i −

(
n
2

m−1)−(
δn
2

m−1)−(
(1−δ)n2
m−1)∑

i=1

W ′
i



≤ P


(

n
2

m−1)−(
δ
2n

m−1)∑
i=1

(Vi −W ′
i) ≥ −rδ log n

+

P


(

δ
2n

m−1)∑
i=1

Wi +

(
n
2

m−1)−(
δn
2

m−1)−(
(1−δ)n2
m−1)∑

i=1

W ′
i −

(
n
2

m−1)−(
(1−δ)n2
m−1)∑

i=1

V ′
i ≥ rδ log n


= (I) + (II).

Next, we show (II) = O
(
n−2

)
and (I) = O

(
n
− t

Im(p,q)

)
. It is easy to verify that

(II) ≤ P


(

δ
2n

m−1)∑
i=1

Wi ≥
rδ

3
log n

+ P


(

n
2

m−1)−(
δn
2

m−1)−(
(1−δ)n2
m−1)∑

i=1

W ′
i ≥

rδ

3
log n


+ P

(
n
2

m−1)−(
(1−δ)n2
m−1)∑

i=1

−V ′
i ≥ rδ

3
log n

 .

Because p > q > 0, it follows that 1− q > 1− p, and then

Wi = log

(
p

q

)
1[Xi = 1] + log

(
1− p

1− q

)
1[Xi = 0]

≤ log

(
p

q

)
1[Xi = 1].

32

Then, by the multiplicative Chernoff bound, we have

P


(

δ
2n

m−1)∑
i=1

Wi ≥
rδ

3
log n

 ≤ P


(

δ
2n

m−1)∑
i=1

1[Xi = 1] ≥ rδ log n

3 log(pq)


≤

(
r

δm−2 2
m−1(m− 1)!

e · 3pt log(pq)

)− rδ logn

3 log(
p
q)

= e
− logn

3 log(
p
q)
√

log(1
δ
)
[log(1

δ
)+(m−2) log(1

δ
)(1+o(1))]

= e
−

(m−1)
√

log(1
δ
)

3 log(
p
q)

logn (1+o(1))

= O
(
n−2

)
.

Similarly, we have

P


(

n
2

m−1)−(
δn
2

m−1)−(
(1−δ)n2
m−1)∑

i=1

W ′
i ≥

rδ

3
log n

 = O
(
n−2

)
.

Note that

−V ′
i = log

(
1− p

1− q

)
1[Ai = 0]− log

(
p

q

)
1[Ai = 1]

≤ log

(
1− p

1− q

)
1[Ai = 0].

Hence, by the multiplicative Chernoff bound, it follows that

P

(
n
2

m−1)−(
(1−δ)n2
m−1)∑

i=1

(−V ′
i) ≥

rδ

3
log n

 ≤ P

(
n
2

m−1)−(
(1−δ)n2
m−1)∑

i=1

1[Ai = 0] ≥ rδ log n

3 log(1−q
1−p)


≤

(
r

δm−2 2
m−1(m− 1)!

e · 3(1− p)t log(1−q
1−p)

)− rδ logn

3 log(
1−q
1−p)

= e
− 1−δ logn

3 log(
1−q
1−p)

[(m−1) log(1
δ
)(1+o(1))]

= e
−

(m−1)
√

log(1
δ
) logn

3 log(
1−q
1−p)

(1+o(1))

= O
(
n−2

)
.

33

Thus, we conclude that (II) = O
(
n−2

)
.

Next, we bound (I). Note that
(n

2
m−1

)
−
(δ

2
n

m−1

)
= nm−1

2m−1(m−1)!
(1 + o(1)). By Markov’s

inequality, we have

(I) = P

e 1
2

(
n
2

m−1)−(
δ
2n

m−1)∑
i=1

(Vi−W ′
i) ≥ e−

rδ logn
2


≤ erδ

logn
2 (E[e

1
2
V1e−

1
2
W ′

1])
nm−1

2m−1(m−1)!

= erδ
logn
2 [e

− 1
2
log(p

q
)
αp+ e

− 1
2
log(1−p

1−q
)
α(1− p) + (1− α)]

nm−1

2m−1(m−1)!

×[e
1
2
log(p

q
)
αq + e

1
2
log(1−p

1−q
)
α(1− q) + (1− α)]

nm−1

2m−1(m−1)! .

Taking the logarithm of both sides yields

log(I) ≤ 1

2
rδ log n+

nm−1α

2m−1(m− 1)!
[2
√
pq + 2

√
(1− p)(1− q)− 2]

=
1

2

log n√
log(1δ)

− t log n

2m−1(m− 1)!
[(
√
p−√

q)2 + (
√
1− p−

√
1− q)2].

Hence,

(I) ≤ n
−t

(
√
p−√

q)2+(
√
1−p−

√
1−q)2

2m−1(m−1)!
(1+o(1))

= n
− t

Im(p,q)
(1+o(1))

.

Because t > Im(p, q), by assumption, we have (I) ≤ n−(1+ϵ), for some small constant ϵ > 0, and

hence

pi ≤ (I) + (II) ≤ n−(1+ϵ).

By the union bound, the probability that a mislabeled node exists is bounded by n−ϵ = o(1). The

proof is complete.

3.4. Proof of Theorem 2.4

Recall Ãi1i2...im = 1[Ai1i2...im = 1]. For convenience, let e = {i1, i2, . . . , im} for distinct

nodes i1, i2, . . . , im. Let p1 = pα and q1 = qα. Then

E(Ãe) =

 p1 e ⊂ I+(σ), or I−(σ);

q1, otherwise.

34

V ar(Ãe) =

 p1(1− p1), e ⊂ I+(σ), or I−(σ);

q1(1− q1), otherwise.

Let Ie denote an n-dimensional vector with il-th position one, il ∈ e, l = 1, 2, . . . ,m, and

other positions are zero. Denote σe = diag(σ) · Ie and

L =
∑
e

Ãe [(I⊺eσe)diag(σe)− σeσ
⊺
e] .

Let I be the identity matrix and M = I − IIT

n − σσT

n . By Proposition 2 in Kim et al. (2018), it

suffices to show the third smallest eigenvalue of M(E(L))M is larger than zero with probability

1− o(1), that is, λ3 (ME(L)M) > 0.

First, we have the following result,

Proposition 3.4.1. Let M = I − IIT

n − σσT

n . Then

M(E(L))M =
p1 − q1

2
n

(n
2 − 2

m− 2

)
M,

and

λ3 (ME(L)M) =
p1 − q1
2m−1

nm−1

(m− 2)!
(1 + o(1)) .

Proof. Simple calculation yields

EL =
< EL,M >

n− 2
M +

< EL, σσ⊺ >

n2
σσ⊺

< EL, σσ⊺ > = −q1n
2

(
n− 2

m− 2

)
< EL,M > =

p1 − q1
2

n

(
n

n− 2

)(
n/2− 2

m− 2

)
.

Hence, M(E(L))M = <EL,M>
n−2 M . The proof is complete.

Next, we present the Matrix Bernstein inequality.

Lemma 3.4.2 (Matrix Bernstein inequality). Let {Xk} be a finite sequence of independent, sym-

metric random matrices of dimension N. Suppose that EXk = 0 and ∥Xk∥≤ M almost surely, for

35

all k. Then, for all x ≥ 0,

P(∥
∑
k

Xk∥≥ x) ≤ N · exp

(
−

x2

2

v2 + Mx
3

)
,

where v2 = ∥
∑
k

EX2
k∥.

Recall that

L =
∑
e
Ãe((I⊺eσe)diag(σe)− σeσ

⊺
e).

Hence,

Π(L− EL)Π =
∑
e
(Ãe − E(Ãe) ·Π((I⊺eσe)diag(σe)− σeσ

⊺
e)Π.

We note that

∥Π((I⊺eσe)diag(σe)− σeσ
⊺
e)Π∥≤ |I⊺eσe|+∥σe∥2≤ 2m

for any hyperdge e. By Lemma 3.4.2, we have

P(∥Π(L− EL)Π∥≥ x) ≤ n · exp
(
−

x2

2

v2+ 2mx
3

)
where

v2 =

∥∥∥∥∑
e
E((AH)e − E(AH)e)

2(·Π((I⊺eσe)diag(σe)− σeσ
⊺
e)Π)2

∥∥∥∥ .
Let v2 = ∥

∑
e
E(Ãe−E(Ãe))

2[M((I⊺eσe)diag(σe)−σeσ
⊺
e)M]2∥, V =

∑
e
E(Ãe−E(Ãe))

2Ye and

Ye = [(I⊺eσe)diag(σe)− σeσ
⊺
e)]M [(I⊺eσe)diag(σe)− σeσ

⊺
e)].

The following result gives the expression of V and v2.

Proposition 3.4.3. V = t1
1
nσσ

⊺ + t2M , where

t1 =
mnm−1

(m− 2)!
q2, t2 =

nm−1

(m− 2)!
[

m

2m−1
p2 −

m− 2m

2m−1
q2],

and v2 = ∥MVM∥= ∥t2M∥= t2(1 + o(1)).

36

Proof. Note that v2 = ∥
∑
e
E(Ãe−E(Ãe))

2MYeM∥= ∥MVM∥, we need to show that V = t1
1
nσσ

⊺+

t2M . Note that V =
∑

e∈1+(σ),1−(σ)

p1(1− p1)Ye +
∑

e̸∈1+
e̸∈1−

q1(1− q1)Ye. It is clear that

V =
< V,M >

< M,M >
M+ < V,

1

n
σσ⊺ >

1

n
σσ⊺.

Hence, t1 = 1
n < V, σσ⊺ >, t2 =

1
n−2 < V,M >= 1

n−2 [tr(V)− σMσ⊺

n]. Direct calculation yields

t1 =
mnm−1

(m− 2)!
q2, t2 =

nm−1

(m− 2)!

[
m

2m−1
p2 −

m− 2m

2m−1
q2

]
.

Proof of Theorem 2.4. Note that

M(L− E(L))M =
∑
e

[(Ãe− E(Ãe))]M((I⊺eσe)diag(σe)− σeσ
⊺
e))M.

By Lemma 3.4.2, let x = (1 + ϵ)
√
2 log nv,

P(∥M(L− E(L)M∥) ≥ t) ≤ ne
−

(1+L)22 logn
2 v2

v2+
4m(1+ϵ)

√
2 lognv

3 = ne
− (1+ϵ)2 logn

1+
4m(1+ϵ)

√
2 logn

3v

≤ e
− logn

{
(1+ϵ)2

1+
4m(1+ϵ)

√
2 logn

3v

−1

}
.

If 4m
√
2 logn
3v ≤ 1, that is,

t ≥ 32m2(m− 2)! 2m−1

9(mp− (m− 2m)q)
, (3.3)

take ϵ = 1. If 4m
√
2 logn
3v > 1, take 1 + ϵ = δ 8m

√
2 logn
3v for any constant δ > 1. Either case, we have

P(∥M(L− E(L)M∥) ≥ t) = o(1).

With probability 1− o(1), we have

∥M(L− E(L)M∥< (1 + ϵ)
√
2t2 log n.

37

If
(p1 − q1)

2m−1

nm−1

(m− 2)!
> (1 + ϵ)

√
2t2 log n, (3.4)

then, λ3(ME(L)M) > 0 with probability 1− o(1).

When (3.3) holds, ϵ = 1 and (3.4) is equivalent to

[
(p1 − q1)

2m−1

nm−1

(m− 2)!
]2 > (1 + ϵ)22 log n

(
nm−1

(m− 2)!
[

m

2m−1
p2 −

m− 2m

2m−1
q2]

)
,

(p1 − q1)

2m−1

nm−1

(m− 2)!
> (1 + ϵ)22 log n[mp2 − (m− 2m)q2],

nm−1(p− q)2α2(1− η)2

2m−1(m− 2)!
> (1 + ϵ)22 log n[mαp− (m− 2m)αq],

nm−1(p− q)2α

2m−1(m− 2)!
> (1 + ϵ)22 log n[mp− (m− 2m)q].

Note that α = t logn
nm−1 . Hence,

t(p− q)2

2m−1(m− 2)!
> 8[mp− (m− 2m)q].

Then,

t > 8
2m−1(m− 2)! [mp− (m− 2m)q]

(p− q)2
= Jm(p, q),

which is larger than the right hand of (3.3).

When (3.3) fails, 1 + ϵ = δ 8m
√
2 logn
3v , and (3.4) is equivalent to

(p1 − q1)

2m−1

nm−1

(m− 2)!
> δ

8m
√
2 log n

3

√
2 log n, (3.5)

hence,

t > δ
16m

3

2m−1(m− 2)!

p− q
, δ > 1,

which is not possible. The proof is complete.

38

4. NUMERICAL SIMULATION

In this section, we conduct numerical simulations to gauge the performance of our proposed

algorithms, and evaluate the effectiveness of the imputation methods, we conducted numerical simu-

lations. Furthermore, to demonstrate the process of community detection in hypergraphs with more

than two communities, we incorporated the Spectral Hypergraph Partitioning algorithm (Ghosh-

dastidar and Dukkipati (2014)). We executed corresponding simulations that specifically involved

the use of the community density imputation method as an auxiliary tool in the context of multi-

community detection. Our objective was to ascertain the robustness of these methodologies and

offer a thorough understanding of their practical implementation.

Part of this work used resources from the Center for Computationally Assisted Science and

Technology (CCAST) at North Dakota State University, which were made possible in part by NSF

MRI Award No. 2019077. In this context, we deal with an equal-community setting, and we utilize

the "error rate" as the evaluation metric. This is intended to accurately represent the performance of

both the proposed algorithms and the Spectral Hypergraph Partitioning algorithm. This metric will

allow us to quantitatively assess the precision and reliability of these algorithms in the community

detection task.

The error rate is computed as the ratio of incorrectly clustered instances to the total num-

ber of instances in the dataset. In an ideal scenario, the error rate would be 0.0, indicating a

perfect clustering. Conversely, a higher error rate signifies poorer clustering. The error rate can be

calculated using the following formula:

ℓ(σ̂, σ) = min
π∈Sk

1

n

∑
µ∈[n]

1[σ̂(µ) ̸= π(σ(µ))] (4.1)

where Sk stands for the symmetric group on [k], which consists of all permutations of [k]. Here, k is

the number of communities, σ̂ is the predicted label, and σ is the true label of node µ. The indicator

function counts the proportion of misclassified nodes between an estimator and the ground truth

assignment. Considering the issue of possible relabeling, the error rate is defined as the loss function,

39

which maximizes the agreement between an estimator and the ground truth after an alignment by

label permutation.

We employed four distinct node configurations, specifically n=50, n=100, n=150, and n=200.

Additionally, we utilized four different reveal rate (alpha) settings for each of the two algorithms. For

the Efficient Spectral algorithm, these were α = 0.9, α = 0.8, α = 0.7, and α = 0.6. For the Semi-

definite programming algorithm, these were α = 0.013, α = 0.12, α = 0.011, and α = 0.010. We

also set the pair of in-community and cross-community probabilities p and q as p = 0.425, q = 0.075,

p = 0.400, q = 0.100, p = 0.375, q = 0.125, and p = 0.350, q = 0.150 for both algorithms. For each

combination of these settings, we conducted 50 repetitions of the simulation.

4.1. Simulation of the Efficient Spectral Algorithm

4.1.1. When p=0.425, q=0.075

Figure 4.1. Comparison of error rate from Efficient Spectral algorithm at p=0.425, q=0.075. Note:
p is the in-community connectivity probability, indicating the probability that vertices in the same
community connect with each other; and q is the cross-community connectivity probability, indicat-
ing the probability that vertices in different communities connect with each other; α is the reveal
rate, indicating the probability that if a hyperedge is observed or not. Same below.

In Figure 4.1, we can observe a clear decreasing trend in the error rate as the number of

nodes n increases, while keeping the in-community and cross-community probabilities p and q fixed.

Although there are observable fluctuations, the general downward trend is consistent. Moreover, as

40

the reveal rate α increases (represented by lines of different colors), the error rate correspondingly

decreases, which aligns with our expectations.

4.1.2. When p=0.400, q=0.100

Figure 4.2. Comparison of error rate from Efficient Spectral algorithm at p=0.400, q=0.100

In Figure 4.2, akin to our observations from Figure 4.1, we identify a pronounced decrease

in the error rate as the number of nodes n increases, while holding p and q constant. However,

a slight deviation from Figure 4.1 is noticed here: the decrease in error rate as the reveal rate α

increases is more straightforward and less prone to fluctuations.

41

4.1.3. When p=0.375, q=0.125

Figure 4.3. Comparison of error rate from Efficient Spectral algorithm at p=0.375, q=0.125

In Figure 4.3, we observe near-perfect results for all combinations of parameters, barring the

line corresponding to α = 0.8. Although there are some outliers, the overarching trend aligns well

with the patterns noted in the previous figures. This suggests that, barring some specific conditions,

the decrease in error rate as n and α increase remains consistent.

42

4.1.4. When p=0.350, q=0.150

Figure 4.4. Comparison of error rate from Efficient Spectral algorithm at p=0.350, q=0.150

The observations in Figure 4.4 are undoubtedly in line with our expectations. As in the

previous figures, the error rate decreases as both n and α increase, reaffirming the consistent trend we

have identified across all our simulations. This consistency bolsters our confidence in the effectiveness

of the Efficient Spectral algorithm under a variety of parameter settings.

4.1.5. Summary of Efficient Spectral Algorithm

Table 4.1. Error rates of Efficient Spectral algorithm simulation

vertex alpha p, q error_rate std

n = 50 α=0.9 p = 0.425, q = 0.075 0.267 0.146

n = 50 α=0.8 p = 0.425, q = 0.075 0.263 0.133

n = 50 α=0.7 p = 0.425, q = 0.075 0.295 0.135

n = 50 α=0.6 p = 0.425, q = 0.075 0.321 0.130

n = 100 α=0.9 p = 0.425, q = 0.075 0.140 0.137

n = 100 α=0.8 p = 0.425, q = 0.075 0.197 0.161

43

Error rates of Efficient Spectral algorithm simulation (continued)

vertex alpha p, q error_rate std

n = 100 α=0.7 p = 0.425, q = 0.075 0.192 0.163

n = 100 α=0.6 p = 0.425, q = 0.075 0.200 0.156

n = 150 α=0.9 p = 0.425, q = 0.075 0.158 0.154

n = 150 α=0.8 p = 0.425, q = 0.075 0.180 0.158

n = 150 α=0.7 p = 0.425, q = 0.075 0.195 0.139

n = 150 α=0.6 p = 0.425, q = 0.075 0.212 0.127

n = 200 α=0.9 p = 0.425, q = 0.075 0.120 0.161

n = 200 α=0.8 p = 0.425, q = 0.075 0.101 0.159

n = 200 α=0.7 p = 0.425, q = 0.075 0.168 0.165

n = 200 α=0.6 p = 0.425, q = 0.075 0.198 0.179

n = 50 α=0.9 p = 0.400, q = 0.100 0.278 0.140

n = 50 α=0.8 p = 0.400, q = 0.100 0.309 0.137

n = 50 α=0.7 p = 0.400, q = 0.100 0.310 0.125

n = 50 α=0.6 p = 0.400, q = 0.100 0.338 0.128

n = 100 α=0.9 p = 0.400, q = 0.100 0.212 0.170

n = 100 α=0.8 p = 0.400, q = 0.100 0.232 0.156

n = 100 α=0.7 p = 0.400, q = 0.100 0.251 0.182

n = 100 α=0.6 p = 0.400, q = 0.100 0.299 0.150

n = 150 α=0.9 p = 0.400, q = 0.100 0.155 0.149

n = 150 α=0.8 p = 0.400, q = 0.100 0.198 0.147

n = 150 α=0.7 p = 0.400, q = 0.100 0.169 0.150

n = 150 α=0.6 p = 0.400, q = 0.100 0.249 0.153

n = 200 α=0.9 p = 0.400, q = 0.100 0.109 0.122

n = 200 α=0.8 p = 0.400, q = 0.100 0.140 0.149

n = 200 α=0.7 p = 0.400, q = 0.100 0.158 0.157

n = 200 α=0.6 p = 0.400, q = 0.100 0.174 0.164

44

Error rates of Efficient Spectral algorithm simulation (continued)

vertex alpha p, q error_rate std

n = 50 α=0.9 p = 0.375, q = 0.125 0.329 0.123

n = 50 α=0.8 p = 0.375, q = 0.125 0.337 0.117

n = 50 α=0.7 p = 0.375, q = 0.125 0.342 0.121

n = 50 α=0.6 p = 0.375, q = 0.125 0.374 0.094

n = 100 α=0.9 p = 0.375, q = 0.125 0.255 0.153

n = 100 α=0.8 p = 0.375, q = 0.125 0.244 0.141

n = 100 α=0.7 p = 0.375, q = 0.125 0.273 0.135

n = 100 α=0.6 p = 0.375, q = 0.125 0.290 0.139

n = 150 α=0.9 p = 0.375, q = 0.125 0.212 0.129

n = 150 α=0.8 p = 0.375, q = 0.125 0.205 0.141

n = 150 α=0.7 p = 0.375, q = 0.125 0.246 0.155

n = 150 α=0.6 p = 0.375, q = 0.125 0.257 0.146

n = 200 α=0.9 p = 0.375, q = 0.125 0.179 0.164

n = 200 α=0.8 p = 0.375, q = 0.125 0.200 0.155

n = 200 α=0.7 p = 0.375, q = 0.125 0.207 0.177

n = 200 α=0.6 p = 0.375, q = 0.125 0.210 0.183

n = 50 α=0.9 p = 0.350, q = 0.150 0.348 0.114

n = 50 α=0.8 p = 0.350, q = 0.150 0.361 0.108

n = 50 α=0.7 p = 0.350, q = 0.150 0.366 0.099

n = 50 α=0.6 p = 0.350, q = 0.150 0.388 0.095

n = 100 α=0.9 p = 0.350, q = 0.150 0.276 0.128

n = 100 α=0.8 p = 0.350, q = 0.150 0.282 0.125

n = 100 α=0.7 p = 0.350, q = 0.150 0.333 0.125

n = 100 α=0.6 p = 0.350, q = 0.150 0.356 0.112

n = 150 α=0.9 p = 0.350, q = 0.150 0.190 0.136

n = 150 α=0.8 p = 0.350, q = 0.150 0.219 0.136

45

Error rates of Efficient Spectral algorithm simulation (continued)

vertex alpha p, q error_rate std

n = 150 α=0.7 p = 0.350, q = 0.150 0.252 0.143

n = 150 α=0.6 p = 0.350, q = 0.150 0.261 0.142

n = 200 α=0.9 p = 0.350, q = 0.150 0.192 0.145

n = 200 α=0.8 p = 0.350, q = 0.150 0.195 0.161

n = 200 α=0.7 p = 0.350, q = 0.150 0.206 0.173

n = 200 α=0.6 p = 0.350, q = 0.150 0.223 0.154

Figure 4.5. Comparison of error rate from Efficient Spectral algorithm at all settings

After synthesizing all the aforementioned figures, the decreasing trend remains prominently

discernible in Figure 4.5. This serves as a numerical substantiation of Theorem 2.3. The ob-

served pattern indicates that as the number of nodes and the reveal rate increase, the error rate

reduces—showing the robustness of our proposed algorithms over a variety of parameter settings,

ultimately reinforcing the veracity of our theoretical findings.

46

4.2. Simulation of the Semi-Definite Programming Algorithm

4.2.1. When p=0.425, q=0.075

Figure 4.6. Comparison of error rate from Semi-Definite Programming algorithm at p=0.425,
q=0.075

In contrast to the Efficient Spectral algorithm, Figure 4.6 exhibits a steep decline as n in-

creases. As anticipated, with p and q held constant, the error rate diminishes significantly as n

expands and as α escalates. This observation corroborates our initial expectations, further show-

casing the efficacy of our proposed Semi-Definite Programming algorithm in the face of increasing

hypergraph size and reveal rates.

47

4.2.2. When p=0.400, q=0.100

Figure 4.7. Comparison of error rate from Semi-Definite Programming algorithm at p=0.400,
q=0.100

The pattern of decline persists in Figure 4.7, consistent with our prior observations. There

are no significant outliers, thus affirming the robustness of our Semi-Definite Programming algorithm

under various settings. The effectiveness of the algorithm appears consistent, irrespective of the

hypergraph size and the chosen reveal rates.

48

4.2.3. When p=0.375, q=0.125

Figure 4.8. Comparison of error rate from Semi-Definite Programming algorithm at p=0.375,
q=0.125

The trend of reduction remains consistent in Figure 4.8, similar to the patterns observed

previously. There are no substantial outliers, reinforcing the stability of our Semi-Definite Pro-

gramming algorithm under different scenarios. This demonstrates the robustness of our algorithm

irrespective of the hypergraph size or the reveal rates selected.

49

4.2.4. When p=0.350, q=0.150

Figure 4.9. Comparison of error rate from Semi-Definite Programming algorithm at p=0.350,
q=0.150

As observed in previous figures, Figure 4.9 continues to showcase a consistent decrease in the

error rate, further validating the effectiveness of our Semi-Definite Programming algorithm. The

absence of significant outliers underscores the reliability of our algorithm across varying hypergraph

sizes and reveal rates. These results align with our expectations and demonstrate the robustness of

the algorithm across different parameter settings.

4.2.5. Summary of Semi-Definite Programming Algorithm

Table 4.2. Error rates of Semi-Definite Programming algorithm simulation

vertex alpha p, q error_rate std

n = 50 α=0.013 p = 0.425, q = 0.075 0.531 0.132

n = 50 α=0.012 p = 0.425, q = 0.075 0.555 0.113

n = 50 α=0.011 p = 0.425, q = 0.075 0.578 0.094

n = 50 α=0.010 p = 0.425, q = 0.075 0.616 0.086

n = 100 α=0.013 p = 0.425, q = 0.075 0.085 0.048

50

Error rates of Semi-Definite Programming algorithm simulation (continued)

vertex alpha p, q error_rate std

n = 100 α=0.012 p = 0.425, q = 0.075 0.095 0.040

n = 100 α=0.011 p = 0.425, q = 0.075 0.177 0.076

n = 100 α=0.010 p = 0.425, q = 0.075 0.202 0.090

n = 150 α=0.013 p = 0.425, q = 0.075 0 0

n = 150 α=0.012 p = 0.425, q = 0.075 0.002 0.008

n = 150 α=0.011 p = 0.425, q = 0.075 0.004 0.011

n = 150 α=0.010 p = 0.425, q = 0.075 0.009 0.013

n = 200 α=0.013 p = 0.425, q = 0.075 0 0

n = 200 α=0.012 p = 0.425, q = 0.075 0 0

n = 200 α=0.011 p = 0.425, q = 0.075 0 0.003

n = 200 α=0.010 p = 0.425, q = 0.075 0 0

n = 50 α=0.013 p = 0.400, q = 0.100 0.616 0.086

n = 50 α=0.012 p = 0.400, q = 0.100 0.618 0.090

n = 50 α=0.011 p = 0.400, q = 0.100 0.619 0.065

n = 50 α=0.010 p = 0.400, q = 0.100 0.639 0.060

n = 100 α=0.013 p = 0.400, q = 0.100 0.257 0.107

n = 100 α=0.012 p = 0.400, q = 0.100 0.288 0.107

n = 100 α=0.011 p = 0.400, q = 0.100 0.331 0.109

n = 100 α=0.010 p = 0.400, q = 0.100 0.407 0.107

n = 150 α=0.013 p = 0.400, q = 0.100 0.015 0.019

n = 150 α=0.012 p = 0.400, q = 0.100 0.024 0.020

n = 150 α=0.011 p = 0.400, q = 0.100 0.031 0.026

n = 150 α=0.010 p = 0.400, q = 0.100 0.052 0.027

n = 200 α=0.013 p = 0.400, q = 0.100 0 0

n = 200 α=0.012 p = 0.400, q = 0.100 0 0

n = 200 α=0.011 p = 0.400, q = 0.100 0 0.002

51

Error rates of Semi-Definite Programming algorithm simulation (continued)

vertex alpha p, q error_rate std

n = 200 α=0.010 p = 0.400, q = 0.100 0.002 0.005

n = 50 α=0.013 p = 0.375, q = 0.125 0.645 0.051

n = 50 α=0.012 p = 0.375, q = 0.125 0.671 0.041

n = 50 α=0.011 p = 0.375, q = 0.125 0.678 0.048

n = 50 α=0.010 p = 0.375, q = 0.125 0.681 0.043

n = 100 α=0.013 p = 0.375, q = 0.125 0.527 0.120

n = 100 α=0.012 p = 0.375, q = 0.125 0.552 0.082

n = 100 α=0.011 p = 0.375, q = 0.125 0.560 0.071

n = 100 α=0.010 p = 0.375, q = 0.125 0.586 0.110

n = 150 α=0.013 p = 0.375, q = 0.125 0.095 0.032

n = 150 α=0.012 p = 0.375, q = 0.125 0.122 0.052

n = 150 α=0.011 p = 0.375, q = 0.125 0.169 0.068

n = 150 α=0.010 p = 0.375, q = 0.125 0.206 0.080

n = 200 α=0.013 p = 0.375, q = 0.125 0.006 0.009

n = 200 α=0.012 p = 0.375, q = 0.125 0.010 0.014

n = 200 α=0.011 p = 0.375, q = 0.125 0.014 0.012

n = 200 α=0.010 p = 0.375, q = 0.125 0.029 0.019

n = 50 α=0.013 p = 0.350, q = 0.150 0.675 0.049

n = 50 α=0.012 p = 0.350, q = 0.150 0.678 0.036

n = 50 α=0.011 p = 0.350, q = 0.150 0.675 0.051

n = 50 α=0.010 p = 0.350, q = 0.150 0.678 0.042

n = 100 α=0.013 p = 0.350, q = 0.150 0.645 0.085

n = 100 α=0.012 p = 0.350, q = 0.150 0.670 0.064

n = 100 α=0.011 p = 0.350, q = 0.150 0.677 0.068

n = 100 α=0.010 p = 0.350, q = 0.150 0.694 0.052

n = 150 α=0.013 p = 0.350, q = 0.150 0.313 0.083

52

Error rates of Semi-Definite Programming algorithm simulation (continued)

vertex alpha p, q error_rate std

n = 150 α=0.012 p = 0.350, q = 0.150 0.397 0.101

n = 150 α=0.011 p = 0.350, q = 0.150 0.484 0.107

n = 150 α=0.010 p = 0.350, q = 0.150 0.547 0.092

n = 200 α=0.013 p = 0.350, q = 0.150 0.076 0.034

n = 200 α=0.012 p = 0.350, q = 0.150 0.093 0.047

n = 200 α=0.011 p = 0.350, q = 0.150 0.120 0.047

n = 200 α=0.010 p = 0.350, q = 0.150 0.168 0.051

Figure 4.10. Comparison of error rate from Semi-Definite Programming algorithm at all settings

Upon consolidating the figures for the Semi-Definite Programming (SDP) algorithm in Fig-

ure 4.10, a pronounced decreasing trend in error rate is readily observable. This pattern aligns

precisely with the findings suggested by theorem 2.4. As the size of the hypergraph increases and

the reveal rate escalates, the SDP algorithm consistently demonstrates enhanced accuracy, further

underscoring the efficacy of our proposed approach.

53

4.2.6. Comparison of the Two Proposed Algorithms

We thoroughly evaluated the performances of the Efficient Spectral and Semi-Definite Pro-

gramming (SDP) algorithms through simulations. We calculated the error rates from 50 repeated

runs and illustrated the results via a series of figures for each algorithm. The observations high-

lighted a consistent decrease in the error rate as the number of nodes, n, expanded, while α, p,

and q remained constant. When p and q were held constant, the error rate dropped as α escalated

for each value of n. This is logical, as α governs the proportion of revealed hyperedges. However,

we observed that the Efficient Spectral algorithm necessitated a significantly higher value of α to

attain a comparable error rate as the SDP algorithm, given identical values of p, q, and n. This

discrepancy in performance suggests that while the Efficient Spectral algorithm is known to achieve

a precise detection boundary, it may not be the superior choice or outperform alternative algorithms

under all conditions.

4.3. Simulation of the Imputation Methods

In the previous study, we aimed to achieve exact recovery up to the information-theoretic

threshold within the framework of CHSBM. To accomplish this, we introduced an efficient spectral

algorithm that fulfilled this aim satisfactorily. Nevertheless, how the imputation methods for missing

data impact the performance of the proposed algorithms remains undetermined. As a result, we

conducted simulations with the proposed imputation methods to assess their impact.

We utilized the Semi-Definite Programming algorithm, introduced in the preceding section,

to perform the community detection task for all three imputation methods examined in this study.

Regarding the simulation configurations, we used three node settings for all three methods: n = 50,

n = 100, and n = 150. For each node setting, three reveal rates (α) and three pairs of in-

community connectivity probabilities (p) and cross-community connectivity probabilities (q) were

established: α = 0.05, α = 0.04 and α = 0.03, and p = 0.375, q = 0.125; p = 0.350, q = 0.150;

p = 0.300, q = 0.200.

The simulation results for each of the methods are presented below.

54

4.3.1. Simulation Results of the Network Density Method

Figure 4.11. Comparison of error rate from censored and imputed hypergraph based on network
density, when p = 0.375 and q = 0.125

Figure 4.12. Comparison of error rate from censored and imputed hypergraph based on network
density, when p = 0.350 and q = 0.150

55

Figure 4.13. Comparison of error rate from censored and imputed hypergraph based on network
density, when p = 0.300 and q = 0.200

In Figures 4.11, 4.12, and 4.13, the solid lines represent the error rates derived from the

censored hypergraph data, whereas the dotted lines illustrate the error rates from the data imputed

using the network density imputation method. The figures clearly demonstrate that for every combi-

nation of p and q, the error rates for the imputed data exhibit an upward trend in comparison to the

missing data. This outcome contradicts our initial assumption of a reduction in error rates following

the application of the imputation method to the censored hypergraph data, thereby suggesting a

potential inadequacy in the underlying rationale of the network density imputation method.

56

4.3.2. Simulation Results of the Community Density Method

Figure 4.14. Comparison of error rate from censored and imputed hypergraph based on community
density, when p = 0.375 and q = 0.125

Figure 4.15. Comparison of error rate from censored and imputed hypergraph based on community
density, when p = 0.350 and q = 0.150

57

Figure 4.16. Comparison of error rate from censored and imputed hypergraph based on community
density, when p = 0.300 and q = 0.200

Figures 4.14, 4.15, and 4.16 present the error rates from the censored hypergraph data,

denoted by the solid lines, compared with those from the data imputed using the community density

imputation method, indicated by the dotted lines. With each pair of p and q, the imputed data

error rates show a declining trend relative to the missing data. This discrepancy between missing

and imputed data becomes more pronounced as the disparity between p and q widens.

To validate that the difference in the error rates between the censored hypergraph and the

imputed hypergraph is significant, we performed a paired t-test on the simulation data.

The paired t-test is a powerful statistical tool used to compare the means of two related

groups or samples. It is particularly valuable when working with data in which the observations

within each group are not independent, such as in before-and-after studies, repeated measures

experiments, or matched pairs of observations. This test allows researchers to determine whether

there is a statistically significant difference between the means of paired observations.

The paired t-test is based on two hypotheses:

• Null Hypothesis (H0): There is no significant difference between the means of the paired

observations.

58

• Alternative Hypothesis (Ha): There is a significant difference between the means of the paired

observations.

The test statistic (t-value) is calculated by comparing the mean of the paired differences to

zero. The formula for the t-value is given by:

t =
mean of differences

standard error of the differences

The standard error of the differences takes into account the variability of the differences between

the paired observations.

The paired t-test is a robust statistical method used when comparing the means of two

related groups. To guarantee its accuracy and reliability, certain assumptions must be met:

1. Independence of Observations: Each set of paired observations should be independent

from other pairs. In this study, simulations were conducted independently, hence fulfilling

this criterion.

2. Normality of Differences: The differences between the paired observations should typically

follow a normal distribution. Given our sample size of 27 for each data group, we can rely on

the Central Limit Theorem. This implies that the t-test remains effective, even with minor

deviations from normality.

3. Homogeneity of Variances: Variances within each group should be approximately equal.

To confirm this, we applied Bartlett’s test. With a resultant p-value of 0.941, which is sig-

nificantly above the 0.05 threshold, the data supports the null hypothesis, suggesting that

variances are indeed homogenous across groups.

4. Interval or Ratio Data: Data should be at the interval or ratio level. Our data aligns with

this requirement as it follows a “before-and-after” pattern.

After ensuring our data meets the prerequisites for a paired t-test, we proceeded with our

computations. The resulting p-value is 6.661× 10−5, which is considerably below the accepted 0.05

threshold. This strongly contradicts the null hypothesis, suggesting a substantial difference in error

59

rates between the two groups. Consequently, this indicates that the community density imputation

method is noticeably more effective than the network density method.

4.3.3. Simulation Results of the Degree Method

Figure 4.17. Comparison of error rate from censored and imputed hypergraph based on degree,
when p = 0.375 and q = 0.125

Figure 4.18. Comparison of error rate from censored and imputed hypergraph based on degree,
when p = 0.350 and q = 0.150

60

Figure 4.19. Comparison of error rate from censored and imputed hypergraph based on degree,
when p = 0.300 and q = 0.200

Figures 4.17, 4.18, and 4.19 feature solid lines to denote the error rates from the censored

hypergraph data, while the dotted lines represent the error rates from data imputed using the

degree-based imputation method. As is evident, for each combination of p and q, the error rates

for the imputed data show an upward trend when compared to the missing data. This observation

contradicts our initial expectation that error rates would diminish after applying the imputation

method to the censored hypergraph data, thereby implying potential flaws within the theoretical

framework of the degree-based imputation algorithm.

4.3.4. Conclusions of the Simulation of Imputation Methods

In conclusion, among the three compared methods, the community density-based imputation

method is the only one that successfully reduces the error rate. The remaining two methods, in

contrast, lead to an increased error rate. This underscores the limitations of imputation methods

that apply a universal pattern to all hyperedges, as these often fall short of generating precise

results.

4.4. Community Detection in Multi-Community Hypergraph

We have thoroughly discussed the matter of community detection in equal-sized, two-

community hypergraphs in previous sections. However, the exploration of community detection

61

implications within hypergraphs comprising more than two communities could yield valuable in-

sights.

We deploy the Spectral Hypergraph Partitioning algorithm, as detailed in Ghoshdastidar

and Dukkipati (2014), to conduct community detection within multi-community hypergraphs. We

adopt three node configurations for the simulation settings: n = 48, n = 96, and n = 144. For each

node configuration, we examine three different community numbers and three pairs of in-community

connectivity probabilities (p) and cross-community connectivity probabilities (q). Specifically, we

test communities 2, 3, and 4 with p = 0.400, q = 0.100, p = 0.375, q = 0.125, and p = 0.350, q =

0.150.

We initiate the study by performing community detection on missing data with a reveal rate

(α) of 0.10. Subsequently, we apply the community density-based imputation method to impute the

missing values and recover the hidden communities. Lastly, we evaluate the efficacy of the Spectral

Hypergraph Partitioning algorithm in terms of recovering the community structure and compare

the error rates resulting from both the missing and imputed data.

4.4.1. Algorithm Detail and Measurement

The details of the Spectral Hypergraph Partitioning algorithm are as follows,

Algorithm 2: Spectral Hypergraph Partitioning Algorithm

1: Input: Incidence matrix H of the hypergraph.

2: Step 1: Compute the hypergraph Laplacian L.

Where L = I −D−1/2H∆−1HTD−1/2, and the matrices D ∈ R|V|×|V|, ∆ ∈ R|ϵ|×|ϵ| are

diagonal with Dvv = deg(v) and ∆ee = |e|.

3: Step 2: Compute the leading eigenvector matrix X ∈ R|V|×k.

4: Step 3: Normalize rows of X to have unit norm. Call this matrix X.

5: Step 4: Run k-means on the rows of X.

6: Output: Partition of V that corresponds to the clusters obtained from k-means.

62

4.4.2. Simulation Results of the Multi-Community Case

Figure 4.20. Comparison of error rate from censored and imputed hypergraph based on community
density of multi-community data, when p = 0.400 and q = 0.100

Figure 4.21. Comparison of error rate from censored and imputed hypergraph based on community
density of multi-community data, when p = 0.375 and q = 0.125

63

Figure 4.22. Comparison of error rate from censored and imputed hypergraph based on community
density of multi-community data, when p = 0.350 and q = 0.150

Figure 4.23. Comparison of error rate from censored multi-community data at all settings

Our simulation results are illustrated in Figures 4.20, 4.21, and 4.22. The solid lines denote

the error rates derived from the censored hypergraph, while the dotted lines represent the error rates

obtained from the data imputed using the community density imputation method. The Spectral

Hypergraph Partitioning algorithm facilitated all community detection tasks. Though differences

64

are marginal, the imputed hypergraph consistently excels over the censored hypergraph across each

(p, q) pair.

Moreover, Figure 4.23 indicates that as the number of communities escalates, the error rates

increase, aligning with our expectations. A higher number of communities leads to less information

within each community, thus intensifying the complexity of the community detection task. Ad-

ditionally, as the node count (n) augments, the error rates gravitate towards zero, as evidenced

in our simulation with n = 144. The negligible error rate underscores the robust performance of

the Spectral Hypergraph Partitioning algorithm in aiding community detection in multi-community

hypergraphs.

65

5. REAL DATA APPLICATION

In this section, our objective is to apply the algorithms introduced in the previous sections to

a real-world hypergraph network. Specifically, we utilize the Semi-Definite Programming approach

outlined in Section 2.4, as well as the community density-based imputation method described in

Section 2.5, to assess their effectiveness on the given hypergraph network.

We evaluate our methods using the ’crx.data’ credit approval dataset, which is publicly

available at UCI Machine Learning repository. This is a credit approval dataset consisting of 690

subjects, corresponding to credit card applicants. Each applicant is associated with 16 attributes,

as detailed in Table 5.1. The objective is to capture the latent higher-order relationships between

the subjects by constructing hyperedges based on the attributes of these applicants. Notably, there

are missing values in various attributes, including "Age," "Married," "BankCustomer," "Educa-

tionLevel," "Ethnicity," and "ZipCode."

To build a hypergraph from the credit approval dataset, we utilized the k-nearest-neighbor

method delineated in Section 1.2.1. Initially, a random selection of 50 positive and 50 negative

applicants was made from the raw data, repeated 30 times. Post this selection phase, we identified

several samples with missing attribute values. To accommodate the categorical variables, these were

transformed into one-hot encodings. Subsequently, we computed the Euclidean distance between

the subjects (vertices) based on their attribute metrics, identifying their two closest neighbors.

Notably, only vertices devoid of missing values were engaged in this phase, yielding a sum of less

than 100 observed hyperedges.

Further, we synthesized the missing hyperedges through combinations formed between the

vertices containing missing attribute values and those completely observed. In particular, for every

vertex with absent values, numerous node pairs were formed by amalgamating them with two

vertices from the collection of complete vertices, and reciprocally. Additionally, pairs consisting

only of vertices from the incomplete vertex set were also accounted for. This process manifested

potential missing hyperedges, the count of which can be ascertained using the formula

(
missing

1

)
×
(

complete
2

)
+

(
missing

2

)
×
(

complete
1

)
+

(
missing

3

)

66

https://archive.ics.uci.edu/dataset/27/credit+approval/

where “missing” denotes the number of nodes with missing values and “complete” signifies the nodes

that are fully observed.

After 30 repetitions, we obtained the estimated p and q of 0.0008 and 0.0003, with the

estimated α of 0.385. By incorporating these missing hyperedges, we obtain a censored hypergraph

for each repetition. We visualized one of the censored hypergraphs with 73 observed hyperedges, as

shown in Figure 5.1.

Figure 5.1. Visualization of the censored hypergraph constructed from the credit approval dataset

After applying the SDP approach and the community density-based method to the censored

hypergraph, we successfully obtained two communities of equal size. Since we have the predefined

labels for the dataset, we are able to calculate the error rates for both the method without imputation

and the method with imputation.

In our analysis, the hypergraphs with imputed hyperedges exhibited reduced error rates

compared to the original censored hypergraphs. To statistically substantiate our observation, we

applied a significance testing approach analogous to the procedure described in the community

density imputation method section.

To ascertain the validity of the t-test, we first tested for homogeneity of variances. The

test results signified a breach of this assumption. Consequently, due to the variance discrepancy

between groups, Welch’s t-test was deemed appropriate. Welch’s t-test is a modification of the

classic Student’s t-test designed to handle datasets with unequal variances.

67

Welch’s t-test, also known as Welch’s unequal variances t-test, is a statistical hypothesis

test used to compare the means of two independent groups. It is particularly valuable when the

assumption of equal variances between the groups is violated or when the sample sizes of the groups

are unequal. Welch’s t-test is an extension of the traditional Student’s t-test.

Like the Student’s t-test, Welch’s t-test aims to determine whether there is a statistically

significant difference between the means of two groups or samples. Welch’s t-test is especially useful

when the variances of the two groups are not equal. This means that the standard deviations of the

two groups may differ. Welch’s t-test is robust when the sample sizes of the two groups are unequal,

which is a departure from the assumption of equal sample sizes in traditional t-tests.

The test statistic for Welch’s t-test is similar to the standard t-test but incorporates a

modified formula for degrees of freedom. The formula for the test statistic is:

t =
x̄1 − x̄2√
s21
n1

+
s22
n2

where:

• x̄1 and x̄2 are the sample means of Group 1 and Group 2, respectively.

• s21 and s22 are the sample variances of Group 1 and Group 2, respectively.

• n1 and n2 are the sample sizes of Group 1 and Group 2, respectively.

The p-value for the Welch’s t-test is 1.207e-08, which means the difference between the

error rates is significant. These findings are consistent with our previous observations, indicating

the effectiveness of the community density-based imputation method in improving the accuracy of

community detection.

68

Table 5.1. List of attributes in real data

Attribute Data Structure Missing Ratio
Gender 0, 1, 1, 0, ... 0

Age 24.8, 71.6, 18.8, ?, ... 0.017
Debt 2.75, 0, 7.5, 0, ... 0

Married u, y, l, t, ?, ... 0.009
BankCustomer g, p, gg, ?, ... 0.009
EducationLevel c, d, q, ?, ... 0.013

Ethnicity v, h, bb, j, ?, ... 0.013
YearsEmployed 2.25, 0, 2.71, 0, ... 0
PriorDefault 1, 0, 1, 0, ... 0
Employed 1, 0, 1, 0, ... 0

CreditScore 6, 0, 5, 0, ... 0
DriversLicense 0, 0, 0, 0, ... 0

Citizen g, g, p, s, ... 0
ZipCode 00290, 00520, 00240, ?, ... 0.019
Income 600, 0, 26726, 0, ... 0

Approved 1, 1, 1, 1, ... 0

69

6. DISCUSSION AND CONCLUSIONS

This research has provided comprehensive insights into the domain of censored graphs and

hypergraphs. The main contributions of this dissertation can be summarized as:

• Theoretical Threshold Determination: A theoretical threshold was derived, indicating

conditions under which the community structure can be recovered in both censored graphs

and hypergraphs. This threshold serves as a foundational guide for subsequent analysis.

• Development of a Two-Stage Algorithm: A two-stage polynomial-time algorithm was

developed for the precise recovery of community structure within censored hypergraphs. This

algorithm showcases the effective utilization of polynomial time to address the inherent chal-

lenges of censored hypergraphs.

• Introduction of a Semi-Definite Programming Approach: An advanced one-stage algo-

rithm, leveraging semi-definite programming techniques, was specifically designed for censored

hypergraphs, showcasing a streamlined approach to community structure recovery.

• Innovative Imputation Methodologies: Several methods were proposed to address miss-

ing values within censored hypergraphs. These methodologies were rigorously tested through

simulations to ascertain their performance and utility.

• Comprehensive Simulation Analysis: The implemented simulations provided empirical

validation of both community detection algorithms and imputation methods. These simula-

tions confirmed the efficacy of the community detection methodologies. Notably, the commu-

nity density imputation method emerged as the most effective among the proposed imputation

techniques.

• Application to Real-world Data: This research was further extended to a real-world credit

approval dataset. This empirical application demonstrated the robustness of the community

detection algorithm and the community density imputation method when applied to genuine

data scenarios.

70

In conclusion, this dissertation has made notable strides in advancing the understanding

and handling of censored hypergraphs. The methodologies and findings presented hold significant

implications for future research and provide a robust foundation for further advancements in this

domain.

71

REFERENCES

Abbe, E. (2018), Community detection and stochastic block models: Recent developments. Journal

of Machine Learning Research 2018, 18, 1-86.

Abbe, E., Bandeira, A.S., and Hall, G. (2016). Exact recovery in the stochastic block model. IEEE

Transactions on Information Theory, 62(1): 471-487.

Abbe, E., Bandeira, A.S., Bracher, A., and Singer, A. (2014). Decoding binary node labels from cen-

sored edge measurements: phase transition and efficient recovery. IEEE Transactions on Network

Science and Engineering, 1(1), 10-22.

Amini, A. A., Chen, A., Bickel, P. J., and Levina, E. (2013). Pseudo-likelihood methods for com-

munity detection in large sparse networks. The Annals of Statistics, 41(4), 2097-2122.

Ahn, K., Lee, K., and Suh, C. (2019). Community recovery in hypergraphs. IEEE Transactions on

Information Theory, 12(5), 6561-6578.

Ahn, K., Lee, K., and Suh, C. (2018). Hypergraph spectral clustering in the weighted stochastic

block model. IEEE Journal of Selected Topics in Signal Processing, 12(5), 2018.

Ángeles Serrano, M., Boguná, M., and Diaz-Guilera, A. (2006). Modeling the internet. The European

Physical Journal B-Condensed Matter and Complex Systems, 50, 249-254.

Bi, X., Tang, X., Yuan, Y., Zhang, Y., and Qu,A. (2021). Tensors in statistics. Annual Review of

Statistics and Its Application,8,345-368.

Bickel, P. J. and Sarkar, P. (2016). Hypothesis testing for automated community detection in net-

works. Journal of the Royal Statistical Society: Series B: Statistical Methodology, 78(1), 253-273.

Cai, D., Sun, C., Song, M., Zhang, B., Hong, S., and Li, H. (2022). Hypergraph contrastive learning

for electronic health records. In Proceedings of the 2022 SIAM International Conference on Data

Mining (SDM), 127-135.

72

Chen, J. and Yuan, B. (2006). Detecting functional modules in the yeast protein-protein interaction

network. Bioinformatics, 22(18), 2283-2290.

Chien, I., Lin, C., and Wang, I. (2018). Community detection in hypergraphs: optimal statisti-

cal limit and efficient algorithms. Proceedings of the Twenty-First International Conference on

Artificial Intelligence and Statistics, 84:871-879.

Costa, L. D. F., Oliveira Jr, O. N., Travieso, G., Rodrigues, F. A., Villas Boas, P. R., Antiqueira, L.,

... and Correa Rocha, L. E. (2011). Analyzing and modeling real-world phenomena with complex

networks: a survey of applications. Advances in Physics, 60(3), 329-412.

Dai, Q. and Gao, Y. (2023). Hypergraph computation for medical and biological applications. In:

hypergraph computation. Hypergraph Computation for Medical and Biological Applications. In:

Hypergraph Computation., Springer, Singapore. https://doi.org/10.1007/978-981-99-0185-2_10.

De Bona, A. A., de Oliveira Rosa, M., Fonseca, K. V. O., and Lüders, R. (2021). A reduced model

for complex network analysis of public transportation systems. Physica A: Statistical Mechanics

and its Applications 567, 125715.

Dhara, S., Gaudio, J., Mossel, E., and Sandon, C. (2021). Spectral recovery of binary censored block

models. https://arxiv.org/pdf/2107.06338.pdf

Estrada, E. and Rodriguez-velasquez, J. (2005). Complex networks as hypergraphs. https://arxiv.

org/ftp/physics/papers/0505/0505137.pdf

Fortunato, S. (2010). Community detection in graphs. Physics reports 486(3-5), 75-174.

Gao, C., Ma, Z., Zhang, A.Y., and Zhou, H. H. (2018). Community detection in degree-corrected

block models. The Annals of Statistics. (46)(5), 2153-2185

Ghoshal, G., Zlatic, V., Caldarelli, G., and Newman, M. E. J. (2009). Random hypergraphs and

their applications. Physical Review E, 79.

Ghoshdastidar, D. and Dukkipati A. (2017). Consistency of spectral hypergraph partitioning under

planted partition model. The Annals of Statistics 2017, 45(1), 289-315.

73

https://arxiv.org/pdf/2107.06338.pdf
https://arxiv.org/ftp/physics/papers/0505/0505137.pdf
https://arxiv.org/ftp/physics/papers/0505/0505137.pdf

Ghoshdastidar, D. and Dukkipati, A. (2014). Consistency of spectral partitioning of uniform hy-

pergraphs under planted partition model. Advances in Neural Information Processing Systems

(NIPS) 2014, 397-405.

Gile, K. and Handcock M. (2016). Analysis of networks with missing data with application to the

National Longitudinal Study of Adolescent Health, Journal of the Royal Statistical Society Series

C Applied Statistics, 66, 501-519.

Goldenberg, A., Zheng, A. X. S., Fienberg, E., and Airoldi, E. M. (2010). A survey of statistical

network models. Foundations and Trends in Machine Learning, 2(2), 129-233.

Hajek, B., Wu, Y., and Xu, J. (2016). Achieving exact cluster recovery threhold via semidefinite

programming. IEEE Transaction on Information Theory, 62(5): 2788-2796.

Hajek, B., Wu, Y., and Xu, J. (2018). Recovering a hidden community beyond the Kesten Stigum

threshold in O(|E|log|V |) time. Journal of Applied Probability, 55, 2: 325-352.

Hu, F., Liu, X., Dai, J., and Yu, H. (2014). A novel algorithm for imbalance data classification

based on neighborhood hypergraph. The Scientific World Journal, 2014.

Hu, F. and Shi, J. (2015). Neighborhood hypergraph based classification algorithm for incomplete

information system. Mathematical Problems in Engineering, Article ID 735014.

Hu, Q., Yu, D., and Xie, Z. (2008). Neighborhood classifiers. Expert systems with applications, 34(2),

866-876.

Huisman, M. (2009). Imputation of missing network data: Some simple procedures. Journal of

Social Structure, 10(1), 1-29.

Jin, J. (2015). Fast community detection by SCORE. The Annals of Statistics, 43, 1: 57-89.

Ke, Z., Shi, F., and Xia, D. (2020). Community detection for hypergraph networks via regularized

tensor power iteration. 2020, https://arxiv.org/pdf/1909.06503.pdf.

Kim, C., Bandeira, A., and Goemans, M. (2018). Stochastic block model for hypergraphs: statistical

limits and a semidefinite programming approach. arXiv preprint arXiv:1807.02884.

74

https://arxiv.org/pdf/1909.06503.pdf.

Kim, S. (2011). Higher-order correlation clustering for image segmentation. Advances in Neural

Information Processing Systems 1530–8.

Lei, J. (2016). A goodness-of-fit test for stochastic block models. The Annals of Statistics, 44(1),

401-424.

Lei, J. and Rinaldo, A. (2015). Consistency of spectral clustering in stochastic block models. The

Annals of Statistics, 43(1), 215-237.

Lin, T. Y. (1998). Granular computing on binary relations I: data mining and neighborhood systems.

Rough sets in knowledge discovery, 1(1), 107-121.

Little, R.J. and Rubin, D.B. (2019). Statistical analysis with missing data John Wiley & Sons, 793

Liu, H., Jan, L., and Yan, S. (2015). Dense subgraph partition of positive hypergraphs. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 37, 3:541-554.

Liu, M., Gao, Y., Yap, P., and Shen, D. (2018). Multi-Hypergraph learning for incomplete multi-

modality data, IEEE Journal of Biomedical and Health Informatics, 22, 1197-1208.

Liu, M., Zhang,J., Yap, P., and Shen, D. (2017). View-aligned hypergraph learning for Alzheimer’s

disease diagnosis with incomplete multi-modality data. Medical Image Analysis, 36: 123-134.

Luo, Y. and Zhang, A. (2020). Open problem: average-case hardness of hypergraphic planted clique

detection. Proceedings of Machine Learning Research, 1-4, 2020.

Manipur, I., Giordano, M., Piccirillo, M., Parashuraman, S., and Maddalena, L. (2021). Community

detection in protein-protein interaction networks and applications. IEEE/ACM Transactions on

Computational Biology and Bioinformatics.

Newman, M. (2001). Scientific collaboration networks. I. Network construction and fundamental

results. Physical Review E, 64, 016-131.

Mossel, E., Neeman, J., and Sly, A. (2015). Reconstruction and estimation in the planted partition

model. Probability Theory and Related Fields, 162, 431-461.

Mossel, E., Neeman, J., and Sly, A. (2017). A proof of the block model threshold conjecture.

Combinatorica, 1-44.

75

Ouvrard, X., Goff, J., and Marchand-Maillet, S. (2017). Networks of collaborations: Hypergraph

modeling and visualization. https://arxiv.org/pdf/1707.00115.pdf

Ramasco, J., Dorogovtsev, S. N., and Pastor-Satorras, R. (2004). Self-organization of collaboration

networks, Phys. Rev. E 70, 036-106.

Schafer, J. L. and Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological

methods, 7(2), 147.

Shi, J. and Malik, J. (1997). Normalized cuts and image segmentation. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 22(8), 888-905.

Smith, J., Moody, J., and Morgan, J. (2018). Network sampling coverage II: The effect of non-

random missing data on network measurement, Soc Networks, 48, 78-99.

Weng, H. and Feng, Y. (2021). Community detection with nodal information: Likelihood and its

variational approximation. Stat, e428.

Yuan, M. and Nan, Y. (2021). Test dense subgraphs in sparse uniform hypergraph. Communications

in Statistics-Theory and Methods, 50(20), 4743-4762.

Yuan, M. and Shang, Z. (2021). Information limits for detecting a subhypergraph. STAT, e407.

Yuan, M. and Shang, Z. (2021). Sharp detection boundaries on testing dense subhypergraph.

Bernoulli 2021, to appear.

Yuan, M., Zhao, B., and Zhao, X. (2021). Community detection in censored hypergraph. arXiv

preprint arXiv:2111.03179

Yuan,Y. and Qu, A. (2021). Community detection with dependent connectivity. The Annals of

Statistics, 49, 2378-2428.

Zhao, Y., Levina, E., and Zhu., J. (2011). Community extraction for social networks. Proc. Natn.

Acad. Sci. USA, 108, 7321-7326.

Zhen, Y. and Wang, J. (2021). Community detection in general hypergraph via graph embedding.

https://arxiv.org/pdf/2103.15035.pdf.

76

https://arxiv.org/pdf/1707.00115.pdf
https://arxiv.org/pdf/2103.15035.pdf

Zhou, D., Huang, J., and Schölkopf, B. (2006). Learning with hypergraphs: Clustering, classification,

and embedding. Advances in neural information processing systems, 19.

77

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Literature Review
	Missing Values in Networks
	Missing Data in Medical Field
	Missing Data in Engineering Field

	Community Detection in Censored Networks
	Organization of the Content

	Main Results
	The Censored Hypergraph Stochastic Block Model
	Sharp Threshold for Exact Recovery
	Efficient Spectral Algorithm for Exact Recovery
	Semi-Definite Relaxation Algorithm
	Imputation Methods
	Imputation Using Network Density
	Imputation Using Community Density
	Imputation Using Degree

	Proof of Theorems
	Proof of Theorem 2.1
	Proof of Theorem 2.2
	Proof of Theorem 2.3
	Proof of Theorem 2.4

	Numerical simulation
	Simulation of the Efficient Spectral Algorithm
	When p=0.425, q=0.075
	When p=0.400, q=0.100
	When p=0.375, q=0.125
	When p=0.350, q=0.150
	Summary of Efficient Spectral Algorithm

	Simulation of the Semi-Definite Programming Algorithm
	When p=0.425, q=0.075
	When p=0.400, q=0.100
	When p=0.375, q=0.125
	When p=0.350, q=0.150
	Summary of Semi-Definite Programming Algorithm
	Comparison of the Two Proposed Algorithms

	Simulation of the Imputation Methods
	Simulation Results of the Network Density Method
	Simulation Results of the Community Density Method
	Simulation Results of the Degree Method
	Conclusions of the Simulation of Imputation Methods

	Community Detection in Multi-Community Hypergraph
	Algorithm Detail and Measurement
	Simulation Results of the Multi-Community Case

	Real data application
	Discussion and Conclusions
	REFERENCES

