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ABSTRACT

Chromatin interactions occur when the physical regions of chromatin in close proximity

interact with each other inside the nucleus. Analyzing chromatin interactions plays a crucial role

in deciphering the spatial organization of the genome. Identifying the significant interactions and

their functionalities reveals great insights on gene expressions, gene regulations and genetic diseases

such as cancer. In addition, single cell chromatin interaction data is important to understand the

chromatin structure changes, diversity among individual cells, and the genomics differences between

different cell types. In recent years, Hi-C, chromosome conformation capture with high throughput

sequencing, has gained widespread popularity for its ability to map genome-wide chromatin inter-

actions in a single experiment and it is capable of extracting both single cell and bulk chromatin

interaction data.

With the evolution of experimental methods like Hi-C, computational tools are essential to

efficiently and accurately process the vast amount of genomic data. Since the experiment costs are

notably higher, optimized computational tools and methods are needed to extract most possible

information from the data. Moreover, processing single cell Hi-C data imposes number of challenges

due to its sparseness and limited interaction counts. So the development of computational methods

and tools to process data from both single cell Hi-C and bulk Hi-C technologies are focused in this

work and those are proven to be enhancing the efficiency and accuracy of Hi-C data processing

pipelines.

In this dissertation, each chapter consists of a single individual method or a tool to enhance

chromatin interaction processing pipelines and the final chapter focuses on the interplay between

epigenetic data and chromatin interactions data. The studies that are focused on building com-

putational methods include increasing data read accuracy for bulk Hi-C, identifying statistically

significant interactions at single cell Hi-C data, and imputation of single cell Hi-C data to improve

quality and quantity of raw reads. It is anticipated that the utilization of the tools and methods

outlined in these studies will significantly enhance the workflows of future research on chromatin

organization and its correlation with cellular functions and genetic diseases.
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1. INTRODUCTION

Bioinformatics involves the storage, retrieval and analysis of large amount of biological data

including genomic information, nucleotide, amino acid, protein structures and regulatory informa-

tion. It enables scientists to understand complex biological processes and diseases, and plays a key

role in developing new medical treatments and personalized therapeutic strategies by identifying

genetic markers and pathways associated with various conditions across a vast collection of genomic

datasets[79]. The primary application of bioinformatics is the analysis of DNA, RNA, and protein

sequences, and their functional implications on cellular activities. This includes identifying genes,

analyzing regulatory elements, predicting the functionality of proteins, and their relationship with

genomic structure. Advanced computational techniques are often required to address complex bio-

logical challenges related to sequencing and processing due to the massive volume of data involved.

With its strong foundation in algorithms, data structures, and high performance computing, Com-

puter Science principles serve as the backbone for developing computationally effective tools and

software that can efficiently store, manage, process, and visualize biological data. Thus the inte-

gration of numerous computer science and statistical concepts, such as data mining and machine

learning, with the analysis of biological processes has greatly accelerated biological research in many

aspects including gene and protein expression analysis, mutations in cancer, and modeling biological

systems [137] [91] [169] [95] [103].

Deciphering the three-dimensional organization of the genome still remains a major focus in

the field of biology as it can disclose great insights into gene regulation and their correlation with

genetic diseases such as cancer [148]. This involves analyzing chromatin interaction data generated

using experimental methods such as chromosome conformation capture [143]. More advanced ex-

perimental methodologies, such as high-throughput sequencing (the most comprehensive method

to analyze genome-wide chromatin interactions) can often result in millions to billions of reads per

sample [104]. These need to go through numerous processing pipelines to filter out higher-quality

and meaningful reads. Despite the development of numerous tools for curating this information

1.1 1.2, not all challenges associated with processing chromatin interactions data have been re-

solved. In addition, some of the existing methodologies face various practical challenges due to the

1



limitations of available datasets and computational resources. To overcome these limitations, the

development of more robust and efficient computational tools is necessary. further research should

be conducted to utilize various computer science concepts, including different algorithms and data

structures. Furthermore, the application of advanced data mining and machine learning techniques

to genomics data can facilitate the extraction of meaningful patterns, the inference of relationships,

and the generation of insights from large datasets.

The analysis of genome structure data has significantly advanced since the introduction of

the first experimental method, chromosome conformation capture, in the early 2000s [160]. More

robust and advanced experimental methods to analyze genome wide chromatin organization, such

as Hi-C, were developed in 2009 [104]. However, effective computational methods for processing

and analyzing this data, particularly for single-cell data, have only recently been introduced [191].

This may be attributed to several factors, including the limited availability of public datasets and

the need for high-performance computing resources. Moreover, researchers are continuously making

effort to model genomic data into more accurate representations to enhance our understanding of

its functional applications. The development of more efficient and effective computational method-

ologies could streamline this process, bringing us closer to a deeper comprehension of the complex

interactions between chromatin structures and their functions. Such advancements could lead the

way for novel therapeutic strategies for a variety of genetic diseases, including cancer and other

disorders.

All the studies presented in this thesis introduce computational methods specifically de-

signed for analyzing and processing chromatin interaction data, particularly generated using Hi-C

methodology. These methods have proven to enhance both single-cell and bulk Hi-C data pro-

cessing pipelines and are expected to contribute to further genomic research focused on analyzing

chromatin organization and its biological functional implications. Section 1.1.1 offers a concise

overview of chromatin organization topology and its role in gene regulation. Section 1.1.2 describes

the relationship between epigenetics and chromatin interactions, along with their functional im-

plications for gene regulation. Section 1.1.3 discusses how analyzing chromatin organization can

provide valuable insights into human health and genetic diseases. Section 1.1.4 introduces the ex-

perimental methodologies used to capture data on chromatin interactions. Section 1.1.5 outlines the

techniques for capturing epigenetic data. Section 1.1.6 provides a brief overview of the existing com-
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putational methods for analyzing chromatin organization and addresses the need for more advanced

computational methodologies to process chromatin interaction data, considering the limitations and

challenges of existing techniques and methodologies. Section 1.1.7 discusses various representation

capabilities of chromatin interaction data and their impact on computational methods. Section

1.2 outlines our motivation for pursuing the studies presented along with the problem definition.

Finally, Section 1.3 lists our contributions.

1.1. Background

1.1.1. Chromatin Architecture and Gene Regulation

Chromatin organization within the nucleus is a hierarchical structure ranges from the small-

est loops formed by DNA and histone proteins to the higher level organization such as compart-

mentalization and chromosome organization. This multi-tiered structure plays a critical role in gene

regulation, genome stability and cellular function. Sections 1.1.1.1-1.1.1.4 provide brief explanation

to the most significant units in the chromatin organization and their functional implications.

1.1.1.1. Formation of Chromatin Interaction

The genetic information of an organism is stored in DNA which is composed of two com-

plementary strands that form a double-helix structure. The DNA is primarily made up of a sugar

phosphate backbone and four types of nucleotides: Adenine, Thymine, Cytosine, and Guanine, rep-

resented as A, T, C, and G bases. Within the DNA, Adenine pairs with Thymine, and Cytosine

pairs with Guanine.

Chromatin interactions play a pivotal role in the regulation of gene expression which in-

fluences the cell and genomic functionality. These interactions occur within the nucleus of a cell,

where DNA is packaged into a complex structure known as chromatin. This structure undergoes var-

ious modifications and reorganizations that enable or restrict access to specific genetic information.

Through mechanisms such as looping, chromatin brings distant genes or regulatory elements into

close proximity which facilitates or hinders the recruitment of transcription factors and other regu-

latory proteins. This dynamic interplay is crucial for the orchestration of developmental processes,

the maintenance of cellular identity, and the response to external signals.

Chromatin interactions can be further categorized into those occurring within the same

chromosome (intra-chromosomal interactions) and those occurring between different chromosomes

(inter-chromosomal interactions) (Figure 1.1).
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Figure 1.1. Intra vs Inter chromosomal interactions

1.1.1.2. Role of Chromatin Interactions in Gene Regulation

Gene regulation is essential for the proper functioning of an organism. It ensures that specific

genes are expressed at the appropriate times, within the correct cells, and in precise quantities.

This process ensures that cells are adapted to various environmental conditions, facilitating proper

development, functioning, and survival. Disruptions in gene regulation can lead to the development

of various diseases, such as cancer, or other abnormalities [82]. Therefore, precise gene regulation

is fundamental for proper complex biological processes and the maintenance of healthy functioning

cell.

Regulatory elements acts as critical components for controlling the flow of genetic informa-

tion from DNA to functional proteins and those are key components in gene regulation. Those

elements such as promoters, enhancers, silencers and insulators, interact with transcription factors

and other associated proteins which influence the transcriptional machinery inside a cell. Promot-

ers are DNA sequences located directly upstream of the corresponding gene and they provide the

binding sites for RNA polymerase and transcription initiation. Enhancers are located far away

from the gene and are responsible for enhancing the transcription of a gene by increasing the rate

of transcription. Silencers can repress gene expression and decrease the rate of gene transcription.

Insulators are regulatory elements that restrict the influence of enhancers or silencers on the ex-

pression of nearby genes and act as boundaries and ensure that those regulatory elements affect

only their target genes. These regulatory elements are associated with each other to control and
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maintain the complex and dynamic process of gene expression and essential for proper functioning

of cells, normal growth, development and response to environmental changes [23].

Chromatin interactions and loops bring distant genomic regions and their respective regula-

tory elements into close proximity. Known regulatory elements, such as enhancers and promoters,

often interact with each other to initiate gene transcription, despite being physically separated by

large genomic distances. Chromatin loops form when two such distant genomic regions, separated by

thousands to millions of base pairs, are brought into close proximity within the three-dimensional

organization of chromatin. These loops are frequently anchored by protein complexes, including

Cohesin and CTCF. Consequently, this looping mechanism plays a crucial role in gene regulation

and the control of gene expression. By examining these loops, scientists can understand how al-

terations in the three-dimensional genome structure are linked to a range of applications, including

disease-associated studies [148], epigenetic research [133], and gene regulation across different cell

types under various conditions [99].

1.1.1.3. Topologically Associating Domains (TADs)

Topologically associating domains (TADs) are representation of genomic regions where DNA

sequences interact more frequently with each other than with sequences outside the region. These

regions typically can span to hundereds of kilobases to several megabases and varies among different

organisms [10] [32]. TADs act as a structural unit that organize and regulate gene expression in

which regulatory elements such as enhancers and promoters are brought into close proximity. Even

though the genomic regions in these regions tend to interact more frequently with each other, the

cross-TAD interactions were also observed in recent studies [68]. Topologically Associating Domains

(TADs) are crucial for identifying regulatory elements and understanding their correlations with gene

regulation across different cell types or conditions [74]. Furthermore, analyzing disruptions in TADs

can provide insights into the mutations present in cancer genomes and the regulatory mechanisms

of oncogenes [173] [64] [44] [78].

1.1.1.4. Compartmentalization of Chromatin(A/B compartments)

Compartmentalization of Chromatin refers to the higher order organization of chromatin

in the nucleus into two main distinct types such as A compartments and B compartments. A

compartments refer to actively transcribed regions and those are usually located more internally

within the nucleus. A compartments associate with the regions of the genome that are involved in
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active transcriptional process. In contrast, B compartments correspond to inactive regions. These

regions typically has a lower density of genes and low levels of gene expression. B compartments

generally located near the nuclear lamina.

The dynamic interplay between A and B compartments within the nuclear architecture

reflects not only the current state of cellular function but also plays a crucial role in revealing their

relationship with gene regulation [62]. Moreover, this interplay significantly impacts the changes in

gene expression associated with cancer progression [140].

1.1.2. Epigenetics and Chromatin Interactions

Epigenetics is a field that focuses on the chemical modifications of DNA and its associated

proteins, which can affect gene expression without altering the corresponding genetic sequence

[72]. Two common epigenetic modifications are DNA methylation and histone modification. DNA

methylation is a biochemical process involving the addition of a methyl group to the DNA molecule

which is typically at cytosine bases, leading to changes in gene expression [164]. As the evidence

suggests, changes in methylation in the promoter region of a gene can impact gene silencing [116]

[180]. Additionally, disruptions in DNA methylation patterns can lead to altered gene functionalities

and are implicated in various diseases, including cancer [152] [75] [192].

Histone modifications refer to the chemical changes in histone proteins which serve as the

structural framework around which DNA coils [132]. For instance, histone modifications associ-

ated with transcriptional activation relax the chromatin structure, making DNA more accessible

to the transcription machinery [29]. However, histone modifications can lead to either activation

or repression of gene expression, depending on the specific methylated amino acids and methyl

groups involved. Histone modification is crucial for cell cycle regulation and development and is

also associated with various genetic diseases [8] [151].

Both epigenetic modifications and chromatin interactions are associated with the control

of gene expression and gene regulation. Epigenetic modifications can activate or repress gene ex-

pression without altering the genetic sequence, using mechanisms such as DNA methylation and

histone modifications. Similarly, chromatin interactions control gene regulation by bringing distant

genomic regions and regulatory elements into close proximity. Thus, understanding epigenetics and

chromatin interactions, as well as their interplay, is crucial for unraveling the dynamics of gene

expression across various environments and cell development [120] [24].
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1.1.3. Chromatin Organization in Health and Disease

The structural and organizational dynamics of chromatin are fundamental to the regula-

tion of gene expression. Disruptions in this organization are closely linked to a spectrum of health

complications and genetic diseases, including cancer and various other pathologies. Higher-order

chromatin organizations, such as topologically associating domains (TADs), are essential for orches-

trating gene regulation. Alterations in TADs can significantly affect the regulatory landscape over

long distances and potentially lead to the emergence of disease-related phenotypes [36] [113].

Instances of human limb malformations have been linked to genomic structural changes, such

as deletions, inversions, or duplications within the TAD-spanning locus of WNT6/IHH/EPHA4-

/PAX3 [113]. Laboratory studies, involving mice engineered to carry similar genomic rearrange-

ments, have replicated these findings, emphasizing the critical role of TADs in regulating gene

expression. Moreover, alterations in the structure and organization of the genome are associated

with changes in gene expression levels, which contribute to the analysis of various pathological

conditions [58] [159].

In cancer, alterations and disruptions in the three-dimensional organization of chromatin

play a significant role in the progression of the disease. These disruptions can manifest through

various mechanisms, including copy-number variation, long-range epigenetic changes, and the ac-

tivation of atypical gene expression programs, particularly in prostate cancer cells [165]. Despite

cancer cells’ ability to organize their genomes into TADs, these domains are often smaller with ad-

ditional cancer-specific domain boundaries. These newly formed boundaries frequently occur with

areas of copy-number variation and leads to altered chromatin interactions and regulatory region

activities. This results in long-range epigenetically activated or silenced regions with concordant

gene activation or repression in prostate cancer. It illustrates the relationship between long-range

epigenetic and genomic dysregulation with the changes in higher-order chromatin interactions in

cancer [165].

The phenomenon of long-range epigenetic silencing (LRES) affecting neighboring genes has

been observed across various cancers [124] [134] [162]. That shows how 3D chromatin architecture

influences cancer hallmarks such as sustaining proliferative signalling, evading growth suppressors,

resisting cell death, activating invasion and metastasis, enabling replicative immortality, inducing
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angiogenesis, reprogramming of energy metabolism, creating the tumour microenvironment, inflam-

mation, evading immune destruction, and genome instability due to mutations [57]. Therapeutic

interventions targeting spatial genome organization such as curaxins, have shown promising results

in contributing to affect this regulatory level [81] [80].

The relationship between three-dimensional genome organization and active mutational pro-

cesses influences the observed large-scale variations in mutation rates across human cancers. An

analysis of 3,000 tumor-normal paired whole-genome datasets across 42 types of cancer revealed

a significant correlation between somatic mutations and topologically associating domain (TAD)

boundaries. This finding indicates that somatic mutational load in cancer genomes co-localizes

with TAD boundaries, suggesting a significant impact of genome architecture on mutation rates [2].

The molecular mechanisms that underlie transcriptional dysregulation in cancer, including

dysregulated enhancers and aberrant enhancer-promoter interactions, offer new insights into cancer

development and progression [163] [63] [13]. They suggest potential therapeutic targets, indicating

that alterations in chromatin topology can activate oncogenes and contribute to cancer phenotypes

[52]. Structural variants such as inversions [52] and translocations [123] can facilitate the expression

of oncogenes by positioning enhancers proximal to oncogene promoters. This highlights the complex

relationship between chromatin structure and the evolution of cancer [63].

1.1.4. Chromosome Conformation Capture Methodologies

Chromosome conformation capture methods have been developed to map chromatin interac-

tions within cells. Numerous experimental approaches exist to extract these chromatin interactions,

as described below. Comprehensive list is available at [117].

1.1.4.1. Chromosome Conformation Capture (3C)

The Chromosome Conformation Capture (3C) technique is the foundational method for

identifying locations of chromosomal interactions [34]. It has served as the foundation for many

subsequent methodologies and is utilized to analyze the frequency of interactions between specific

genomic regions, providing a one-to-one mapping. The 3C technique has the capability of confirming

the existence of chromatin loops between proximal chromatin regions.

The 3C procedure involves several steps, beginning with the cross-linking of spatially proxi-

mal regions within the nucleus using formaldehyde, which stabilizes the contacts. Subsequently, the

DNA is fragmented using a restriction enzyme to isolate these contacts, followed by the ligation of
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the DNA fragments. The DNA is then purified, and the genomic sites of interaction are identified

using Polymerase Chain Reaction (PCR).

1.1.4.2. Circular Chromosome Conformation Capture (4C)

The 4C (Circular Chromosome Conformation Capture) method, an evolution of the 3C

(Chromosome Conformation Capture) technique, is adept at identifying genomic sites across the

entire genome that interact with a specific locus of interest (one-to-many mapping) [156]. This

method can generate high-resolution contact maps surrounding the target genomic site and requires

fewer reads compared to methods such as Hi-C, making it more efficient in specific contexts, such

as analyzing interactions related to a particular locus or gene[157].

The 4C protocol includes several initial steps from the 3C process, such as crosslinking at the

ligation sites and fragmenting DNA using a primary restriction enzyme. Following in situ ligation of

these fragments, the crosslinks are reversed, and the DNA is purified. Then the purified fragments

are cut using a secondary restriction enzyme and ligated once more to create circularized DNA

molecules. These circularized molecules are then processed through inverse PCR, which cleaves the

ligations and attaches primers specific to the region of interest. Finally, the fragments are sequenced

using next-generation sequencing techniques. The contact frequencies are determined by analyzing

the proportion of reads mapped to particular genomic sites.

1.1.4.3. Chromosome Conformation Capture Carbon Copy or 3C-Carbon Copy(5C)

The 5C technique represents an extension of the 3C method, involving high-throughput

and comprehensive analysis of many interactions concurrently [38]. It involves the simultaneous

examination of interactions between multiple loci. Similar to the 3C method, the 5C approach

starts with the cross-linking of ligation sites, followed by fragmentation using a restriction enzyme.

After that, 5C utilizes ligation-mediated amplification to investigate interactions between multiple

loci. The amplified products are then subjected to sequencing or microarray analysis to generate

chromatin interactions.

1.1.4.4. Chromosome Conformation Capture with High Throughput Sequencing (Hi-

C) and Variants

The Hi-C method is capable of identifying genome-wide chromatin interactions, and it has

become increasingly popular due to its ability to generate a vast number of genome-wide chromatin

interactions compared to earlier methods [174] [11]. There are two primary types of Hi-C methods:
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single-cell Hi-C and bulk Hi-C. Single-cell Hi-C captures chromatin interactions within individual

cells, whereas bulk Hi-C captures chromatin interactions from a mixture of cells.

The Hi-C method expands upon the 3C process by labeling the ends of DNA fragments

with biotin, assisting in the identification of ligation sites. This method involves ligating the frag-

ments, shearing the DNA to remove cross-links, and finally analyzing the chimeric reads using

high-throughput paired-end sequencing.

Due to its widespread adoption, several variants of the Hi-C method have been introduced to

address different research needs. Diploid Chromosome Conformation Capture (Dip-C) is a variant

designed for analyzing chromatin interactions at the single-cell level, thus providing insights into

cell-to-cell heterogeneity and the dynamics of chromosome organization. In situ Hi-C improves upon

the original protocol by performing the proximity ligation step within intact nuclei, thereby reducing

DNA loss during the process and enhancing the resolution and efficiency of interaction detection.

Micro-C utilizes micrococcal nuclease (MNase) for chromatin digestion, in contrast to the restriction

enzymes used in traditional Hi-C, resulting in finer resolution maps of chromatin interactions [87].

This method is particularly effective in mapping nucleosome-nucleosome interactions and revealing

detailed chromatin organization. Lastly, HiChIP modifies the Hi-C protocol by incorporating a

chromatin immunoprecipitation (ChIP) step, making it valuable for studying chromatin interactions

mediated by specific proteins of interest, similar to the ChIA-PET method.

1.1.4.5. Chromatin Interaction Analysis by Paired-End Tag Sequencing(ChIA-PET)

Compared to the Hi-C method, which provides a comprehensive overview of all chromatin

interactions within the nucleus, ChIA-PET specifically targets interactions mediated by particular

proteins. It combines chromatin immunoprecipitation (ChIP) with DNA sequencing to identify

interactions between DNA regions bound by a specific protein. We will discuss another variation

of the Chromatin Immunoprecipitation method, called ChIP-Seq, which focuses on the interactions

between DNA and proteins, in later sections on epigenetic analysis.

This method involves several steps, including cross-linking to stabilize protein-DNA inter-

actions, immunoprecipitation to enrich DNA segments bound by specific proteins, and sequencing

to identify the interacting DNA regions. This technique is often utilized to analyze the role of

transcription factors in the formation of interactions between DNA elements and their relationship

to gene regulation. Consequently, ChIA-PET is particularly useful for revealing the role of pro-
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teins such as transcription factors [195], estrogen receptors [59], CTCF binding factors, and histone

proteins in the organization of the genome into functional domains.

1.1.5. Techniques in Epigenetic Analysis

Epigenetic analysis techniques are essential for understanding gene regulation beyond mere

DNA sequence analysis. These methods focus on studying DNA methylation, histone modifications,

and DNA-binding proteins, and etc. In this dissertation, we analyzed data generated using tech-

niques specifically aimed at processing histone modifications, DNA methylation, and transcription

factor binding sites. Chromatin Immunoprecipitation Sequencing (ChIP-Seq) stands out as a robust

and powerful technique that merges chromatin immunoprecipitation with high-throughput DNA se-

quencing to investigate protein-DNA interactions within the genome. The ChIP-Seq process begins

by crosslinking proteins to DNA, fragmenting the DNA, and then selectively isolating specific DNA-

protein complexes. Then the DNA is purified, sequenced, and mapped to a reference genome for

enrichment analysis. The enrichment of DNA sequences in corresponding genomic regions signifies

the locations of those specific protein binding sites.

H3K4me3 and H3K27ac are examples of histone modifications, each representing a distinct

epigenetic mark that plays a crucial role in the regulation of gene expression. H3K4me3 involves

the addition of three methyl groups to the lysine 4 residue of histone H3 and is strongly associated

with actively transcribed genes, primarily located near the promoter regions. This modification

serves as an indicator of active gene promoters, facilitating transcription initiation [66]. Conversely,

H3K27ac, which involves the addition of an acetyl group to the lysine 27 residue of histone H3, is

associated with chromatin relaxation and active gene transcription. Typically found near enhancer

regions, H3K27ac serves as an indicator of active enhancers [26]. The presence and patterns of these

epigenetic markers are essential for understanding gene activity and the various aspects of active

gene regions.

1.1.6. Existing Computational Methods for Analyzing Chromatin Interactions

In this thesis, we propose advanced computational methodologies for processing chromatin

interaction data. This section analyzes existing computational techniques and organizes them based

on their application to various aspects of chromatin interaction analysis. These include methods

for single-cell interactions, bulk interactions, the analysis of raw interaction reads, and integrative

analytical approaches. The underlying principles and methodologies of these existing techniques
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have provided a solid foundation, enabling us to introduce novel computational methods. These

existing methods are crucial for identifying appropriate reference datasets, conducting thorough

benchmarking of results, and perform comprehensive comparisons. Additionally, we do not cover

the most common genomic tools such as FastQC, BWA, and Bowtie, as they are widely recognized

for quality control and alignment tasks in various sequencing analyses. Instead, our focus is on

more specialized computational methods specifically designed for chromatin interaction processing

workflows.

Tables 1.1 and Table 1.2 list the majority of the Hi-C tools and methodologies utilized in our

proposed computational methodologies for various purposes, including preprocessing, visualization,

and benchmarking, as well as comparing results.

1.1.6.1. Computational Methods for Analyzing Bulk Chromatin Interactions

Bulk chromatin interaction analysis enables researchers to examine the three-dimensional

structure of the genome and its functional implications. The Bulk Hi-C method is widely regarded

as the most effective for analyzing chromatin interactions, due to its ability to generate large vol-

umes of experimental data. However, the raw data from Hi-C experiments include noise, biases,

and artifacts resulting from experimental procedures and sequencing technologies. Advanced com-

putational methods are required to correct these biases, normalize the data, and transform the raw

interaction frequencies into meaningful biological insights. These methods should be capable of

identifying chromatin interactions with higher confidence along with the comparison of chromatin

structures across different cell types or conditions, and assisting to uncover the underlying prin-

ciples of genome organization. Without such computational preprocessing, our ability to explore

the complexities of genomic architecture and its impact on cellular functions would be significantly

limited.

Numerous bulk Hi-C datasets are available across various organisms, including different

human tissues, disease cells, various animal species, and even plants [31]. This extensive collec-

tion enables the exploration of chromatin interactions between different species, cell cycles, disease

phases, and between normal and disease cells. Comprehensive end-to-end pipelines exist, ranging

from the processing of raw interaction data to the generation of processed contact matrices and

visualizations. HiC-Pro [150], hiclib [71], Hicup [182] and Juicer [40] are among the most commonly

used tools in the research community.
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Table 1.1. Existing Hi-C tools and methodologies-1

Tool Purpose Source Reference
HiC-Pro Pipeline to process data from raw reads to

normalized contact maps
https://github.com/
nservant/HiC-Pro

[150]

FitHiC and
FitHiC2

Identify significant inter-chromosomal and
intra-chromosomal interactions from given
contacts

https://github.com/
ay-lab/fithic

[6], [85]

HiCCUPS Identify significant inter-chromosomal and
intra-chromosomal interactions from given
contacts

https://github.com/
aidenlab/juicer

[136]

hiclib Generate contact maps from raw reads https://github.
com/mirnylab/
hiclib-legacy

[71]

scHiC-
Explorer

Set of tools to analyze, process and visu-
alize hi-C and single cell Hi-C data

https://github.
com/joachimwolff/
scHiCExplorer

[184]

cooltools A toolset to analyze Hi-C data for var-
ious tasks including normalization, com-
partment and TADs analysis

https://github.com/
open2c/cooltools?
tab=readme-ov-file

[126]

mHi-C Recover multimapping reads when align-
ing hi-c raw data

https://github.com/
keleslab/mHiC

[200]

HiCrep Measure reproducibility of Hi-C contact
matrices

https://github.com/
TaoYang-dev/hicrep

[189]

HiC-DC Identify Significant interactions https://bitbucket.
org/leslielab/
hic-dc/src/master/

[21]

diffHic Detect differential genomic interactions in
Hi-C data

https://www.
bioconductor.org/
packages/release/
bioc/html/diffHic.
html

[111]

SnapHiC Identify significant interactions from sin-
gle cell Hi-C data

https://github.com/
HuMingLab/SnapHiC

[191]

Hicup Provide a pipeline to process raw fastq
reads including steps: Truncating, map-
ping, filtering and deduplicating

https://github.com/
StevenWingett/HiCUP

[182]

Hic-
inspector

Provide a suite of tools designed for Hi-C
data processing tasks including aligning,
counting, filtering, and generating contact
maps

https://github.
com/HiC-inspector/
HiC-inspector

[22]
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Table 1.2. Existing Hi-C tools and methodologies-2

Tool Purpose Source Reference
Hippie A pipeline to extract intra and inter-

chromosomal enhancer–target gene rela-
tionships

http://wanglab.
pcbi.upenn.edu/
hippie/

[70]

Hicdat Provide a graphical interface to perform
hic processing tasks along with other data
types including Chip-seq and RNA-seq

https://github.com/
MWSchmid/HiCdat

[145]

Hifive A set of tools for processing HiC and 5C
data

https://github.com/
bxlab/hifive

[144]

Hic-bench A set of pipelines for Hi-C and ChIP-Seq
analysis

https://github.com/
NYU-BFX/hic-bench

[93]

Hic-spector A matrix library for spectral and repro-
ducibility analysis of Hi-C contact maps

https://github.
com/gersteinlab/
HiC-spector

[188]

Hibrowse A locally deployable browser designed for
the visualization and analysis of Hi-C
data, along with its genetic and epigenetic
annotations

https://github.
com/lyotvincent/
HiBrowser

[101]

Juicebox visualization software for Hi-C contact
maps

https://github.com/
aidenlab/Juicebox

[40]

HiCPlus Enhance the resolution of Hi-C contact
maps utilizing convolutional neural net-
works

https://github.com/
zhangyan32/HiCPlus

[198]

HiCNN HiCPlus iteration using deep convolu-
tional neural networks

http://dna.cs.
miami.edu/HiCNN/

[109]

HicGAN Improve resolution of Hi-C maps using
generative adversarial networks (GANs)

https://github.com/
kimmo1019/hicGAN

[108]

DeepHiC Enhance the resolution of Hi-C contact
maps through Generative Adversarial Net-
work

https://github.com/
omegahh/DeepHiC

[65]
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HiC-Pro offers an integrated pipeline for processing Hi-C data, starting with the alignment

of reads to the reference genome. These reads are then mapped to restriction fragments, followed by

the classification and removal of invalid interaction pairs. The pipeline concludes by providing raw

contact matrices alongside ICE-normalized contacts. Additionally, HiC-Pro supports allele-specific

analysis when relevant data are supplied [150]. Similarily, hiclib is a Python library that provides a

flexible framework for Hi-C data analysis. It supports preprocessing, mapping, and filtering of Hi-C

data, allowing users to interact with the data throughout each step [71]. However, hiclib requires a

more involved setup and poses a steeper learning curve for individuals unfamiliar with programming.

Juicer is another platform that specializes in generating Hi-C maps from raw reads. It offers a suite

of command-line tools for various annotations and analyses. Typically, these pipelines focus solely

on uniquely mapping reads and overlooked multi-mapping reads and other read types. To overcome

this limitation, multi-mapping reads recovery algorithms similar to mHiC have been developed [200].

Drawing inspiration from these, this thesis proposes a heuristic strategy-based method to recover

multi-mapping reads.

However, the above mentioned tools lack the capability to identify statistically significant

and more meaningful interactions. To address this, tools such as FitHiC , followed by FitHiC2 [6]

[85] and HiCCUPS [136], were introduced to filter out statistically significant interactions. FitHiC

applies a statistical approach to assign confidence scores on interactions based on the frequency of

contact between genomic loci and utilizes a spline regression model to represent distance-dependent

interaction frequencies. FitHiC2 was later introduced to enhance the effectiveness of distinguishing

between random noise and biologically meaningful interactions. HiCCUPS, similar to FitHiC, is a

peak-calling algorithm and it identifies areas where interactions between parts of the genome are

unusually high considering the surrounded local neighborhood. It compares the frequencies of pixels

in the contact matrices to those of surrounding areas and identifies statistically significant peaks

according to the predefined four neighborhoods around the corresponding pixel.

Furthermore, various computational tools have been implemented to serve different purposes

in Hi-C processing pipelines. HOMER is a comprehensive suite designed to provide functionalities

such as annotation, normalization, integration with other genomic data, and visualization [60].

However, HOMER does not include read mapping functionality. GOTHiC provides a probabilistic

model to identify genuine interactions using a binomial test while correcting for biases [115]. As
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the need to compare Hi-C data increases, tools such as diffHiC [111] have been introduced to

detect differential genomic interactions in Hi-C data. HiCExplorer [184] is another comprehensive

suite that includes the functionalities for processing, normalization, analysis, and visualization of

Hi-C data. It includes additional capabilities such as the identification of topologically associating

domains (TADs) and A/B compartments. These tools and frameworks have laid a strong foundation

for Hi-C data analysis and opened up numerous possibilities for continuing to enhance and introduce

more advanced computational methodologies.

1.1.6.2. Computational Methods for Analyzing Single Cell Chromatin Interactions

Single-cell Hi-C data provide an opportunity for researchers to analyze the heterogeneity and

dynamic nature of genome architecture across different cell types, developmental stages, and disease

states [121] [17]. Unlike bulk Hi-C data, which aggregates chromatin interactions from millions

of cells, single-cell Hi-C captures the chromatin interactions within individual cells. Consequently,

single-cell Hi-C data present unique challenges, including sparse contact matrices and increased noise

and variability between cells due to lower number of reads generated per experiment. Furthermore,

there are fewer single-cell Hi-C datasets available compared to bulk Hi-C datasets. For example,

a dataset comprising 10,696 mouse and human single cells, introduced by Ramani et al. [135]

as part of the single-cell combinatorial indexed Hi-C (sciHi-C) method, contains an average of

25,632 contact pairs per cell. Followed by that, Kim et al. [86] generated data from over 19,000

cells across five human cell lines (GM12878, H1Esc, HFF, IMR90, and HAP1) using the sci-Hi-C

method, averaging 8,167 contacts per cell. Consequently, most available single-cell experimental

data introduce significant sparsity into the contact matrices. The single-cell dataset of the human

brain, generated by Lee et al. [94] using the single-nucleus methyl-3C sequencing method, consists

of 398,726 contacts per cell. Similarly, the cell cycle dataset of mouse embryonic cells produced

by Nagano et al. [121] shows comparable numbers of contacts per cell. However, these figures still

represent a relatively low sequencing depth for revealing insightful patterns.

To mitigate these issues, imputation methods have been introduced to enhance single-cell

data by predicting missing interactions and reducing data sparsity. These imputation algorithms

utilizes probabilistic approaches, such as the random walk with restart [191], to impute and filter

out significant interactions. Despite their benefits, these algorithms also have limitations, which

are discussed in subsequent chapters. Beyond identifying significant interactions, clustering within
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single cells according to the cell type or phase has emerged as a major application. Approaches

based on random walks and linear convolution have been adapted to implement a single-cell clus-

tering algorithm[201], facilitating the analysis of TADs (Topologically Associating Domains) across

single cells and enabling visualizations. Additionally, methods based on nearest neighbors and

unsupervised embedding have been utilized in clustering single cells [183] [106].

Single-cell Hi-C analysis tools and methodologies are still in their early stages, and re-

searchers often resort to applying bulk Hi-C methodologies to single-cell data to avoid limitations.

Further research is needed to experiment advanced computational algorithms and data structures

on single cell hi-c data to uncover hidden patterns and variations. As a result, in this work, we

introduce two novel computational tools designed to identify statistically significant interactions

from single-cell Hi-C data.

1.1.6.3. Computational Methods for Integrative Analysis

Hi-C data serves as a valuable resource for deciphering chromatin topology and functional

regulatory elements. However, Hi-C data alone may not provide a complete picture of the relation-

ship between gene regulation and chromatin structure. The capabilities of Hi-C experiments are

primarily limited to reflecting genomic regions in close proximity without necessarily representing

the functional relationship between them. Additionally, various noises and biases associated with

Hi-C data complicate the differentiation between specific interactions occurring due to random noise

or actual functional relationships.

By integrating Hi-C data with other omics datasets, such as gene expression, DNA methy-

lation, histone modifications, transcription factor binding, and chromatin accessibility, researchers

can gain a comprehensive overview of the regulatory mechanisms correlating gene expression with

cellular function. Moreover, one-dimensional (1D) chromatin data, generated using experimental

approaches like ChIP-Seq, tend to produce genomic signals at a much higher resolution than Hi-

C data and it offers a more fine-grained analysis of genomic structure. Numerous computational

methods have been introduced to understand the interplay between different types of data related

to chromatin structure [56] [76] [5]. These methodologies enhance our understanding of the complex

interactions within the genome and provides a more holistic view of cellular function and regulation.

Higashi is a computational strategy for integrating single-cell Hi-C data with methylation

data [196]. It utilizes a hypergraph neural network to model the relationships between different
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chromatin regions and generate low dimensional embedding which allows for the characterization

of genome structures into compartments and TADs along with cell type classification. The method

offers a refined perspective on chromatin organization, illustrating how the integration of Hi-C data

with other omics datasets at the single-cell level can support the development of an embedding

model that reflects diverse cell types and cellular states.

Graph embedding techniques have successfully been used to identify genomic subcompart-

ments from Hi-C data along with integration of other omics data for evaluation [4]. By convert-

ing high-dimensional chromatin interaction data into a more manageable lower-dimensional space,

these methods unveil patterns and structures that remain obscured by standard Hi-C workflows and

pipelines. Unsupervised learning algorithms can identify clusters within this data, corresponding to

genomic regions with similar interaction profiles. Similarly, graph embeddings of both 1D genomic

signals and interactions have also been utilized to annotate chromatin domains [155].

Approaches based on Hidden Markov Models have also been applied in the annotation of

chromatin states using epigenomic signals. DeepChIA-PET, a deep learning framework, is designed

to predict ChIA-PET interactions from Hi-C and ChIP-seq data through a convolutional neural

network. This reveals that integrating ChIP-seq data enhances model performance compared to

using the Hi-C network alone which implies that the combination of different omics datasets leads

to a more nuanced understanding of chromatin complexity [110].

Resources such as LungCancer3D [185] offer comprehensive databases for merging lung can-

cer chromatin architecture information with multi-omics data. These databases are crucial in un-

derstanding disease-specific alterations in chromatin organization and their implications for cancer

biology. Moreover, the integration of Hi-C data with gene expression data can reveal how chromatin

contacts affect gene regulation and co-expression, as demonstrated by studies from [141] [100] [146].

1.1.7. Computational Concepts and Data Representations

Experiments such as Hi-C, which generate genome-wide chromatin interactions, consists of a

high noise-to-signal ratio in the output. This issue arises from various factors, including the inherent

nature of the biological elements, limitations of experimental techniques, and the complexity of the

data being collected. Additionally, the costs associated with expanding experimental data coverage

are substantial which makes it crucial to implement sophisticated computational strategies to derive

meaningful biological insights from the data. To manage these types of data, advanced data mining
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and statistical techniques are often applied due to their ability to filter out noise and identify patterns

hidden within vast datasets. Moreover, robust data structures are required for efficient analysis

and processing of this information. The unique characteristics of chromatin interaction data offer

numerous opportunities to apply advanced computational concepts tailored to their specific nature

and representations. Chromatin interaction data are deposited as raw FASTQ reads in repositories.

After alignment to the reference genome, these data are typically represented as interaction pairs,

where two genomic regions are shown to interact with each other. These paired reads enable

representation through various data structures, including matrices, graphs, and contact maps.

Representing interactions as matrices is the most common approach, as it is capable to

handle the application of various statistical and matrix operations efficiently. When converting

paired reads into matrices, genomic bins are often used to generate more meaningful interaction

pairs based on the resolution and nature of the experimental data. A genomic bin is created by

dividing the entire genome, or a chromosome, into regions of equal size. The resolution of bins in

Hi-C experiments can range from kilobases to millions of bases, determined by the study’s nature

and functional implications. Kilobase resolutions are utilized to analyze regulatory elements, loops,

and other functional elements associated with gene regulation. For analyzing higher-order chro-

matin topologies, such as topologically associating domains (TADs) and compartments, megabase

resolutions are often used. After grouping the raw reads into genomic bin pairs, 2D matrices are

created, representing the linear genome divided into genomic bins as dimensions. This results in a

symmetric matrix in which the entries correspond to the number of raw reads associated with each

pair of genomic bins.

Another representation of chromatin interactions is through graphs or networks. An interac-

tion graph can be constructed with nodes representing genomic bins or regions, and edges indicating

whether a corresponding pair of bins contains an interaction. This graph may also be weighted,

where the weight corresponds to the raw read count or a normalized value that represents the sig-

nificance of the edge. Various graph learning techniques and network related information such as

centrality and connected components can be utilized to decipher underlying hidden representations

and patterns within these graphs [127]. Additionally, graph embedding algorithms can be applied

to learn the latent representations of these graphs [4].
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Chromatin interaction data are represented using various visualization techniques to extract

information from different perspectives, including heatmaps, arc diagrams, 3D genome models, and

browser-based tools. Heatmaps are particularly useful in analyzing global interaction patterns across

the entire genome or within specific chromosomal regions. They aid in identifying regions of high

interaction (hotspots) that could be crucial for gene regulation and chromatin domain formation

including Topologically Associating Domains (TADs) and compartments. In arc diagrams, such as

Circos Plots [193], the genome is typically arranged in a circular layout, facilitating the visualiza-

tion of interactions between distant genomic regions. These diagrams are especially effective for

visualizing inter-chromosomal interactions. Furthermore, 3D genome models have been developed

recently due to advances in technology and computational methods, to model the organization of

chromatin within the nucleus in three-dimensional space. These models are designed to study the

spatial context of genomic interactions and get accurate representations of physical interactions in

chromatin. Browser-based tools, such as the UCSC Genome Browser [83] or WashU epigenome

browser [98], allow users to visualize chromatin interaction data alongside a wide array of other

genomic signals, including epigenetic and regulatory element information. These tools assist in

studies that are focused on integrative genomic analysis and hypothesis generation.

1.2. Motivation and Problem Definition

Within the broad domain of genomics, understanding the three-dimensional organization of

the genome is essential for deciphering the complexities of cellular function and gene regulation.

Chromatin interaction data, particularly generated by Hi-C, capture genome-wide interactions,

which can be used to explain functional relationships and regulatory mechanisms in cellular growth,

cancer development, and other pathologies. However, the interpretation of Hi-C data remains a

significant challenge due to various computational challenges in analysis, processing, and integration

with other genomic datasets.

The main obstacle in interpreting Hi-C data lies in the limitations of current computational

methodologies, which are often constrained by data, resolution, and accuracy. These issues need to

be addressed at various stages of the Hi-C processing pipelines. Firstly, it is necessary to recover as

many reads as possible from the raw genomic data during alignment to the genome and to assess

the possibility of recovering multi-mapping reads in addition to unique mapping reads to enhance

the output. Secondly, after generating read pairs, it is crucial to filter out significant interactions to
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accurately distinguish biologically meaningful interactions. Currently, very few methodologies have

been developed for identifying significant interactions from single-cell Hi-C data. Lastly, integrating

Hi-C data with other genomic datasets, such as epigenomic data, is essential for uncovering hidden

representations and identifying the role of different data in genome organization.

In response to these challenges, our research is aimed at developing advanced computational

strategies to overcome the limitations present in various stages of the Hi-C processing pipeline. By

leveraging advancements in data mining, machine learning, and high-performance computing, we

propose the construction of diverse computational tools and methodologies specifically designed to

process, analyze, and interpret Hi-C data with greater accuracy and efficiency. We anticipate that

the studies detailed in this thesis will significantly enhance future research efforts to decode the com-

plexities of chromatin organization and provide new insights into a deeper understanding of human

health and disease, ultimately contributing to the development of novel therapeutic strategies.

1.3. Contributions

We introduced a novel methodology for identifying statistically frequent inter-chromosomal

interactions using single-cell Hi-C data. To the best of our knowledge, this is the first implementa-

tion of a tool for this purpose that is publicly available. In the proposed method, inter-chromosomal

interactions are represented as a network. This is followed by the application of a Binomial dis-

tribution measurement for filtering, to identify loci with statistically significant interactions. The

results were evaluated both statistically and biologically, in comparison with existing literature [18].

We proposed a methodology for recovering multi-mapping reads using a heuristic strategy

to enhance Hi-C data. The method involves the recovery of reads based on their distance from the

restriction enzyme cutting sites. The performance was compared with that of mHi-C, the only other

existing tool of its kind. Additionally, the results were evaluated through biological interpretation

[19].

We proposed a computational method to filter statistically significant intra-chromosomal

interactions from single-cell Hi-C data. This proposed method comprises three key steps: imputation

based on the nearest neighbor, normalization, and identification of significant interactions. SnapHiC,

the only existing method, was utilized to benchmark the results, and ChIP-seq data, along with

promoter data, were used to evaluate the biological interpretation of the output [20].
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We conducted an integrative analysis of chromatin interaction data and epigenetic signals

using a graph embedding model. In this study, we focused on identifying the roles of interaction

and epigenetic data in constructing chromatin organization. The results were evaluated using a

statistical approach, ensuring the global preservation of the chromatin network.

1.4. Dissertation Overview

The dissertation introduces advanced computational strategies designed to enhance both the

efficiency and accuracy throughout various phases of the Hi-C processing pipeline. Typically, Hi-C

processing pipelines encompass several critical stages, including the mapping and filtering of reads,

the paring of valid reads, and the identification of significant chromatin interactions, as illustrated

in Figure 1.2. These identified valid pairs and significant chromatin interactions are pivotal for

downstream analytical tasks. Such tasks include visualizations, analysis of higher-order chromatin

organization, and integrative analysis, also depicted in Figure 1.2.

Figure 1.2. Hi-C processing pipeline

Each chapter introduces a distinct computational methodology or tool tailored for specific

stages of the process. Specifically, the methodologies discussed in Chapters 2 and 4 concentrate

on detecting significant chromatin interactions at the single-cell level, correlating with Step 4 of

the Hi-C processing pipeline, as illustrated in Figure 1.2. Chapter 3 is dedicated to improving the

mapping and filtering stages of Hi-C reads, aligning with Step 1 in Figure 1.2. Chapter 5 delves into
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an integrative analysis that combines chromatin interaction data with epigenetic markers, correlated

to the downstream analysis stage.

23



2. NETWORK-BASED METHOD FOR REGIONS WITH

STATISTICALLY FREQUENT INTERCHROMOSOMAL

INTERACTIONS AT SINGLE-CELL RESOLUTION

2.1. Abstract

2.1.1. Background

Chromosome conformation capture-based methods, especially Hi-C, enable scientists to de-

tect genome-wide chromatin interactions and study the spatial organization of chromatin, which

plays important roles in gene expression regulation, DNA replication and repair etc. Thus, de-

veloping computational methods to unravel patterns behind the data becomes critical. Existing

computational methods focus on intrachromosomal interactions and ignore interchromosomal in-

teractions partly because there is no prior knowledge for interchromosomal interactions and the

frequency of interchromosomal interactions is much lower while the search space is much larger.

With the development of single-cell technologies, the advent of single-cell Hi-C makes interrogating

the spatial structure of chromatin at single-cell resolution possible. It also brings a new type of

frequency information, the number of single cells with chromatin interactions between two disjoint

chromosome regions.

2.1.2. Results

Considering the lack of computational methods on interchromosomal interactions and the

unsurprisingly frequent intrachromosomal interactions along the diagonal of a chromatin contact

map, we propose a computational method dedicated to analyzing interchromosomal interactions of

single-cell Hi-C with this new frequency information. To the best of our knowledge, our proposed

tool is the first to identify regions with statistically frequent interchromosomal interactions at single-

cell resolution. We demonstrate that the tool utilizing networks and binomial statistical tests can

identify interesting structural regions through visualization, comparison and enrichment analysis

and it also supports different configurations to provide users with flexibility.
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2.2. Introduction

Stretching the DNA in a human cell, it would be about two meters long, but how can it

fit into a tiny space of about 6 microns across? DNA of cells of different tissues (e.g. neural cells

and heart cells) are essentially the same, but why do these cells function disparately and what

factors turn the genes’ on and off and result in the disparities? To gain insights into these ques-

tions, advances in chromosome conformation capture-based technologies have provided researchers

a great opportunity to study the higher-order spatial organization of chromatin. A popular method

is chromosome conformation capture with high-throughput sequencing (Hi-C), in which genomes

are cross-linked with formaldehyde, fragmented with enzymes, randomly ligated in proximity and

finally sequenced by next-generation sequencing platforms. After raw reads are processed by bioin-

formatics pipelines, a genome-wide contact map of a collection of cells is generated and it reveals

intrachromosomal interactions and interchromosomal interactions. Intrachromosomal interactions

refer to the valid ligations between DNA fragments of the same chromosome and interchromosomal

interactions refer to the valid ligations between DNA fragments of different chromosomes. Intra-

chromosomal interactions are the majority of chromatin interactions in Hi-C experiments and their

interaction frequencies are genomic distance dependent [90]. Interchromosomal interactions are

two orders of magnitude weaker than intrachromosomal interactions [142] and interchromosomal

interactions contain a higher proportion of noise than intrachromosomal interactions [105].

As the popularity of the Hi-C approach grows, large amounts of data have been generated

and significant endeavors are devoted to developing computational methods and tools. These com-

putational methods and tools can be coarsely divided into two categories, Hi-C data processing and

downstream analysis. For the first category, there are some existing tools used to generate valid

chromatin interactions from raw sequencing reads [182][71][22][69][145][150][144][41][93]. They fol-

low similar processing steps and may adopt different sequence alignment strategies (pre-truncation,

iterative and trimming), filtering criteria (read-level, read-pair level, strand and distance) and nor-

malization methods (explicit-factor correction, matrix balancing and joint correction). Besides,

there are some computational tools to exam the quality of Hi-C data by measuring the reproducibil-

ity of Hi-C replicates [144][189][172][188]. For the second category, there are several major analysis

tasks to gain insights into the spatial structure and function of chromatin. A/B compartments which
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correspond to open and closed chromatin can be identified by using Principle Component Analysis

on transformed chromatin contact maps [104]. Megabase-sized Topologically Associating Domains

(TADs) can be discovered by using a Hidden Markov Model with a directionality index [36]. There

are other methods available to detect TADs [43][136][97][149][181][154]. As TADs are defined as

continuous chromosomal loci, these methods only take intrachromosomal interactions into consider-

ation. Statistically significant long-range chromatin interactions are extracted from Hi-C data. As

there is no prior knowledge about interchromosomal interactions, computational methods focus on

intrachromosomal interactions because the frequency of interactions between two intrachromosomal

loci heavily depends on the genomic distance between the loci. Some methods identify statisti-

cally significant chromatin interactions by fitting the frequencies of intrachromosomal interactions

with certain distributions, such as power-law [104], double-exponential [168] and negative binomial

[74]. Instead of assuming a certain distribution, a nonparametric method [6] identifies statisti-

cally significant chromatin interactions by estimating the genomic distance-dependence relationship

with splines. Furthermore, there is a method [136] extracting significant chromatin interactions as

calling peaks in a chromatin contact map within the surrounding two-dimensional region. Hi-C

data are also used to construct three-dimensional models of chromatin structure. Some methods

[168][39][7][175][199][12][9][96] try to learn a consensus chromatin structure of a collection of cells.

Some methods [138][49][67][179][130][171] are intended to learn a set of chromatin structures repre-

sentative of the observed chromatin interaction data. Besides the above downstream analysis tasks,

there are some computational methods to carry out differential analysis on Hi-C data [111][107]

and multiple two-dimensional visualization tools exist [202][129][40]. For a comprehensive list of

computational tools on Hi-C data, please check out the Omictools website [61] on high-throughput

chromosome conformation capture data analysis software tools.

There are substantial computational methods and tools for downstream analysis of Hi-C

data, however, most of them focus on intrachromosomal interactions and little attention is paid

to interchromosomal interactions. Partly because there is no prior knowledge such as the strong

genomic distance-dependence relationship between frequency of intrachromosomal interactions and

the genomic distance. In addition, the frequency of the interchromosomal interactions is much

lower than intrachromosomal interactions while their search space is much larger (bin pairs across

chromosomes VS bin pairs within chromosomes). To the best of our knowledge, there are few
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computational studies that are dedicated to bulk Hi-C interchromosomal interactions. One study

presents an investigation on human and mouse interchromosomal contacts and provides insights into

mammalian chromatin organization [36]. A recent work develops a computational method based on

an autoencoder and a multilayer perceptron classifier to impute high-resolution interchromosomal

interactions [187]. Another paper presents two computational methods to estimate the transcription

factors enriched in the interchromosomal interactions in yeast [27].

With the development of single-cell technologies, some single-cell Hi-C (scHi-C) approaches

[121][45][135] are invented and therefore we can examine chromatin interactions at single-cell resolu-

tion. They also bring a new type of frequency information, the number of single cells with chromatin

interactions between two disjoint chromosome regions. Generally these chromosome regions are de-

fined by dividing chromosomes into equal-sized bins according to a resolution specified by users.

Considering the lack of computational methods on interchromosomal interactions and the obvious

pattern of intrachromosomal interactions along the diagonal of a chromatin contact map, we pro-

pose a computational method dedicated to analyzing interchromosomal interactions of single-cell

Hi-C with this new frequency information. The fundamental difference between our research and

previous research on interchromosomal interactions is our research is based on the new frequency

information observed from each cell among all cells profiled. Since a bulk Hi-C experiment pools

cells together at the very beginning so it can’t discern whether a chromosomal interaction is shared

by single cells or not. Therefore, computational methods on bulk Hi-C experiments don’t consider

the new frequency information at single-cell level, which is not available in bulk Hi-C experiments.

In addition, when dealing with frequent interchromosomal interactions our method takes multiple

contact maps as its inputs while computational methods on bulk Hi-C take one contact map as

their inputs. What is more, to the best of our knowledge there is no tool available for frequent in-

terchromosomal interactions. Specifically, we develop a computational tool to identify regions with

statistically frequent interchromosomal interactions and make it accessible to the public. We be-

lieve that the regions associated with statistically frequent interchromosomal interactions under the

single-cell context may be helpful for new hypotheses and functionally important therefore deserve

more attention. Finally, frequent pattern mining is a longstanding topic in data mining research

[55].

Our contributions may be stated as follows:

27



• We propose a computational method to identify regions associated with statistically frequent

interchromosomal interactions at single-cell resolution.

• To the best of our knowledge, we are the first to implement a tool to serve the purpose and

make it open to the public. To accommodate different scHi-C experiments, the tool is flexible

on configurations.

• We demonstrate that using our proposed tool on two real scHi-C data sets, it can identify

interesting structural regions.

The rest of chapter is organized as follows. The “Method” delineates our proposed method

in detail. The “Data” introduces two scHi-C data sets as our inputs. The “Results and discussion”

demonstrates that our proposed tool’s usability on identifying interesting regions and flexibility of

configurations. The “Conclusion” sections concludes that the tool will be useful for analyzing scHi-C

interchromosomal interactions.

2.3. Method

In Fig. 2.1, the workflow of our proposed tool is illustrated and it includes three steps,

network construction, statistical measurement calculation and region selection. The inputs of our

tool are chromatin interactions of single cells, which are represented in heatmaps and can be eas-

ily generated with scHi-C processing pipelines such as NueProcess [161]. The outputs of our tool

are identified regions, whose interchromosomal interactions are statistically frequent, along with fre-

quencies and p-values. They are provided to help users refine identified regions with some frequency

or p-value cutoff.

First, we construct a network by using interchromosomal interactions for each cell respec-

tively. Due to low read coverages of scHi-C experiments and the more complex chromosomal struc-

tures of larger mammalian genomes, i.e. homo sapiens and mus musculus, chromosomes are divided

into equal-sized bins to accumulate sufficient signals. Each bin is represented as a node with an

index, and if there is an interchromosomal interaction whose two ends fall within two bins then

the corresponding two nodes are connected with an edge. Instead of counting the number of in-

terchromosomal interactions between bins, we are more concerned about their presence or absence

because of the scarcity and variability of interchromosomal interactions in single cells. Therefore,

an unweighted network is constructed for each cell.
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Figure 2.1. Workflow of the proposed method based on networks and statistical tests.
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Second, we develop a measurement to quantify how statistically frequent for an edge to

be detected among single cells. To avoid an overestimation of this measurement and therefore

reduce false positives, we first remove nodes without any intrachromosomal and interchromosomal

interactions among all cells to narrow down the search space of edges, which originally is all node

pairs of different chromosomes. Assume the number of edges in the edge search space is M, the

number of single cells is N, and the number of interchromosomal interactions for cell i is represented

as ni. Then ni
M represents the probability for cell i to have an edge between two nodes of different

chromosomes. If a given edge is observed in t cells, we can use the following equations(2.1, 2.2, 2.3)

to calculate its p-value.

p− value =
N∑
i=t

(
N

i

)
pi(1− p)N−i (2.1)

p = func(
n1

M
,
n2

M
, ...,

nN−1

M
,
nN

M
) (2.2)

func ∈ {max,mean,min} (2.3)

Similar to previous research [39][88][84], in Eq. 2.1 the binomial distribution is applied to

estimate the p-value that reflects how likely it is for an edge to be observed in at least a given number

of cells among all single cells. The rationality behind the selection of the binomial distribution is

assuming whether there is an edge between two nodes of different chromosomes is a Bernoulli trial,

the binomial distribution can capture edges that appear so frequent in multiple single cells that

they reach statistical significance among all single cells. These frequent edges can only be detected

in scHi-C experiments instead of bulk Hi-C experiments because subtle single-cell level information

is pooled in bulk Hi-C experiments. Equation 2.2 is used to quantify the probability of an edge

with all cells considered, which is determined by a function in Eq. 2.3. Users can configure the

selection of these functions through a parameter. For scHi-C experiments with larger genomes or low

sequencing depths, it is recommended to use max to select regions with highly statistically frequent

interchromosomal interactions; therefore fewer regions would be selected. To the contrary, min is

applied to select more regions. For scHi-C experiments with smaller genomes or high sequencing

depths, min increases the odds for some regions to be selected while max may find nothing. mean

is a balance between max and min, so the number of identified regions falls between them.
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At last, p-values are adjusted by the Bonferroni correction and a user provided p-value

cutoff, e.g. 0.05, is applied to select regions associated with statistically frequent interchromosomal

interactions.

2.4. Data

To demonstrate that our proposed tool can be used to identify interesting structural regions,

we use data from two existing scHi-C studies as our input data sets.

The first study [122] investigated the cell-cycle dynamics of chromosomal organization at

single-cell resolution. The authors processed single F1 hybrid 129 × Castaneus mouse embryonic

stem cells (mESCs) grown in 2i media using 1.5 million reads per cell on average. They analyzed

1,171 cells with fluorescence-activiated cell sorting, which labeled these cells to different cell-cycle

phases based on levels of the DNA replication marker geminin and DNA content. Among them,

280 cells with a prefix of 1CDX1 were labeled as G1 phase; 303 cells with a prefix of 1CDX2 were

labeled as Early-S phase; 262 cells with a prefix of 1CDX3 were labeled as Mid-S phase; 326 cells

with a prefix of 1CDX4 were labeled as Late-S phase. We treat cells of different cell-cycle phases

separately and feed them as inputs of our tool respectively. Therefore we identify regions with

statistically frequent interchromosomal interactions for different cell-cycle phases.

The second one [45] developed a single-nucleus Hi-C protocol which provides >10-fold more

contacts per cell than the previous method [121] to investigate chromatin organization at oocyte-to-

zygote transition in mice. There are 40 transcriptionally active oocytes labeled as non-surrounded

nucleolus (NSN), 76 transcriptionally inactive oocytes labeled as surrounded nucleolus (SN), 30

maternal nuclei from zygotes and 24 paternal nuclei from zygotes. Maternal and paternal nuclei are

extracted from predominantly G1 phase zygotes.

2.5. Results and Discussion

Both data sets have single cells/nuclei of four conditions, therefore we run the proposed

tool on single cells/nuclei of each condition respectively. Since the genomes used in the two experi-

ments are large and sequencing read coverages are low, to accumulate sufficient interchromosomal

interactions in a bin, we set the bin size to 500 kilobases (kb), which is also used in other existing

studies [84][106]. We first show that our tool can identify regions with statistically frequent in-

terchromosomal interactions, then demonstrate that our tool is flexible to different configurations,

which support sliding windows for region diversity, different functions to estimate the probability
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of having an edge between two nodes thereby providing adaptability of identified regions, and a

configuration of different bin sizes e.g. 500kb VS 1 megabases (Mb).

2.5.1. Usability of Identifying Interesting Regions

To demonstrate the usability of our proposed method, we first display identified regions in

visualization, then compare the identified regions and at last carry out enrichment analysis with

other genomics features such as CTCF binding sites and enhancers etc.

2.5.1.1. Identification of Statistically Frequent Regions

In Fig. 2.2, identified regions associated with statistically frequent interchromosomal inter-

actions among single cells of the cell-cycle data set are visualized in Circos [89]. The max function is

configured for our method. The banded ideograms are mouse chromosomes (1-19, X and Y) and the

black lines between them are interchromosomal interactions and the ends of these lines correspond

to identified regions in chromosomes. Figure 2.2a shows the results of single cells of G1 phase; Fig.

2.2b shows the results of single cells of Early-S phase; Fig. 2.2c shows the results of single cells of

Mid-S phase; and Fig. 2.2d shows the results of single cells of Late-S phase.

Among all four Circos plots, there is an apparent common hub in chromosome 11 (between

3Mb and 3.5Mb) whose interchromosomal interactions are highly enriched. The finding of this hub

is corroborated by previous research with bulk Hi-C experiments to study interchromosomal contact

networks in mammalian genomes [84]. They also discovered this hub in the mouse genome. Our

finding confirms the hub’s existence at single-cell level and rules out the possibility that its existence

is solely contributed by very few cells with a large amount of interchromosomal interactions in the

region. In addition, these four Circos plots are similar but not exactly the same, which means

single cells of different cell phases share some interchromosomal interactions but also have some

variabilities on interchromosomal interactions.

In Fig. 2.3, identified regions associated with statistically frequent interchromosomal inter-

actions among single cells/nuclei of the oocyte-to-zygote data set are visualized. Figure 2.3a shows

the results of single oocytes labeled as NSN; Fig. 2.3b shows the results of single oocytes labeled

as SN; Fig. 2.3c shows the results of single maternal nuclei from zygotes; and Fig. 2.3d shows the

results of single paternal nuclei from zygotes. Our tool reports much fewer regions on this data set

and there is no hub. The absence of the hub may be partly because of cell discrepancies on cell types

and cell cycles. To be more specific, in the second research, oocytes and maternal/paternal nuclei
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Figure 2.2. Identified regions of the cell-cycle data set. Visualizing genome-wide identified regions
and their interchromosomal interactions of the cell-cycle data set with an adjusted p-value cutoff
of 0.05 in Circos plots. a single cells of G1 phase; b single cells of Early-S phase; c single cells of
Mid-S phase; d single cells of Late-S phase

33



Table 2.1. Pairwise comparisons of the cell-cycle data set

Comparison Common Unique in former Unique in latter
G1 VS Early-S 757 219 569
G1 VS Mid-S 526 450 198
G1 VS Late-S 708 268 335

Early-S VS Mid-S 595 731 129
Early-S VS Late-S 767 559 276
Mid-S VS Late-S 597 127 446

from zygotes only contain a single set of chromosomes. However, for the chromosome 11 from 3Mb

to 3.5Mb, there are comparatively more interchromosomal interactions among all four Circos plots.

Additionally, a similar interchromosomal interaction pattern is observed: there are some shared

interchromosomal interactions but there are also some variabilities at single-cell resolution.

2.5.1.2. Pairwise Comparisons of Identified Regions

For the cell-cycle data set, we compare the identified regions from single cells of different

phases and examine the similarity and dissimilarity. In Table 2.1, single cells of different phases

share a lot of common regions. There are some unique regions in each phased single cells. All pairs

have more common regions than unique regions except the comparison between Early-S and Mid-S.

Because the number of common regions is limited by the identified regions from single cells at Mid-S

phase and single cells at Early-S phase report the most identified regions.

We also compare the identified regions from single cells of the oocyte-to-zygote data set. In

Table 2.2, single cells of different conditions share some regions and there are more unique regions

than common regions. This phenomenon seems inconsistent with what we have observed in the

cell-cycle data set. But it does make sense and reflects the different types of single cells/nuclei used

in their experiments. When identified regions from oocytes labeled NSN are compared with the

ones from other cells/nuclei, the oocytes labeled SN share the most common regions because both

of them are the same type of cells and their common regions are limited by the identified regions

from oocytes labeled NSN; single maternal nuclei share more regions than single paternal nuclei

because oocytes and single maternal nuclei are both from females while single paternal nuclei are

from males. The same reason can also be applied to explain why oocytes labeled SN share more

common regions with single maternal nuclei than single paternal nuclei. At last, single maternal
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Figure 2.3. Identified regions of the oocyte-to-zygote data set. Visualizing genome-wide identified
regions and their interchromosomal interactions of the oocyte-to-zygote data set with an adjusted
p-value cutoff of 0.05 in Circos plots. a single oocytes labeled as NSN; b single oocytes labeled as
SN; c maternal nuclei from zygotes; d paternal nuclei from zygotes
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Table 2.2. Pairwise comparisons of the oocyte-to-zygote data set

Comparison Common Unique in former Unique in latter
NSN VS SN 35 2 49

NSN VS maternal 18 19 15
NSN VS paternal 15 22 36
SN VS maternal 21 63 12
SN VS paternal 19 65 32

maternal VS paternal 13 20 38

nuclei and single paternal nuclei share the fewest common regions because some are from females

and the others are from males.

2.5.1.3. Enrichment Analysis of Identified Regions

To improve the interpretation of identified regions, we carry out enrichment analysis of

identified regions with genomic features, which are available in the cell-cycle data set. As there

are too many identified regions in the data set, we select top ranked regions/nodes according to

the numbers of statistically frequent unweighted edges with a cutoff (≥ 3 except ≥ 4 for single

cells at Early-S phase because there are too many top regions). Therefore we obtain 16 regions for

single cells at G1 phase, 37 regions for single cells at Early-S phase, 34 regions for single cells at

Mid-S phase and 47 regions for single cells at Late-S phase. Genomic features of mESC cell line

are downloaded from this paper [153] and they are CTCF binding sites, enhancer sites, H3K4me3

peaks, H3K27ac peaks and Pol II peaks.

For the above selected regions of each phase, the numbers of genomic features are counted

respectively. Then we ranomly select the same number of regions and count the numbers of genomic

features falling into these randomly selected regions respectively. We carry out this randomization

strategy 50,000 times and therefore we obtain empirical background samples for each genomic

feature. We calculate the z-score for each genomic feature. In Table 2.3, most of genomic features are

enriched (≥ 1.97, which corresponds to 0.05 in p-value) except enhancer. What is more important,

for single cells at Early-S phase, all the genomic features are highly enriched. (When ≥ 3 is used as

the cutoff, the results become more enriched.) H3K4me3 and H3K27ac are active gene transcirption

marks. Pol II plays very important roles in gene transcription. An enhancer increases the likelihood

of gene transcription. CTCF plays important rols in chromatin structure and insolates the spread
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Table 2.3. Identified Regions’ Enrichment Analysis of the cell-cycle data set

Input CTCF enhancer H3K4me3 H3K27ac Pol II
G1 2.82 1.05 1.75 2.63 2.48

Early-S 10.86 9.81 12.48 12.05 12.58
Mid-S 2.81 1.48 3.08 2.74 3.64
Late-S 3.37 1.74 4.33 4.36 5.05

of heterochromatin. Early-S phase corresponds to the commencement of DNA replication. These

genomic features seems working coordinately to facilitate the initialization of DNA replication.

2.5.2. Flexibility of Configurations

To make our tool flexible to accommodate different scHi-C experiments, we support different

configurations, which include sliding windows for region diversity, edge probability functions for

adjustability of identified regions and different bin sizes.

2.5.2.1. Configuration of Sliding Windows

By default, our tool divides chromosomes into bins from the first bases of chromosomes to

the last ones, which limits the starting and ending positions of regions. To overcome this limitation,

our tool supports a sliding window strategy by moving bins toward the last bases certain bases

(e.g. 100kb). It lets users decide where their regions’ starting and ending positions through a

parameter. In Table 4, we adopt four sliding windows of sizes of 100kb, 200kb, 300kb and 400kb

and compare the identified regions with the ones by default (no sliding window). If identified regions

mediated by some interchromosomal interactions from the no sliding window condition overlap with

identified regions from a sliding window condition at both ends, we treat these regions as common

identified regions; otherwise they are different. Therefore, we can calculate the common identified

regions between no sliding window and sliding windows. In Table 2.4, we conclude that most

identifed regions between no sliding window and sliding windows are common because some shared

interchromosomal interactions fall into these regions. But as these common regions’ starting and

ending positions are different, our tool diversifies the identified regions to users. What is more

interesting is the single cells at Early-S phase share the fewest identified regions between no sliding

window and sliding windows of different sizes. As DNA synthesis commences at Early-S phase,

interchromosomal interactions may vary or involve in DNA synthesis initialization activites more at
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Table 2.4. Overlapping identified regions of the cell-cycle data set with no sliding window and
sliding windows of different sizes

Input Data 100kb 200kb 300kb 400kb
G1 92.11% 92.01% 92.01% 95.49%

Early-S 85.52% 86.05% 86.73% 89.22%
Mid-S 90.33% 89.92% 91.16% 93.65%
Late-S 93.19% 91.08% 91.66% 94.44%

Table 2.5. Overlapping identified regions of the oocyte-to-zygote data set with no sliding window
and sliding windows of different sizes

Input Data 100kb 200kb 300kb 400kb
oocyte NSN 100% 92.01% 92.01% 95.49%
oocyte SN 86.90% 89.29% 89.29% 92.86%

pronucleus maternal 93.94% 93.94% 90.91% 100%
pronucleus paternal 94.12% 90.20% 90.20% 92.16%

this phase than other phases. In Table 2.5 of the oocyte-to-zygote data set, we can reach the same

conclusion that most identified regions are common between no sliding window and sliding windows

of different sizes and meanwhile there are some different regions.

2.5.2.2. Configuration of Edge Probability Functions

Our proposed tool supports three functions, max, mean and min, to estimate the proba-

bility of an edge between two nodes of different chromosomes, therefore improving adjustability of

identified regions. In Table 2.6 of the cell-cycle data set and Table 2.7 of the oocyte-to-zygote data

set, our tool configured with the max function identifies the fewest regions; our tool configured with

the min function identifies the most regions and our tool configured with the mean funciton falls

between them. This is because if we fix other variables except p in Eq. 2.1, a large p entails a large

p-value and a small p entails a small p-value. As we have explained in the second to last paragrpah

of Method, users can select these functions according to the sizes of genomes and sequencing depths

used in their experiments. Therefore, our proposed tool provides adaptability of identified regions.

2.5.2.3. Configuration of Bin Sizes

Finally, our tool also supports different bin sizes. As scHi-C experiments have low read

coverages and scarce interchromosomal interactions, we need to use large bin sizes to accumulate
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Table 2.6. Number of identified regions of the cell-cycle data set with edge probability functions

Input Data max mean min
G1 976 1651 2133

Early-S 1326 2579 7714
Mid-S 724 1833 2991
Late-S 1043 1999 6058

Table 2.7. Number of identified regions of the oocyte-to-zygote data set with edge probability
functions

Input Data max mean min
oocyte NSN 37 79 199
occyte SN 84 229 1846

pronucleus maternal 33 50 268
pronucleus paternal 51 51 274

sufficient interchromosomal interactions in a bin. We run our tool with bin_size=1Mb on the two

data sets and compare the identified regions with the ones of bin_size=500kb. We find that the

identified regions of bin_size=500kb and bin_size=1Mb are quite similar for most single cells except

the Early-S phased single cells in the cell-cycle data set. In Fig. 2.4b of bin_size=1Mb, the hub

of the chromosome 11 at 3Mb becomes less obvious as it is overshadowed by enrichment of other

interchromosomal interactions because of the increased bin size and single cells of this particular

cell phase. Therefore, different bin sizes may affect the identified regions.

2.6. Conclusion

In this paper, we introduce a computational method to identify regions associated with

statistically frequent interchromosomal interactions at single-cell resolution and implement it as an

open source tool, which is the first serving the purpose to the best of our knowledge. Its workflow

includes network construction, binomial statistical measurement calculation and region selection.

We demonstrate its usability on two existing scHi-C data. On the cell-cycle data set, the tool

discovers a hub in the mouse chromosome 11 from 3Mb to 3.5Mb, which is endorsed by a previous

study on interchromosomal contact networks with bulk Hi-C experiments. On the oocyte-to-zygote

data set, there is no apparent hub at the region, but comparatively interchromosomal interactions

are enriched. Identified regions’ pairwise comparisons show that our method identifies common
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Figure 2.4. Comparing identified regions of Early-S phased single cells with different bin sizes. a
bin_size=500kb b bin_size=1Mb

regions between different data sets and also reflects the true dissimilarity such as different cell types.

Identified regions’ enrichment analysis helps improve the interpretation of top ranked identified

regions and these genomic features are highly enriched for single cells at Early-S phase, which

implies our top ranked regions may be functionally important. We also exhibit our proposed tool’s

flexibility on configurations, which support sliding windows for diverse regions, edge probability

functions for adjustable regions and different bin sizes. Overall, it will be a useful tool for analyzing

scHi-C interchromosomal interactions.

Due to low sequencing depths of scHi-C experiments and the paucity of interchromosomal

interactions, identifying high resolution regions of several kilobases (e.g. 8kb) is extremely difficult.

Our tool can run with this resolution but due to the limitation of scHi-C data, it can’t identify

any regions passing the statistical tests. We will try to mitigate this problem by imputing high-

resolution interchromosomal interactions with data of other experiments such as interchromosomal

interactions from bulk Hi-C experiments. In addition, further research is needed to improve the

signal-to-noise ratio for scHi-C experiments.
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2.7. Availability of Data and Materials

For the implementaion details of our tool, please check out it at GitHub. Currently it

supports the following genomes, mm9, mm10, hg18 and hg19. It can be easily extended to other

organisms.
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3. A HEURISTIC STRATEGY FOR MULTI-MAPPING READS

TO ENHANCE HI-C DATA

3.1. Abstract

Current Hi-C analysis approaches focus on uniquely mapped reads and little research has

been carried out to include multi-mapping reads, which leads to a lack of biological signals from

DNA repetitive regions. We propose a heuristic strategy to assign multi-mapping reads to loci

according to the distance to their closest restriction enzyme cutting sites. We demonstrate that the

heuristic strategy can rescue multi-mapping reads thus enhance the quality of Hi-C data. Compared

with mHi-C, it not only improves replicate reproducibility in the same cell type, but also maintains

the difference between replicates of different cell types. Moreover, the strategy identifies much

more common statistically significant chromatin interactions between Hi-C experiments of different

restriction enzymes, improves performance on chromatin state annotation analysis, especially on two

repetitive annotations, and has a huge advantage on computing resources. Therefore, the heuristic

strategy can be used to enhance Hi-C data by utilizing multi-mapping reads.

3.2. Introduction

Three-dimensional genome organization plays important roles in many biological processes,

which include long-range gene regulation [33], DNA replication and repair [114, 42]. The alteration

of three-dimensional genome architecture leads to human diseases, such as cancer [48, 3]. As the de-

velopment of chromosome conformation capture-based technologies, high-throughput chromosome

conformation capture (Hi-C) [104] emerges as a popular method to detect genome-wide chromatin

interactions. In Hi-C experiments, crosslinked DNA is fragmented with restriction enzymes. Then

DNA fragments are ligated, selected, sheared and finally sequenced as paired-end reads. After these

paired-end reads are processed by Hi-C analysis pipelines, chromatin contact maps are generated for

downstream analysis and exploration. Recent studies have discovered some multi-scale spatial ge-

nomic structures, which include A/B compartment [104], topologically associating domains (TADs)

[36], chromatin loops [136] and frequently interacting regions (FIREs) [147].
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Owing to the sequencing cost, few studies generate high-resolution data sets. To enable

high-resolution structure discovery on low-resolution data sets, some computational methods are

proposed to enhance Hi-C data with machine learning algorithms. HiCPlus [198] and HiCNN [109]

both use deep convolutional neural networks. HicGAN [108] and DeepHiC [65] infers high-resolution

Hi-C data with generative adversarial networks. However, all of these methods depend on one high-

resolution data set as their training sets and ignore heterogeneity among cell types.

Though machine learning algorithms are popular, they are not the only method to enhance

Hi-C data. In fact, for each Hi-C data set, a large number of reads are discarded at the very

beginning. Because most Hi-C pipelines only consider uniquely mapped reads (unique reads) and

ignore multi-mapping reads, which are mapped to multiple genomic loci. To the best of our knowl-

edge, there is only one study, mHiC [200], accounting for multi-mapping reads. mHi-C assigns

multi-mapping reads according to the interacting patterns learned from unique reads, therefore the

multi-mapping read assignment depends on unique reads. Here we propose a heuristic strategy

which doesn’t depend on unique reads to utilize multi-mapping reads. The heuristic strategy not

only enhances Hi-C data, but also enables exploration of new interacting patterns.

Our contributions may be stated as follows:

• We propose a heuristic strategy to utilize multi-mapping reads for Hi-C data processing.

• We demonstrate that using our proposed strategy on Hi-C data sets can enhance Hi-C data

in quantity and reproducibility and recover more common statistically significant chromatin

interactions between experiments of different restriction enzymes.

• Through chromatin state annotation analysis, we show that our proposed strategy can recover

more signals at DNA repetitive regions.

The rest of paper is organized as follows. The second section delineates the heuristic strategy

to use multi-mapping reads. The third section introduces two human cell lines and two Arabidopsis

data sets as our test data. The fourth section evaluates the heuristic strategy by comparing it with

mHi-C and a method that only considers unique reads. The last one concludes that the heuristic

strategy complements multi-mapping reads in Hi-C analysis.
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3.3. Method

We propose a heuristic strategy to utilize multi-mapping reads in Hi-C experiments to

strengthen chromatin interaction data. As shown in Figure 3.1A, for Hi-C read ends, there are

three possible outcomes, unaligned, unique and multi-mapping reads. Compared with unaligned

reads, multi-mapping reads are reads with high quality alignment scores, but their alignment loci

cannot be uniquely determined. To avoid the abuse of utilizing multi-mapping reads, we only rescue

multi-mapping reads with less than a specific number of alignments. For example, mHi-C by default

utilizes multi-mapping reads with less than 100 alignments. In order to assign a multi-mapping read

to a unique locus among its alignments, we hypothesize that the locus closer to restriction enzyme

cutting sites has a higher probability to be the origin as shown in Figure 3.1B. The hypothesis is

based on the Hi-C processing of unique reads. In Hi-C processing pipelines, the closest restriction

enzyme cutting sites are picked to filter unique reads. Second according to our empirical experience,

an object’s breakage because of outside forces is most likely to happen at the object’s periphery with

defects. In Hi-C experiments at the shearing step, shearing may happen preferentially close to the

restriction enzyme cutting sites, which can be viewed as defects as these sites are cut by restriction

enzymes before. Therefore, we select the loci for multi-mapping reads according to the distance to

the closest restriction enzyme cutting sites. What is more important, as our multi-mapping read

assignment is carried out at the sequence alignment step, there is no impact on following Hi-C data

processing and the same filtering criteria (such as distance to restriction enzyme cutting sites) can

be applied to unique and multi-mapping reads to remove invalid chromatin interactions.

3.4. Data

To demonstrate that the heuristic strategy can rescue multi-mapping reads in Hi-C ex-

periments, thus increasing detected chromatin interactions and expanding the breadth of genome

coverage, we test the strategy on Hi-C experiments of two cell lines from a study [36] on revealing

topological domains in mammalian genomes and Hi-C experiments of Arabidopsis thaliana seedling

tissues from two studies [194, 139] with different restriction enzymes. The first cell line is human

embryonic stem cell (hESC) and the second cell line is derived from human fetal lung (IMR90). For

each cell line, Hi-C experiments were conducted independently with two biological replicates (r1

and r2) using HindIII as the restriction enzyme to cut crosslinked DNA into fragments. Thereafter,
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Figure 3.1. Hi-C read alignment outcomes and the heuristic strategy for multi-mapping reads.
A: three types of reads, unaligned, unique and multi-mapping reads, B: a multi-mapping read is
assigned to a locus closest to restriction enzyme cutting sites.
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DNA fragments in close proximity were ligated in a diluted environment and the resulting liga-

tion products were sonicated, filtered and finally sequenced by paired-end sequencing. Therefore,

two paired read files were generated for each replicate, e.g. hESC_r1_1 and hESC_r1_2. For

Arabidopsis thaliana seedling tissues, the first study [194] carried out the Hi-C experiments using

HindIII with two biological replicates (r1 and r2), which are named HindIII_r1 and HindIII_r2.

The second study [139] carried out the Hi-C experiments using DpnII with three biological replicates

(r1, r2 and r3), which are named DpnII_r1, DpnII_r2 and DpnII_r3.

3.5. Results

3.5.1. Sequence Alignment Statistics Necessitate Utilizing Multi-Mapping Reads

We adopt Hi-C processing pipelines consisting of a sequence of processing functions or com-

mands, for example, Hiclib [71], to process paired reads of hESC and IMR90’s replicates. Because

it is convenient to incorporate the heuristic strategy into these pipelines and understanding the

inner complex logic of a holistic tool is not this study’s research focus. As Hi-C processing pipelines

ignore multi-mapping reads at the sequence alignment step, we need to carry out our own sequence

alignment to keep multi-mapping reads. A sequence alignment tool, for example, Bowtie 1 [92], is

applied to align two ends of Hi-C reads independently with its default settings and the statistics of

sequence alignment for each replicate are listed in Table 3.1. For each replicate, multi-mapping reads

are more than unaligned reads at both ends. This means there are more multi-mapping reads than

unaligned reads to be rescued. This phenomenon can be explained by the fact that these reads are

short reads which are more likely to be aligned to multiple loci than nowhere. In addition, prevalent

short-read sequencing in Hi-C experiments necessitates the need of utilizing multi-mapping reads

to enhance chromatin interaction data.

Table 3.1. hESC and IMR90 paired-end sequence alignment statistics.Two ends of Hi-C paired-end
reads are mapped independently because distance constraint of paired-end reads doesn’t apply to
Hi-C reads.

replicate hESC_r1 hESC_r2 IMR90_r1 IMR90_r2
#reads 237,662,270 496,522,946 397,194,480 259,123,992

unique reads(%) 69.77 68.74 72.31 70.96 71.65 69.04 70.44 70.26
unaligned reads(%) 11.99 13.16 9.79 11.45 10.82 13.87 11.74 11.70

multi-mapping reads(%) 18.24 18.10 17.9 17.59 17.53 17.09 17.82 18.04
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3.5.2. The Heuristic Strategy Increases Detected Chromatin Interactions

To demonstrate that the heuristic strategy can strengthen chromatin interaction data, we

test the strategy on each replicate with hiclib and mHi-C respectively. hiclib only considers unique

reads and incorporating our strategy takes both unique and multi-mapping reads into count. mHi-

C leverages multi-mapping reads in a sequence of commands and it is convenient to replace its

multi-mapping read assignment method with our strategy. The numbers of detected chromatin

interactions for each replicate are shown in Table 3.2. Compared with unique reads, the heuristic

strategy increases millions of chromatin interactions because it also accounts for multi-mapping

reads. Compared with mHi-C, the heuristic strategy gains chromatin interactions marginally be-

cause they both leverage unique and multi-mapping reads.

Table 3.2. hESC and IMR90 chromatin interactions with hiclib and mHi-C under different con-
figurations. hiclib+ represents incorporating hiclib with the heuristic strategy. mHi-C(unique)
represents limiting mHi-C to unique reads. mHi-C+ represents replacing mHi-C’s multi-mapping
read assignment method with the heuristic strategy.

method hiclib hiclib+ mHi-C(unique) mHi-C mHi-C+
hESC_r1 16,156,824 21,528,337 17,043,308 20,325,529 20,819,070
hESC_r2 117,150,577 139,527,552 105,617,771 124,622,391 124,955,453
IMR90_r1 81,524,268 97,985,497 83,161,703 97,444,579 98,380,530
IMR90_r2 89,322,274 104,647,014 83,381,123 96,099,798 98,325,832

3.5.3. The Heuristic Strategy Enhances the Reproducibility of Chromatin Interaction

Data

Replicate reproducibility is an important measurement used to assess the quality of chro-

matin interaction data. We calculate the reproducibility scores among hESC and IMR90’s replicates

by chromosome (from chromosome 1 to chromosome 22) with HiCRep [189]. As shown in Figure

3.2, for each configuration [mHi-C (unique), mHi-C and mHi-C+], there are two types of replicate

reproducibility scores. The first type (at the top) represents the average of replicate reproducibility

scores in the same cell line (hESC_r1 VS hESC_r2 and IMR90_r1 VS IMR90_r2). The second

type (at the bottom) represents the difference between the average of replicate reproducibility scores

in the same cell line and the average of replicate reproducibility scores between different cell lines
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(hESC_r1 VS IMR90_r1, hESC_r1 VS IMR90_r2, hESC_r2 VS IMR90_r1 and hESC_r2 VS

IMR90_r2). For the first type of replicate reproducibility scores, mHi-C and mHi-C+ are better

than mHi-C(unique). This means compared with the configuration only utilizing unique reads,

configurations utilizing both unique and multi-mapping reads improve the reproducibility between

replicates in the same cell line. In addition, mHiC’s multi-mapping read assignment method (mHi-C)

is slightly better than our strategy (mHi-C+) on improving the reproducibility between replicates in

the same cell line. But for the second type of replicate reproducibility scores, our strategy performs

better than mHi-C. Among the 22 chromosomes, our strategy has noticeably larger differences on 7

chromosomes, while mHi-C’s multi-mapping read assignment method has 2 noticeably larger differ-

ences on 2 chromosomes. What is more important, our strategy achieves similar performance with

the method only utilizing unique reads. Taking these two types of replicate reproducibility scores

into consideration, we conclude that our strategy not only improves the replicate reproducibility in

the same cell line, but also maintains the difference between different cell lines.

3.5.4. The Heuristic Strategy Improves Statistically Significant Chromatin Interactions

Enhanced chromatin interaction data enable downstream analysis and exploration for new

discoveries. Therefore, we apply Fit-Hi-C [6] to normalized chromatin interactions to identify statis-

tically significant chromatin interactions with respect to a false discovery rate of 0.05. In Table 3.3,

both configurations utilizing unique and multi-mapping reads report more statistically significant

chromatin interactions than the configuration utilizing only unique reads. In addition, mHi-C’s

multi-mapping read assignment method seems identifying more statistically significant chromatin

interactions than our strategy. It can be explained if we further examine detected chromatin in-

teractions and keep only unique chromatin interactions. As shown in Table 3.4, incorporating our

strategy gains much more unique chromatin interactions because mHi-C assigns multi-mapping reads

according to the interacting patterns in the unique reads. Therefore, interacting patterns in the

unique reads would be enriched to be statistically significant. The heuristic strategy doesn’t assign

multi-mapping reads according to unique reads and consequently it can explore more interacting

patterns. However, these dispersed interacting patterns may become less statistically significant.

To further investigate two approaches utilizing multi-mapping reads on identifying statisti-

cally significant chromatin interactions, we apply them on Hi-C experiments of Arabidopsis thaliana

seedling tissues from two studies [194, 139] with different restriction enzymes, HindIII and DpnII.
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Figure 3.2. Replicate reproducibility scores for human chromosome 1-22. HiCRep is used to cal-
culate reproducibility scores among hESC and IMR90’s replicates. For each configuration [mHi-
C(unique), mHi-C and mHi-C+], there are two types of replicate reproducibility scores. The first
type (at the top) represents the average of replicate reproducibility scores in the same cell line. The
second type (at the bottom) represents the difference between the average of replicate reproducibil-
ity scores in the same cell line and the average of replicate reproducibility scores between different
cell lines.

Table 3.3. Statistically significant chromatin interactions identified by Fit-Hi-C. mHi-C(unique)
represents limiting mHi-C to unique reads. mHi-C+ represents replacing mHi-C’s multi-mapping
read assignment method with the heuristic strategy.

method mHi-C(unique) mHi-C mHi-C+
hESC_r1 4,206 8,412 7,226
hESC_r2 34,630 54,642 53,236
IMR90_r1 49,500 78,574 69,476
IMR90_r2 55,124 85,160 74,396

Table 3.4. hESC and IMR90’s unique chromatin interactions with mHi-C under different configu-
rations. mHi-C(unique) represents limiting mHi-C to unique reads. mHi-C+ represents replacing
mHi-C’s multi-mapping read assignment method with the heuristic strategy.

method mHi-C(unique) mHi-C mHi-C+
hESC_r1 11,589,365 12,696,565 14,656,936
hESC_r2 48,065,862 51,792,951 61,564,215
IMR90_r1 54,974,139 58,975,514 66,763,164
IMR90_r2 63,548,605 67,705,423 76,033,914
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Fit-Hi-C is used to identify statistically significant chromatin interactions with respect to a false

discovery rate of 0.05 for each replicate respectively. Pairwise comparison is carried out between

replicates of different restriction enzymes and the common statistically significant chromatin inter-

actions are counted as shown in Table 3.5. Our strategy identifies much more common statistically

significant chromatin interactions than mHi-C (>32%) because when assigning multi-mapping reads,

our strategy does not depend on unique reads and therefore improving the identification of common

statistically significant chromatin interactions.

Table 3.5. Common statistically significant chromatin interactions on Arabidopsis thaliana Hi-
C experiment. HindIII and DpnII were used on Arabidopsis thaliana seedling tissues. Pairwise
comparision between replicates of different restriction enzymes is carried out.

mHiC VS mHiC+ DpnII_r1 DpnII_r2 DpnII_r3
HindIII_r1 1561, 2064 2079, 2838 2067, 2877
HindIII_r2 2020, 3250 2817, 4083 2757, 4084

3.5.5. The Heuristic Strategy Improves Performance on Chromatin State Annotation

Analysis

To further investigate the statistically significant chromatin interactions, we download 15

chromatin state annotations of hESC cell line at this website and study how these annotations

overlap with statistically significant chromatin interactions. To make a fair comparison, we select the

same number of statistically significant chromatin interactions. For each chromatin state annotation,

we calculate the average of number of statically significant chromatin interactions overlapping with

chromatin regions associated with the annotation.

In Table 3.6, mHi-C’s multi-mapping read assignment method achieves similar performance

on the first 13 chromatin state annotations with our strategy. But for the two repetitive annotations

highlighted in red, our strategy outperforms mHi-C’s multi-mapping read assignment method in

very large margins. Multi-mapping reads are mostly located at repetitive genome regions because

multi-mapping reads are reads that can be mapped to multiple loci. Both strategies utilize multi-

mapping reads. Our strategy reports higher overlapping with two repetitive annotations, this means

our strategy can recover more signals at repetitive genome regions, which helps exploring these

uncharted regions.
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Table 3.6. Chromatin state annotations overlapping with hESC statistically significant chromatin
interactions. mHi-C+ represents replacing mHi-C’s multi-mapping read assignment method with
the heurstic strategy.

method mHi-C mHi-C+
1_Active_Promoter 1.00 1.00
2_Weak_Promoter 1.09 1.07
3_Poised_Promoter 0.46 0.49
4_Strong_Enhancer 0.35 0.36
5_Strong_Enhancer 0.51 0.49
6_Weak_Enhancer 0.87 0.85
7_Weak_Enhancer 0.46 0.46

8_Insulator 0.77 0.77
9_Txn_Transition 0.16 0.16

10_Txn_Elongation 0.49 0.48
11_Weak_Txn 0.45 0.44
12_Repressed 0.49 0.51

13_Heterochrom/lo 2.00 1.99
14_Repetitive/CNV 1.08 1.19
15_Repetitive/CNV 1.52 1.68

3.5.6. The Heuristic Strategy has a huge Advantage on Computing Resources

Computing resources are essential to bioinformatics research, especially for researchers and

students with a limited budget. We compare the running time and memory usage on the same

computing resource. As some commands (such as sequence alignment) in the pipeline are shared

under different configurations, we only summarize the computing resources pertaining to the multi-

mapping read assignment in Figure 3.3. mHi-C’s multi-mapping read assignment method takes

at least five-fold running time and ten-fold RAM than our strategy. When two configurations are

applied to high resolution Hi-C data sets, the difference on computing resources becomes more

glaring. Therefore, the heuristic strategy has a huge advantage on computing resources than mHi-

C’s multi-mapping read assignment method.

3.6. Conclusion

In this paper, we introduce a heuristic strategy to include multi-mapping reads into Hi-C

analysis by assigning these reads according to the distance to their closest restriction enzyme cutting

sites. Through the evaluation of Hi-C human data, we display that there are more multi-mapping

reads than unaligned reads to be rescued. Compared with methods only considering unique reads,

the strategy improves the quantity and reproducibility of Hi-C data, which enables new discoveries

51



Figure 3.3. Comparison of computing resources (running time in hours and RAM in gigabytes) with
mHi-C under different configurations.
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of statistically significant chromatin interactions. Compared with mHi-C, the strategy maintains

the difference between replicates of different cell lines, reports more common statistically significant

chromatin interactions (>32%) between experiments with different restriction enzymes, improves

performance on chromatin state annotation analysis, especially on two repetitive annotations and

shows a huge advantage on computing resources (at least 5-fold in running time and 10-fold in

RAM). Therefore, our strategy is an important complement to incorporating Hi-C multi-mapping

reads.

Due to most Hi-C reads used in this paper are short reads (36 base pairs), we didn’t rescue

unaligned reads. For longer sequence reads, more efforts can be extended to study whether Hi-C

data can be further enhanced by rescuing both unaligned reads with recursive mapping and multi-

mapping reads with our proposed strategy. We also plan to combine our proposed strategy and

machine learning algorithms to achieve high-resolution and high coverage Hi-C data.
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4. SCHI-CNN: A COMPUTATIONAL METHOD FOR

STATISTICALLY SIGNIFICANT SINGLE-CELL HI-C

CHROMATIN INTERACTIONS WITH NEAREST

NEIGHBORS

4.1. Abstract

The intricate interplay of regulatory elements, spatial arrangements, and transcription fac-

tors shapes the complex chromatin architecture within individual cells, offering valuable insights into

cellular diversity and heterogeneity in the realm of chromatin biology. Nevertheless, the analysis

of single-cell Hi-C data presents notable challenges due to its sparse nature and limited interaction

counts. In this study, we introduce a novel algorithm, scHi-CNN, designed for the detection of

statistically significant single-cell Hi-C chromatin interactions. Our method comprises three key

steps: imputation of single-cell matrices, normalization, and identification of statistically significant

interactions. To assess the robustness and scalability of scHi-CNN across various conditions, we

evaluate its performance using three distinct datasets: human cortex cells, mouse embryonic stem

cells, and a mouse cell cycle dataset. Moreover, we delve into the biological relevance of the derived

significant interactions by examining CTCF binding sites, known promoter-related interactions, and

the overlap between different datasets of the same cell type. The results underscore the ability of

scHi-CNN to identify more biologically meaningful interactions from single-cell data, facilitating a

deeper comprehension of regulatory elements and spatial arrangements within individual cells and

across diverse cell types.

Code and sample data for this paper are available on the GitHub repository at https:

//github.com/bignetworks2019/scHi-CNN

4.2. Introduction

Single-cell chromatin interaction data plays a crucial role in unraveling the intricacies of

three-dimensional chromatin structure, capturing cellular heterogeneity, and elucidating genomic

variations across diverse cell types. Identifying significant interactions from raw interaction data is

imperative for examining regulatory elements, spatial arrangements, transcription factor functions,
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and other functional elements in individual cells. However, processing single-cell Hi-C data presents

several challenges due to its inherent sparseness and limited interaction counts.

Despite the availability of single-cell chromatin interaction datasets to the public, the anal-

ysis of significant intra-chromosomal interactions within individual cells is still in its nascent stage.

Existing tools primarily focus on imputing and modeling chromatin interactions in single-cell contact

matrices, utilizing approaches such as analyzing topologically associating domains, embeddings, and

cluster domains[201, 102, 186, 196]. Furthermore, a computational tool has been developed for iden-

tifying frequent inter-chromosomal interactions from single cells using a network-based method[18].

However, none of these tools effectively address the identification of significant intra-chromosomal

interactions at the single-cell level. In many cases, researchers resort to employing bulk Hi-C tech-

nologies like HiCCUPS[136] and FitHiC[6] to derive significant interactions by aggregating individual

cell interactions. Unfortunately, these methods typically yield suboptimal results as they are not

tailored to identify significant chromatin interactions specifically within single cells.

Recently, SnapHiC, a random walk algorithm-based method, has been introduced as a pi-

oneering computational approach for identifying significant intra-chromosomal interactions from

single-cell Hi-C data[191]. The method has shown promise in enabling the analysis of very high-

resolution chromatin interactions (e.g., 10kb) from single-cell Hi-C data. However, the high-

resolution nature of these chromatin interactions imposes stringent requirements on the raw single-

cell Hi-C data. It is recommended that each single cell possesses a minimum of 150,000 raw chro-

matin contacts, a threshold that most existing unfiltered single-cell Hi-C data fails to meet. More-

over, SnapHiC treats chromatin interactions in each cell as independent entities, disregarding the

local similarities of chromatin interactions between different cells. Notably, leveraging local similar-

ities has proven effective in enhancing the analysis of single-cell Hi-C data[196] and single-cell Hi-C

data clustering [183]. Furthermore, the majority of single-cell studies[122, 135, 45, 161, 86, 121, 119]

have been conducted at resolutions of hundreds of kilobases or several megabases. Consequently,

there is a need for new computational methods that can accommodate a wider range of single-cell

Hi-C data while considering the local similarities of chromatin interactions between different cells,

particularly at a comparatively relaxed resolution (e.g., 100kb).

In this study, we propose a novel algorithm for statistically significant single-cell Hi-C chro-

matin interactions with Nearest Neighbors, named scHi-CNN. The algorithm comprises three
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main steps: imputation of single-cell matrices utilizing a k-nearest-neighbor-based approach, nor-

malization, and identification of statistically significant chromatin interactions. To evaluate the

performance of our proposed method, we primarily compared it with the SnapHiC algorithm. We

utilized three distinct types of single-cell datasets and compared the counts of significant interactions

as well as the overlapping interactions between different datasets of the same cell type. Additionally,

we assessed the relevance of the derived significant interactions by analyzing CTCF binding sites

considering the fact that CTCF plays an important role in three-dimensional genome organization

and presumely contributes to the formation of higher-order chromatin structure [47]. To provide

a comprehensive comparison, we utilized bulk Hi-C data and contrasted the outcomes obtained

from the different methods. Furthermore, we conducted an analysis of chromatin loops generated

using varying numbers of cells, focusing on known regulatory elements. The results demonstrated

that our proposed algorithm is capable of identifying more biologically meaningful interactions from

single-cell data, even when utilizing a smaller number of cells compared to SnapHiC. We firmly be-

lieve that our method serves as a valuable tool for identifying significant chromatin interactions in

single-cell data, thereby contributing to the analysis of three-dimensional chromatin organization.

4.3. Background

SnapHiC[191] is a computational pipeline which is designed to identify significant intra-

chromosomal chromatin loops from single cell Hi-C data and it is the closest work related to this

study. It utilizes the random walk with restart(RWR) algorithm to impute the contact probability

between the intra-chromosomal interactions. The primary steps of the SnapHiC method include

estimating contact probabilities using the RWR algorithm, normalizing based on genomic distances,

identifying loop candidates through statistical measurements, and clustering loop candidates to

identify the summits. They offers a comparative analysis of the results between existing bulk Hi-C

techniques such as HICCUPS, FastHiC, FitHiC2, and HiC-ACT and provided a tool for public use.

HiCCUPS[136] is another computational tool to capture significant long range chromatin

loops using Bulk Hi-C data and does not work with single cell Hi-C data. It analyze the local

enrichment patterns comparing to the existing local background. The algorithm checks for signifi-

cant enrichment relative to four different neighborhoods around the pixel in the contact matrix and

identify peaks using a statistical measurement.
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FitHiC[6] is a computational tool which is capable of identifying mid range chromatin inter-

actions from Bulk Hi-C data. It uses a spline to map observed contact counts versus their genomic

distances and provides a statistical measurement value(corrected p-value) for chromatin interactions

using a binomial distribution approach and hypothesis testing correction.

ScHiCluster[201] is a single-cell clustering algorithm for Hi-C contact matrices, which relies

on imputations using linear convolution and random walk. scHiCluster demonstrates improved

clustering accuracy in low coverage datasets compared to existing methods. After imputation with

scHiCluster, topologically associating domain (TAD)-like structures can be identified within single

cells, and their consensus boundaries are enriched at TAD boundaries observed in bulk cell Hi-C

samples which enables visualization and comparison of single-cell 3D genomes.

4.4. Method

4.4.1. Proposed Algorithm

Our proposed algorithm consists of three key steps: imputation, normalization, and identi-

fication of significant chromatin interactions. Our algorithm workflow is visually represented in Fig

4.1.

4.4.1.1. Imputation of Single Cell Contact Matrices

The initial step involved partitioning each chromosome into equal-sized bins for each indi-

vidual cell. One of our aim is to handle datasets with fewer chromatin interactions, so we’ve chosen

to broaden the bin size resolution of SnapHiC from high resolution bins (like 10Kb, 25Kb) to 100Kb.

We then assigned chromatin interactions to specific bin pairs and tallied these interactions to gen-

erate contact matrices. For contact matrices that contained empty pixels (i.e., zero contact count),

we implemented a strategy to impute these empty pixels. Specifically, we extracted a surrounding

region measuring (2d+1)x(2d+1) (e.g d=5 bin pair differences in each direction from the empty

pixel) to identify the closest neighbors. To perform imputation, we only considered pixels that had

at least one chromatin interaction within their surrounding region.

Subsequently, we retrieved the surrounding matrices corresponding to the same position in

the other cells for the same chromosome. From these matrices, we selected the top k (e.g k=4, which

is also used in [201]) neighbors based on the Pearson correlation coefficient. The mean of these top

k closest neighbors was then used to impute the empty pixel. Note that after the imputation, the

empty pixel can still be zero if the same entries are zeros for all top k neighbors.
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To maintain the integrity of the analysis, we imposed a maximum distance threshold (e.g.

1 million base pairs) for the imputation of interactions. This ensures that the imputed values are

derived from nearby genomic regions that are more likely to exhibit chromatin interactions. Also,

given the symmetry of a Hi-C matrix, our procedure involved only the imputation of the upper half

matrix within the specified distance.

4.4.1.2. Normalization

To standardize our contact matrices, we employed a normalization approach that involved

grouping interactions with the same genomic distance, effectively normalizing them diagonally with

the same parameters used in SnapHiC [191] for a fair comparison. For each diagonal segment within

a contact matrix, we started by filtering the top 1% of the interactions with the highest contact

values. Subsequently, we computed the mean and standard deviation using the remaining values

and calculated corresponding z-scores. Diagonals with a standard deviation lower than 10−6 were

disregarded, and those segments were filled with zeros to account for their negligible variability.

4.4.1.3. Identification of Significant Chromatin Interactions

To identify significant chromatin interactions , we implemented similar criteria used in

SnapHiC to determine if a interaction bin pair qualified as a peak compared to its surrounding

region. For an interaction pair to be considered, its mean normalized contact counts across all cells

needed to exceed zero. Additionally, we require that at least 10% of single cells exhibited a nor-

malized contact count greater than 1.96 (corresponding to a pvalue ≤ 0.05). For interactions that

meet these criteria, we conducted a paired t-test with the local neighborhood to assess significance.

The local neighborhood was defined as the surrounding regions within a 2-bin genomic distance,

excluding the closest neighbors (i.e., bin pairs within a 1-bin genomic difference). Using the mean

of the local neighborhood values, we performed the paired t-test and obtained t-statistics and p-

values. Subsequently, we grouped the p-values based on genomic distance and converted them into

false discovery rates (FDRs) using the Benjamini-Hochberg procedure. Finally, we identified the

significant chromatin interactions based on a t-statistic greater than 3 and an FDR value less than

0.1.

4.4.2. Processing Single-Cell Hi-C Data

In this study, we utilized several publicly available single-cell Hi-C datasets. Firstly, for the

cell cycle dataset [122], we obtained contact matrices for single cells categorized into four distinct

58



cell cycle phases. The labels G1 phase, Early-S phase, Mid-S phase, and G2 phase correspond to

the datasets 1CDX1, 1CDX2, 1CDX3, and 1CDX4 respectively. Each phase included interaction

data for a total of 390 individual cells. Secondly, we acquired contact matrices for Mouse ES cells

[94] comprising a total of 475 cells. Lastly, we obtained contact matrices for human frontal cortex

single cells [94] that comprise a total of 4,238 cells. To process the single-cell Hi-C data, we applied

both the proposed algorithm and the SnapHiC algorithm, allowing for a comparison of the results

obtained from each method.

4.4.3. Processing Bulk Hi-C Data

In the study, we obtained the Fastq files for the bulk Hi-C data [16] corresponding to the cell

cycle dataset. These files were then processed using HiC-Pro to generate contact matrices [150]. For

the bulk Hi-C data related to Mouse ES cells [94], we directly downloaded the contact matrices from

the NCBI database. To identify significant chromatin interactions within these contact matrices,

we applied the HiCCUPS [136] and FitHiC2[6] algorithms. In order to compare these findings with

the single-cell Hi-C data, we focused on the common interactions identified by both HiCCUPS and

FitHiC2 algorithms.

4.4.4. Processing CTCF ChIP-Seq Data

The Mouse ES cells CTCF ChIP-seq narrow peak data were obtained from the ENCODE

project (ENCSR362VNF) [25]. Similarly, for Homo sapiens neural cells derived from H1, the CTCF

ChIP-seq data were downloaded from ENCODE (ENCSR822CEA). To analyze the single-cell Hi-C

datasets, we performed a counting of CTCF-enriched interactions. An interaction was classified as

CTCF-enriched if both ends of the interaction overlapped with at least one CTCF binding site.

This criterion allowed us to identify and examine interactions that exhibited a potential association

with CTCF binding events.

4.4.5. Processing Promoter Related Interactions

In this study, we utilized a previously reported set of promoter-related interactions, including

promoter-promoter and promoter-other interactions, as a reference dataset [77]. These interactions

were derived from a study conducted on human cortex cells. To evaluate the performance of our

proposed methodology, we compared our results with those obtained from SnapHiC with varying

numbers of cells. We then examined the overlap between these interactions and the reference

promoter-related interactions. This analysis allowed us to assess the accuracy and effectiveness
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of our methodology in capturing relevant chromatin interactions within the context of promoter

activity in human cortex cells.

4.5. Results

4.5.1. Quantity of Significant Chromatin Interactions

For the analysis of human cortex cells, we used both methodologies across varying cell num-

bers, namely 10, 25, 50, 100, 200, and 500 cells. To ensure unbiased and representative results, we

performed multiple random selections of cell numbers, as depicted by the error bars in Figure 4.2C.

The outcomes consistently demonstrate that scHi-CNN identifies a significantly higher number of

chromatin loops, even when applied to a small cell population. In contrast, SnapHiC’s performance

appears to be less effective, particularly in detecting interactions among smaller cell groups. To

extend our evaluation, we applied both methodologies to the whole and each cell phase in the cell

cycle dataset. The performance remains consistent across the cell phases, as illustrated in Figure

4.2E. Also scHi-CNN is capable of identifying the increasing trend of significant chromatin inter-

actions in cells at varying stages of the cell cycle, a phenomenon attributed to DNA replication

during the S phase. In contrast, SnapHiC is unable to capture these inherent biological states of

the cell. Furthermore, we quantified the raw interactions corresponding to the identified significant

interactions (Figure 4.2A and B). Notably, when analyzing smaller cell groups (around 10 cells),

scHi-CNN identifies interactions that were present in approximately 60% of the cells, whereas the

interactions identified by the SnapHiC method are present in a much smaller fraction of cells. This

showcases the superiority of scHi-CNN in identifying frequently occurring chromatin interactions

among cells, thereby highlighting its potential to derive more relevant chromatin loops.

4.5.2. CTCF Enriched Interactions

CTCF plays an important role in three-dimensional genome organization and presumely

contributes to the formation of higher-order chromatin structure [47]. We assessed the CTCF

enrichment of the significant interactions obtained from scHi-CNN and SnapHiC by leveraging pre-

viously collected CTCF methylation data (Figure 4.2D,F). Our analysis reveals that the percentage

of CTCF-enriched interactions derived from scHi-CNN remains consistent across different cell quan-

tities, whereas SnapHiC struggles to generate CTCF-enriched interactions, especially when dealing

with smaller cell populations. SnapHiC requires a minimum of 50-100 cells to produce 50% of the

CTCF-enriched interactions. In contrast, scHi-CNN consistently identifies more than 60% of CTCF-
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enriched interactions in both human cortex cell and cell cycle datasets, regardless of the number

of cells used. These findings suggest that the results obtained using scHi-CNN encompass a higher

proportion of biologically meaningful data, indicating an improvement over existing methodologies

in terms of data quality and relevance.

4.5.3. Common Interactions between Different Datasets from the Same Cell Type

To investigate the overlap of interactions between different datasets, we analyzed the cell

cycle dataset and mouse embryonic stem cell (mESC) dataset, which used the same cell type. We

specifically examined the common interactions between each phase of the cell cycle and mESC cells

for both scHi-CNN and SnapHiC (Figure 4.3). Additionally, we determined the common interactions

across each cell phase within the cell cycle dataset (Figure 4.4). Interestingly, scHi-CNN consistently

identifies a significantly higher percentage of common interactions in both cases. In addition, the

Figure 4.3 illustrates that scHi-CNN outperforms SnapHiC in terms of stability, as evidenced by a

lower maximum variation in the common percentage (6.36% for scHi-CNN compared to 7.86% for

SnapHiC). This observation suggests that scHi-CNN excels in deriving meaningful interactions by

effectively identifying a greater number of common interactions within the same cell type.

4.5.4. Identified Promoter Centered Interactions

To gain further insights into the identified interactions, we conducted an evaluation using

Layer 2/3 (L2/3) type cells from human cortex cells, considering different quantities of cells. In order

to facilitate more comparison, we also employed SnapHiC at 10kb resolution with 100 L2/3 cells. We

specifically focused on four known promoters and genes associated with cortex and neural cells, as

highlighted in previous studies[77, 158, 112], to assess the identified chromatin interactions. Figure

4.5A showcases the identified interactions for each cell quantity using scHi-CNN, while highlight-

ing the promoters of interest. Remarkably, scHi-CNN successfully identifies these promoter-related

interactions even with a very low cell count, whereas SnapHiC fails to detect most of these interac-

tions even with a higher cell count at 100kb resolution. Although SnapHiC manages to identify a

few promoter-related interactions at 10kb resolution, its performance fells short compared to scHi-

CNN. Furthermore, Figure 4.5C,D,E,F illustrates the overlapping promoter-centered interactions

identified using 100 cortex single cells, in comparison with the promoter-centered interactions re-

ported in a previous study[77]. Though scHi-CNN identifies less number of significant interactions

(Figure 4.5B) than SnapHiC, our method, scHi-CNN, reports a significantly higher percentage of
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promoter-centered interactions compared to SnapHiC (Figure 4.5C,D,E,F). These findings further

highlight the superior performance of scHi-CNN in identifying a greater proportion of biologically

meaningful interactions.

4.6. Conclusion

In conclusion, this study presents a novel and robust methodology for identifying significant

intra-chromosomal chromatin loops from single-cell Hi-C data, addressing the limitations of existing

tools and expanding our understanding of chromatin architecture in individual cells. Our method

consists of three primary steps: 1) imputing contact matrices using a K-nearest-neighbour-based

approach, 2) normalization, and 3) identifying significant chromatin interactions using a statistical

test. We evaluated the performance of our proposed approach using three distinct datasets, including

human cortex cells, mouse embryonic stem (ES) cells, and a mouse cell cycle dataset, with varying

numbers of cells to assess the robustness and scalability of our method across different conditions.

To validate the biological relevance of the interactions identified by our approach, we utilized

several criteria, including CTCF binding sites, analysis of known promoter-related interactions,

and quantification of common interactions between different datasets of the same cell type. Our

method shows a greater ability to generate a significantly higher number of biologically meaningful

interactions compared to SnapHiC. The capabilities were demonstrated through a higher percentage

of CTCF-enriched interactions, greater overlap with known promoter-centered interactions, and

increased common interactions between the same cell types, thus highlighting the potential of our

method in deciphering complex regulatory networks in single cells.

Future research could focus on refining and optimizing the methodology to further enhance

its performance, sensitivity, and generalizability across diverse cell types and conditions. Addi-

tionally, integrating our method with other single-cell genomics data modalities, such as single-cell

RNA-seq, ATAC-seq, or ChIP-seq, could provide a more comprehensive view of the molecular mech-

anisms associating with chromatin architecture and gene regulation in single cells. This multi-modal

integration would enable researchers to better understand the complex interplay between chromatin

structure and function, ultimately leading to novel therapeutic strategies for various diseases, in-

cluding cancer and developmental disorders, which are often characterized by aberrant chromatin

organization and gene expression patterns.
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Figure 4.1. Workflow of the Method - 1. Single-cell contact matrix imputation, 2. Normalization
process, 3. Identification of significant chromatin interactions
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Figure 4.2. A. Distribution of the percentages of the presence of raw interactions corresponding to
the identified significant interactions across cells in prefrontal cortex for scHi-CNN (e.g., 0.5 means
50% of the cells contain the identified significant interaction) B. Same as ’A’ for the SnapHiC method
C. Significant interactions derived using scHi-CNN and SnapHiC for cells in prefrontal cortex. D.
Percentage of CTCF enriched interactions identified using the two methods for cells in prefrontal
cortex. In A,B,C, and D five random samples for each number of cells were gathered and represented
in the figure with the error bars. E. Significant interactions derived using two methods for cell cycle
data organized in each cell cycle. F. Percentage of CTCF enriched interactions identified using the
two methods for cell cycle data.
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Figure 4.3. Common interactions percentages between the cell cycle and mESC datasets using scHi-
CNN and SnapHiC

Figure 4.4. Common interactions percentages among cell cycle phases using scHi-CNN and SnapHiC
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Figure 4.5. Identified significant interactions in human cortex cell lines related to known Promoter-
centered interactions using scHi-CNN and SnapHiC. A. Identified significant interactions for each
cell quantity using scHi-CNN and SnapHiC within the marked areas associated with the four known
promoters. B. Number of significant interactions derived using scHi-CNN and SnapHiC. C and E.
Percentage of overlap with known promoter-promoter interactions and promoter-other interactions.
D and F. Overlapping interaction count with known promoter-promoter interactions and promoter-
other interactions.
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5. INTEGRATIVE ANALYSIS OF EPIGENETICS AND

CHROMATIN INTERACTION DATA

5.1. Introduction

A key research field in bioinformatics involves studying how DNA is organized in three-

dimensional structures inside cells and identifying crucial genomic components that play significant

roles in gene expression and regulation, thus affecting cells functionality. Chromatin interactions

significantly influence gene regulation by bringing corresponding regulatory elements into close prox-

imity [30]. Chromatin interactions data are important in identifying key chromatin topological

structures, such as TADs and compartments, which are essential for analyzing genomic functions.

Additionally, various genetic disorders, including cancer and other pathologies, are associated with

disruptions in this chromatin architecture [58] [159] [36] [113]. The study of epigenetics offers pro-

found insights into gene activity by examining chemical modifications in DNA and histone proteins.

Epigenetic markers, which impact gene regulation without altering DNA sequences, are crucial

for understanding cell behavior and differences in cell types. Epigenetic changes, such as histone

modifications and DNA methylation, have been linked to genomic instability, potentially leading

to genetic disorders like cancer by interfering with the functions of associated genes or oncogenes

[24]. Therefore, analyzing epigenetic data can reveal information on mutations or oncogenes re-

lated to genetic diseases. Furthermore, DNA methylation is particularly critical for studying cell

development and disease [73]. Hence, analyzing the correlation among these factors is essential to

understanding their impact on gene regulation and cellular function. Recent research suggests an

interplay between epigenetic markers and chromatin structure in genomic function [56]. This corre-

lation is observed through studies focused on analyzing and prediction of the relationship between

A/B compartments, TADs and chromatin modifications [46] [118], as well as through analyzing

different epigenetic domains and chromatin interactions using imaging techniques [15]. However,

current studies have revealed only a limited relationship between these factors at more finer scales

[56] and most of the studies focused on their individual role than the interplay. Consequently,
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the influence of chromatin interactions and epigenetic markers on chromatin organization remains

unclear, and exploring this through biological experiments alone presents significant challenges.

In recent years, significant advancements in the field of genomics have emerged due to the ap-

plication of advanced computational models such as machine learning and deep learning. Genomics

data, known for its complexity and volume, requires sophisticated computing techniques for proper

analysis. Graph embedding algorithms, particularly those based on deep learning approaches, ef-

fectively transform complex real world graph structures and relationships into a lower-dimensional

space which enhances the efficiency of downstream data processing such as prediction, classification,

clustering and visualization [51]. The ability to transform chromatin interaction data into a graph

structure, along with the characterization of epigenomic markers as features, enables the synthesis

of these distinct omics data using a graph embedding strategy. This process allows a systematic

evaluvation of their collective impacts on interpreting the structural organization of chromatin. In

various cases, graph embedding algorithms have been applied to predict tasks related to chromatin

interactions. The Sub-compartment Identifier (SCI) is an algorithm that utilizes graph embeddings

to predict sub-compartments from chromatin interaction data [4]. Varrone et al. introduced a

computational framework for predicting co-expression networks from chromatin conformation data.

They argue that a non-linear relationship exists between chromatin conformation and gene regula-

tion, and that gene topological embeddings contain relevant information [176]. Recently, epigenomic

markers data has been used in conjunction with chromatin interaction embedding data for the an-

notation of chromatin domains [155]. In this approach, the LINE embedding algorithm was utilized

to generates embeddings from chromatin structure data, which are subsequently aligned with epige-

nomic markers data for annotation. However, to the best of our knowledge, no existing studies have

thoroughly assessed the role of chromatin structural information using a integrative computational

methodology.

Graph embedding algorithms have shown promising outcomes in various fields, including

social networks[178], computational biology [4], natural language processing [177], and recommen-

dation systems [35], by transforming the structural integrity of graphs into latent spaces. Graph

convolutional networks (GCNs) represent a major step forward compared to traditional graph em-

bedding methods such as DeepWalk [131], LINE [167], and Node2Vec [53] in analyzing large graphs

with node features. GCNs encapsulate graph information by aggregating feature data from a node’s
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local neighborhood, which allows for effective integration of information from its immediate sur-

roundings [197]. Moreover, GCNs integrate node features, enabling the model to consider both

feature and structural information of the neighborhood. Drawing inspiration from GCNs, Graph-

Sage [54] was introduced as a framework for inductive representation learning on large graphs

through the sampling and aggregation of features from a node’s local neighborhood. GraphSage

accommodates large graph data and can adjust to various graph structures. Numerous extensions

and applications have been built upon GraphSAGE to leverage its capabilities, including PinSAGE

[190] for handling large and complex graphs and HinSAGE [28] for heterogeneous graphs. Given

GraphSage’s ability to manage large graphs and relevant node feature information, it demonstrates

the capability to integrate chromatin structural information to learn latent embeddings.

In this study, we investigate the impact of chromatin interactions and epigenomic data on

chromatin structure and organization by integrating this information into a graph embedding model

to generate embeddings. We evaluated the accuracy of the predictions of these embeddings under

three distinct scenarios that disrupt the graph’s structure but maintain global characteristics such

as node degree and edge count. In addition, we applied a clustering approach on the generated

embeddings to predict TADs like domains. The findings indicate that while epigenetic markers

assist in the model’s training and predictions, chromatin interactions are crucial in preserving the

structural integrity of the chromatin. Although the approach is based on statistical analysis, it

suggests that chromatin interactions are vital in determining the effects of chromatin architecture

on genomic functions through gene regulation, with epigenetic markers serving to modulate these

interactions. Moreover, our findings highlight the significance of incorporating multi-dimensional

genomic data (structural, epigenetic, genetic) for a thorough understanding of genome structure

and function.

5.2. Data

This study utilized three distinct datasets. The initial dataset includes data on chromatin

interaction and epigenetics, derived from three cell lines associated with breast cancer: parental

endocrine-sensitive ER+ MCF7 cells, tamoxifen-resistant (TAMR) cells, and fulvestrant-resistant

(FASR) cells [1] [25]. This dataset incorporates chromatin interaction information generated through

the Hi-C method and data on epigenetic markers collected via ChIP-Seq techniques. Specifically,

we analyzed ChIP-Seq data for H3K4me3, H3K4me1, H3K27ac, H3K27me3, H2AZac markers, and
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Table 5.1. Breast cancer related cell lines

Cell Line Data type Data format Accession Reference
FASR Hi-C allValidPairs GSE118712 [1]
FASR H3K27ac Bigbed GSE118711 [1]
FASR H3K4me3 Bigbed GSE118711 [1]
FASR H3K4me1 Bigbed GSE118711 [1]
FASR H2AZac Bigbed GSE118711 [1]
FASR CTCF Bigbed GSE118711 [1]
MCF7 Hi-C allValidPairs GSE118712 [1]
MCF7 H3K27ac narrowPeak ENCSR752UOD [25]
MCF7 H3K4me3 narrowPeak ENCSR985MIB [25]
MCF7 H3K4me1 narrowPeak ENCSR493NBY [25]
MCF7 H2AZac Bigbed GSE118711 [1]
MCF7 CTCF narrowPeak ENCSR000DWH [1]
TAMR Hi-C allValidPairs GSE118712 [1]
TAMR H3K27ac Bigbed GSE118711 [1]
TAMR H3K4me3 Bigbed GSE118711 [1]
TAMR H3K4me1 Bigbed GSE118711 [1]
TAMR H2AZac Bigbed GSE118711 [1]
TAMR CTCF Bigbed GSE118711 [1]

CTCF binding sites across all three breast cancer cell line types for a comprehensive analysis in

conjunction with Hi-C data. Details related to the data from the breast cancer cell lines, including

accession IDs and associated publications, are presented in Table 5.1.

We utilized chromatin interactions and epigenomic indicators from three prostate cancer cell

lines for the second dataset. This dataset comprises genomic information from prostate cancer cell

lines (PC3 and LNCaP) and normal human prostate epithelial cells (PrEC) [165] [14] [166]. Addi-

tionally, this dataset includes data on chromatin interactions obtained through the Hi-C method,

and we obtained the H3K4me1, H3K4me3, H3K27ac epigenetic markers, along with CTCF binding

sites data, gathered via ChIP-Seq for further analysis. Detailed information on the prostate cancer

dataset is presented in Table 5.2.

This study incorporates a single-cell dataset to analyze the effects of the proposed approach

on single versus bulk cell data with paired sequencing. The dataset includes 4,238 single human brain

prefrontal cortex cells, obtained through single-nucleus methyl-3C sequencing (sn-m3C-seq) [94].

This method simultaneously captures chromatin interactions and DNA methylation information.

The dataset has been made available under the accession number GSE130711. It should be noted
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Table 5.2. Prostate cancer related cell lines

Cell Line Data type Data format Accession Reference
LNCAP Hi-C fastq GSE73785 [165]
LNCAP H3K27ac fastq GSE73785 [165]
LNCAP H3K4me1 fastq GSE73785 [165]
LNCAP H3K4me3 fastq GSE38685 [14]
LNCAP CTCF fastq GSE38685 [14]
PrEC Hi-C fastq GSE73785 [165]
PrEC H3K27ac fastq GSE57498 [166]
PrEC H3K4me1 fastq GSE57498 [166]
PrEC H3K4me3 fastq GSE57498 [166]
PrEC CTCF fastq GSE38685 [14]
PC3 Hi-C fastq GSE73785 [165]
PC3 H3K27ac fastq GSE57498 [166]
PC3 H3K4me1 fastq GSE57498 [166]
PC3 H3K4me3 fastq GSE57498 [166]
PC3 CTCF fastq GSE57498 [166]

that the datasets related to breast and prostate cancer are not part of paired experiments. In

contrast, the single-cell experiment is designed as a paired experiment, capturing both chromatin

interaction and DNA methylation data simultaneously.

5.3. Method

The overall processing pipeline is illustrated in Figure 5.1

5.3.1. Processing Chromatin Interaction Data

Raw and processed chromatin interaction data from bulk Hi-C cell lines were obtained from

relevant repositories as mentioned in Tables 5.1, 5.2 and single cell data was obtained from the GEO

accession GSE130711. Given the diversity in experimental approaches and techniques applied for

these datasets, we adopted distinct processing pipelines as outlined below.

Prostate cancer cell lines consist of multiple replicates for each type. We merged the associ-

ated FASTQ files for replicates and processed them using HiCPro[150] to generate contact matrices

for each cell line. Specifically, there were three replicates for normal human prostate epithelial cells

(PrEC), eight for LNCaP prostate cancer cells, and two for PC3 prostate cancer cells. Following

merging, the datasets were aligned to the hg19 reference genome build using the BglII restriction

enzyme. Subsequently, significant interactions were identified from the ICE-normalized data us-
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Figure 5.1. Method workflow

ing FitHiC2[85], with a specific p-value threshold. We then applied the HiC-breakfinder[37] tool

to exclude interactions associated with regions potentially containing structural variants in cancer

genomes.

For breast cancer cell lines, we obtained already processed chromatin interaction data from

the GEO repository, as detailed in Table 5.1. Similar to the prostate cell lines, each breast cancer

cell type included three replicates, and we merged the processed data for MCF7, FASR, and TAMR

cell types. These datasets were processed using the HiCPro tool with the hg38 reference genome

build and the NcoII restriction enzyme to generate all valid pairs files. We continued the rest of the

HiC-pro pipeline to generate ICE normalized matrices and utilized FitHiC2 to identify significant

interactions.
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For single-cell Hi-C data generated from human prefrontal cortex cells, each cell’s data was

deposited separately, totaling 4,238 cells. The deposited chromatin interaction data for each cell was

processed using Bismark with Bowtie1 against the hg19 reference genome. We merged all deposited

contact data for each individual cell to identify significant interactions using FitHiC2 as in Figure

5.1.

5.3.2. Processing ChIP-Seq and DNA Methylation Data

We processed the ChIP-seq data related to prostate cancer cell lines, as detailed in Table

5.2, starting with raw fastq files. Initially, we assessed the quality of the reads using FastQC,

followed by alignment to the reference genome using Bowtie2. We sorted the resulting output

SAM files and converted them into BAM files using SAMtools. For peak detection, MACS2 was

utilized to compare the ChIP-seq sample data against a control sample to identify regions showing

significant enrichment of sequenced tags, consequently identifying statistically significant ChIP-seq

peaks. After determining a significance threshold, we excluded less significant peaks and normalized

the remaining output to integrate with Hi-C data.

The processed ChIP-seq data for breast cancer cell lines, stored in peak file format, appears

in Table 5.1. We downloaded this processed data from the corresponding GEO and ENCODE

repositories, then applied binning and normalization for integration with relevant Hi-C data. In a

similar manner, we merged and processed the available DNA methylation data for individual cell

lines and match with the resolution of Hi-C contact maps.

5.3.3. Graph Embedding Generation

Considering the genome’s length and the Hi-C network’s resolution, the resulting genomic

graphs are often significantly larger compared to traditional graphs. Therefore, a robust embedding

algorithm is essential for processing genomic graphs in unsupervised manner to generate embeddings.

Based on the Hi-C datasets applied in this study, the resulting graph consists of 50,000 to 110,000

nodes, as detailed in Table 5.3 which illustrates a large and complex structure. Moreover, it is

necessary to integrate epigenomic data to characterize the genomic regions as node features. After

evaluating various graph embedding techniques, including traditional methods, Graph Convolutional

Networks (GCNs), graph autoencoders (GAEs), and various attributed network embedding tools,

we selected GraphSAGE as the graph embedding model. Compared with other GCN-based and

traditional methods, GraphSage offers more scalability for large graphs due to its sampling approach.
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This choice was based on its capabilities in unsupervised learning, managing larger graphs, and

associating node features.

We first constructed the graph from the processed Hi-C data, where nodes represent ge-

nomic regions, and edges indicate the interactions between these regions. Thus, an edge appears

in the graph only when marked as a significant interaction through tools like fithic. We utilized

chip-seq and DNA methylation data, aggregated for the respective genomic regions, as node fea-

tures. For model training, we split the edge space into a training set and a testing set in a 70:30

ratio. The models were trained over 1 million cycles with a learning rate of 0.001 to understand

latent representations across 128 dimensions. In addition, we adjusted the relevant neural network

hyperparameters to optimize model performance.

AGGREGATEpool
k = mean({σ(Wpoolh

k
ui

+ b), ∀ui ∈ N (v)}) (5.1)

GraphSAGE provides several model variants, including mean-based aggregators, LSTM-

based aggregators, GCN-based aggregators, and pooling aggregators. In our experiments, we utilized

GraphSAGE with the mean-pooling aggregator, as outlined in equation 5.1 [54], following an analysis

of the performance of alternative aggregators. The mean-pooling aggregator applies an element-wise

mean-pooling operation to collect information from a set of neighbors, each processed individually

through a fully-connected neural network.

5.3.4. Identify TAD like Domains

Figure 5.2. TAD like domains identification methodology.

Topologically Associating Domains (TADs) are large regions of the genome that preferen-

tially interact within themselves, creating distinct three-dimensional structures in the nucleus. They

play a crucial role in gene regulation, influencing gene expression by facilitating or restricting inter-
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actions between regulatory DNA elements and their target genes. To further assess the performance

of the generated embeddings, a clustering-based method was utilized for identifying TAD-like do-

mains, drawing inspiration from TAD identification algorithms such as ClusterTAD [125]. This

process began with clustering the generated embeddings through K-means clustering (k=5). Sub-

sequently, adjacent bins within the same chromosome that were assigned to the same cluster were

grouped together as identified domains similar to the approach in ClusterTAD. Previous research

indicates that the size of a TAD can range from several hundred kilobases to a few megabases [50].

Based on that, domains exceeding 200KB were classified as TAD-like domains, while smaller seg-

ments were regarded as boundaries or gaps between TADs. The high level overview of the approach

is represented in Figure 5.2.

This methodology was applied across three disruption scenarios to assess both the quality

and quantity of the TADs identified in each. The evaluation of TAD quality involved measuring

the statistical significance of differences between intra-TAD and inter-TAD interactions, following

the method used in ClusterTAD. Intra-TAD interactions denote the interactions within a TAD-like

domain, whereas inter-TAD interactions refer to the interactions between consecutive TADs. The

average number of raw interaction counts was calculated to gather these statistics. Moreover, the

average lengths of the TAD-like domains identified in each scenario were examined. Lastly, the

count of TAD-like domains identified in each scenario was analyzed, alongside random clustering,

to serve as a benchmark.

5.3.5. Evaluate using Statistical Measurements

The models were evaluvated through statistical metrics. We assessed the capability of the

proposed model to generate precise embeddings by analyzing the model’s performance across var-

ious disrupted graphs, derived from the initial graph. Our experiments included three distinct

scenarios: the initial graph, the edge-disrupted graph, and the feature-disrupted graphs. In the

case of edge-disrupted graphs, we rearranged the structure by shuffling the edges while maintaining

the same node degrees and using an identical set of nodes. In the feature-disrupted variant, we

shuffled node features across genomic regions while preserving the initial structure of the graph.

We statistically assessed these disruptions to determine their collective and seperate impact on the

chromatin structural integrity.
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To generate an adequate sample size, we conducted model training sessions using a sufficient

number of permuted graphs for each scenario. In each case, we collected the training and validation

accuracy of the learned embeddings as sample populations for further analysis. We first assessed the

normality of the generated samples and applied the paired t-test to compare the significant difference

between the groups. For this statistical test, we generated three different sample populations based

on accuracies from the initial graph, edge disruption, and feature disruption. We then compared

the accuracy of the disrupted graphs against the performances of the initial graph to understand

how graph structure and node features influence embedding prediction. To evaluate accuracy, we

utilized the Mean Reciprocal Rank (MRR), which assesses a ranked list based on the similarity or

disparity in the embedding space, as shown in Equation 5.2.

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(5.2)

5.4. Results

5.4.1. Graph Embedding Predictions

Table 5.3 shows resultant graph structural information after processing Hi-C data from raw

fastq files to identify significant chromatin interactions based on threshold p-value 0.05. The edge

count reflects the number of significant interactions, while the node count indicates genomic regions

containing at least one interaction. Analysis reveals a significant portion of genomic regions was

discarded in post-filtering, as demonstrated by the node count. For example, in graphs associated

with breast cancer cell lines, approximately only 50,000 genomic regions out of a total 150,000

(mapped at a resolution of 20,000 bins) register at least one significant interaction. Consequently, the

resulting Hi-C contact matrices demonstrates a high degree of sparsity which complicates biological

interpretation.

After constructing graphs for each cell line, we initially analyzed the training and validation

curves of the model to verify the impact of adding additional node features on the embedding

accuracy. The Figure 5.3 illustrates the training and validation mean reciprocal rank (MRR) spread

across one million epochs for breast cancer and prostate cancer cell lines, highlighting the effect of

epigenetic markers on chromatin organization. The relevant box plots indicating the significance

in differences is represented in Figure 5.4. The data indicate that utilizing only a single epigenetic
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Table 5.3. Graph information

Cell line Number of nodes Number of edges
FASR 50,612 133,693
MCF7 51,543 142,562
TAMR 55,880 170,786

Single cell-cortex 111,238 270,889
LNCAP 95,722 426,754

PC3 100,703 478,726
PReC 101,623 408,625

marker, the MRR peaks at approximately 0.55, whereas it increases up to to 0.8 with the inclusion

of all five ChIP-seq markers for the FASR breast cancer cell line. A similar pattern can be observed

in both the training and validation accuracy for LNCaP prostate cancer cell lines, as shown in

Figure 5.4. We derived these results by averaging data from samples collected from models with

different training and validation sets to minimize biases.

To analyze the impact of chromatin interaction and epigenetic data along with their inter-

play on embedding predictions, we assessed the significance of the differences between initial and

disrupted model variants. The accuracy distribution for the gathered samples across three scenarios

is represented for breast cancer cell lines, prostate cancer cell lines and single cells in Figure 5.5.

We conducted the Shapiro-Wilk test to determine the normality of the data sets, as shown in Table

5.4. The related statistical information is provided in Table 5.5 and visualized in Figure 5.6 for

breast cancer cell lines, prostate cancer cell lines and single cells. The paired t-test results across

all these cell lines indicate a significant difference between the initial and disrupted graphs which

highlights the interplay between chromatin and epigenetics, as supported by existing literature [56].

However, the results also reveal that graphs with edge disruptions tend to show lower prediction

accuracies than those with feature disruptions which suggests that chromatin interaction data may

play a pivotal role in this correlation and epigenetics data could assist in modulating these inter-

actions. Furthermore, in the edge-disrupted graphs, we altered the local structure while preserving

the global structure which highlights the significant role of local chromatin configurations, such as

chromatin loops between regulatory elements and higher-order structures like TADs. While this

provides a biological intrepretation through statistical analysis and graph embedding techniques,
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Table 5.4. Normality test using Shapiro-Wilk Test

Cell line Initial Edge Disrupt Feature Disrupt
FASR 0.528 0.340 0.970
MCF7 0.582 0.619 0.328
TAMR 0.078 0.958 0.537

Single Cell 0.298 0.039 0.488
LNCAP 0.380 0.082 0.386

PC3 0.105 0.100 0.441
PrEC 0.074 0.000 0.987

Table 5.5. Mean and Standard Deviation of the sample populations

Cell line Initial Edge Disrupt Feature Disrupt
FASR M=0.772, SD=0.015 M=0.500, SD=0.020 M=0.725, SD=0.016
MCF7 M=0.788, SD=0.015 M=0.480, SD=0.018 M=0.727, SD=0.015
TAMR M=0.778, SD=0.015 M=0.450, SD=0.019 M=0.736, SD=0.015

Single Cell M=0.545, SD=0.033 M=0.313, SD=0.025 M=0.477, SD=0.036
LNCAP M=0.652, SD=0.017 M=0.401, SD=0.016 M=0.592, SD=0.017

PC3 M=0.667, SD=0.017 M=0.284, SD=0.045 M=0.571, SD=0.020
PrEC M=0.679, SD=0.015 M=0.222, SD=0.033 M=0.568, SD=0.021

further exploration is necessary to clarify the biological significance of the data and the practical

uses of the embeddings, especially in solving problems related to experimental data and limitations

of existing tools.

5.4.2. Identified TAD like Domains

We first assessed the quality of the identified TAD-like domains through analysis of inter-

TAD and intra-TAD interactions. The figure 5.7 demonstrates a significant difference between

the counts of intra-TAD interactions and inter-TAD interactions. For qualification as a TAD-like

domain, the count of intra-TAD interactions should greatly exceed that of inter-TAD interactions.

The results indicate that the identified TAD-like domains exhibit a significant difference between

these two interaction types across all scenarios and remain consistent in each cell line. This suggests

that the identified domains meet the criteria for TAD-like domains in every scenario. Subsequently,

we examined the average size of TAD-like domains, as illustrated in the figure 5.8. The violin

79



plots reveal that the lengths of the domains range from 200KB to 3MB, aligning with findings from

previous studies.

Finally, we evaluated the number of identified TAD-like domains in each scenario, as depicted

in the figure 5.9. The figure reveals that random baseline clustering discovered the fewest TAD-

like domains, indicating the effectiveness of identifying TAD-like domains through corresponding

graph embeddings. Original/initial graph embeddings detected a higher number of those domains

compared to disrupted graph embeddings, and feature-disrupted graphs identified more TAD-like

domains than edge-disrupted graphs. These findings align with those from the embedding accuracy

analysis, suggesting that chromatin interactions play a crucial role in the identification of a higher

number of TAD-like domains compared to epigenetic features. Moreover, the combined use of these

elements leads to the identification of an even larger number of TADs, underscoring the significance

of their interplay.

5.5. Discussion

The structure of chromatin is non-random, biologically significant, and represents the spa-

tial arrangement within the nucleus, influencing gene expression and regulation. Analyzing the

interplay between chromatin interactions and epigenetics is essential for understanding their impact

on genomic functions. However, the specific correlation between these two factors and significance

of their roles are not well defined and still remain as a question [56]. This study expects to carry

out an integrative analysis of chromatin structural data through a graph embedding model to de-

cipher the underlying patterns and relationships between chromatin interactions and epigenetic

data, and to identify their importance in genomic function. Graph embedding algorithms such as

GraphSAGE, a neighborhood aggregation algorithm, generates node embeddings by iteratively ag-

gregating and transforming feature vectors of a node’s neighbors. These embeddings can be utilized

for downstream tasks such as link prediction, node classification, etc. In this proposed approach,

we assessed the differences in performance of learning graph embeddings following disruptions to

the graph structures while preserving their global integrity, to identify the key elements within the

interplay between chromatin interactions and epigenetics against genomic functions.

Since the initial network demonstrates the highest validation accuracy and higher number

of TAD like domain identification, it indicates that the chromatin interactions (edges) together

with epigenetic information (node features) hold essential information for predicting latent low-
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dimensional feature embeddings. It suggests that the physical proximity and interaction among

various genomic regions (as captured by chromatin interactions) along with their epigenetic mark-

ers play a critical role in biological processes and chromatin organization. This finding aligns with

current biological understanding [170] [128], which recognizes the interplay between chromatin in-

teractions and epigenetics as influential in gene regulation and consequently, cellular functions.

The fact that graphs with disrupted features (where node features represent epigenetic

markers) maintain some level of predictive accuracy, less than the initial but more than networks

with disrupted edges (chromatin interactions), suggests that while epigenetic markers are important,

their specific association to specific genomic regions (nodes) might not be as critical as the local

structure of chromatin interactions in generating embeddings and identifying TAD like domains.

This scenario indicates that epigenetic markers itself do not play as specific or vital role as the

precise organization of chromatin interactions.

The lower performance of edge-shuffled graphs (where chromatin interactions are disrupted

while maintaining global graph properties) suggests that the local structure and specific connections

between regions (local chromatin architecture) are more important for the biological processes than

the global structure alone. This might indicate that specific interaction patterns, such as enhancer-

promoter interactions or insulator functions, and higher order chromatin structures such as TADs

or compartments are crucial for understanding the regulatory mechanisms at play.

Combining these observations, we can conclude that in the context of the chromatin ar-

chitecture, specific chromatin interactions (and the local genomic architecture they represent) are

crucial and likely govern key biological processes by facilitating or restricting access to regulatory

elements. The epigenetic context, while important, may act more as a modulator rather than the

primary driver, enhancing or diminishing the effects based on the chromatin context.

However, integrating analysis methods that merge multi-omics data with Hi-C data intro-

duces several significant challenges. One primary challenge is the difference in resolution between

Hi-C data, which typically ranges from 1 kb to 1 MB, and one-dimensional (1D) chromatin data,

such as ChIP-seq, which provides a much finer resolution of 100 bp to 1 kb. This variance com-

plicates the effective integration of information across different scales and may lead to the loss of

essential high-resolution details. Although we have aggregated the ChIP-seq signals into genomic
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bins to align with the resolution of Hi-C experiment data, this approach can result in the underrep-

resentation of certain aspects of ChIP-seq data.

Additionally, assessing the relationship between proposed models and their biological rele-

vance is often complicated due to the incomplete nature of processed experimental data. Although

bulk Hi-C experiments can generate a vast amount of reads, from millions to billions, the count of

biologically meaningful interactions is likely to be considerably lower once noise is removed and bi-

ases are corrected using tools like FitHiC and HiCCUPS. For instance, in the breast cancer dataset,

the resulting graphs contain about 50,000 nodes (genomic bins) at a 20k bin resolution, even though

the total number of genomic regions across the entire genome could at about 150,000 regions at

the same resolution. This sparse nature of significant interactions poses a major challenge for

comprehensive genome-wide analysis. The filtering process is essential for identifying meaningful

interactions considering the limitations of experimental methods, but it leads to an incomplete

genomic representation of the chromatin interaction network.

Despite its theoretical nature, our research establishes a solid groundwork for further empir-

ical studies investigating chromatin structural data and its correlation to genomic functions. The

specific local structures of chromatin interactions, as opposed to global properties, have proven

critical which highlights the importance of enhancing the resolution and accuracy of chromatin

interaction maps produced by Hi-C and other 3C-based technologies in future genomic research.

More precise interaction maps can offer in-depth views into the physical proximity of different ge-

nomic regions and their possible regulatory connections. Moreover, in genetic studies, especially

those related to cancer or pathologies, integrating data on chromatin organization and interactions

could lead to better identification of genomic regions that are crucial for diseases. Utilizing these

approaches allows for a more profound comprehension of chromatin dynamics and their associations

with gene regulation, disease mechanisms, and cellular functions. By introducing this conceptual

approach, our work supports further exploration into the intricate relationship between chromatin

architecture and epigenetics. We expect these insights to enhance future studies on the interplay

between chromatin interactions and epigenetic mechanisms.
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Figure 5.3. Accuracy variation with different number of features (chip-seq) markers for breast cancer
and prostate cancer cell lines.
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Figure 5.4. Accuracy variation with the increasing number of Chip-seq markers and significance
difference related to FASR and LNCAP cell types. Asterisk ’***’ represent pvalue<0.001

84



Figure 5.5. MRR variation with the shuffling of edges and features in Breast cancer cell lines; FASR,
MCF7, TAMR, prostate cancer cell lines; LNCAP, PC3, PrEC and single cell lines.
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Figure 5.6. Accuracy distribution and significance in differences in Breast cancer cell lines; FASR,
MCF7, TAMR, prostate cancer cell lines; LNCAP, PC3, PrEC and single cell lines. Asterisk ’***’
represent pvalue<0.001
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Figure 5.7. Intra-TAD interactions vs Inter-TAD interactions in Breast cancer and Prostate cancer
cell lines. Asterisk ’***’ represent pvalue<0.001
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Figure 5.8. Sizes of TAD like domains.
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Figure 5.9. Number of identified TAD like domains. Asterisk ’***’ represent pvalue<0.001
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6. CONCLUSION AND FUTURE WORK

Chromatin structural data, when integrated into advanced computational strategies, holds

the potential to uncover biological insights beyond the reach of experimental technologies and tra-

ditional methodologies. Experimental data related to chromatin interactions, generated by tech-

nologies such as Hi-C, can reveal regulatory mechanisms within the genome and their impact on

cellular functionality. These findings can uncover the role of chromatin organization in the devel-

opment of genetic diseases such as cancer. However, this data often consists of various limitations,

including low signal-to-noise ratio, data complexity, and sparsity. To address these challenges, fur-

ther research is required to explore and experiment with different computational algorithms and

data structures utilizing the existing datasets. In addition, in comparison to other omics datasets,

chromatin interaction information, produced through specialized experimental techniques like 3C-

based methods, provides distinct data representations, formats, and visualizations. This enables

the exploration of advanced computational strategies, algorithms and data structures suitable to

handle those types of data. In this dissertation, we introduce novel computational methodologies

and tools designed to enhance the processing pipeline for chromatin interaction data by applying

data mining and machine learning principles, taking into account the characteristics of the data and

its representations.

Analyzing chromatin interactions in single cells is crucial for capturing cellular heterogeneity

and understanding the structural variations across different cell types, along with their impact on

cell growth and development. However, chromatin interactions data in single cells are extremely

sparse which makes it challenging for downstream processing. To address this limitation, we con-

ducted a study to curate significant inter-chromosomal interactions using single-cell interaction data

generate through Hi-C technology. We were the first to implement a computational strategy for

this purpose along with a publicly accessible tool. In our proposed methodology, we represented

inter-chromosomal interactions as a network and identified significant interactions through statis-

tical measurement. Additionally, we demonstrated the biological significance of the interactions

identified. Due to the limited availability of similar tools, we perform benchmark using tools de-

signed for Bulk datasets, highlighting the need for developing tools that are designed for specific
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data types to uncover distinctive hidden patterns. However, the availability of single-cell Hi-C data

is limited, and such datasets are typically sparse. Despite our tool’s ability to detect interactions in

high resolution, the sparse nature of existing datasets limited further experiments on that. Thus,

we recommend the development of imputation-based computational methods to analyze chromatin

interactions at the single-cell level. However, our tool proves valuable for extracting significant

inter-chromosomal interactions and serves as foundational for future studies.

Another issue we identified relates to the initial stages of the Hi-C processing pipeline,

specifically the alignment of raw reads with the reference genome. Most tools focus only on uniquely

mapped reads, leading to the discard of a large portion of multi-mapped reads, which could represent

a significant fraction of the raw data. Hi-C data possess distinct characteristics that allow for

the development of tools aimed at curating multi-mapped reads. Accordingly, we introduced a

computational approach to recover multi-mapped reads by utilizing a heuristic method that takes

the proximity to the restriction enzyme in Hi-C experiments into account. This approach has been

integrated into existing pipelines, demonstrating that the recovery of multi-mapped reads improves

Hi-C processing workflows. Moreover, it could be beneficial to analyze the potential for recovering

unaligned reads by leveraging features specific to chromatin interaction data.

Building upon our previous research efforts aimed at developing computational tools for

analyzing single-cell resolution data, we implemented an imputation algorithm based on nearest

neighbors to derive significant inter-chromosomal chromatin interactions at the single-cell level.

This approach consists of three main steps: imputation, normalization, and filtering for significant

interactions. Given the extreme sparsity of single-cell chromatin interactions as observed in the

existing datasets, we applied a method based on k-nearest neighbors for imputation, combined with

statistical tests, to extract significant interactions. At the time of this implementation, there was

only a single computational tool available serving this specific need, which we used as a benchmark.

However, the existing tool was designed to identify chromatin interactions with high resolution and

consists of data constraints. Considering the limitations associate with the available single cell

datasets, there is a clear need for a more robust computational approach to identify interactions

at a more relaxed resolution suitable for most of the existing datasets. Our proposed methodology

demonstrates higher performance in detecting more meaningful and significant interactions when

compared to the existing tool, especially when evaluating with other omics data. This method
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holds potential for further enhancement, including the ability to derive differential interactions

across different cell types and to integrate with other genomic data types such as RNA-seq and

ATAC-seq, offering a more comprehensive understanding of regulatory elements.

In the final section, we analyzed the interplay between chromatin interaction data and epi-

genetics. Chromatin interaction information and epigenetic modifications are correlated, impacting

gene regulation and genomic functionality. However, the significance of these distinct data types

remains unclear and presents challenges for assessment using only experimental techniques. We

integrate these two data types using a graph embedding approach and assessed the impact of these

elements by disrupting the graph structure. Our results suggest that chromatin interaction data

could be crucial in driving genomic functionality, while epigenetics might be modulating these inter-

actions, subsequently influencing cellular functions. Our evaluation was based solely on statistical

measurements, without incorporating biological interpretation due to limitations in experimental

data. Thus, additional research is necessary to integrate these findings with biological insights.

Furthermore, although the generated embeddings were proven useful, their precise interpretation

remains to be discovered.

We anticipate these proposed methods along with publicly accessible tools, to lay the founda-

tion for future studies on chromatin architecture and its association with cellular functions, leading

to the identification of new therapeutic approaches for genetic disorders and diseases.
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