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ABSTRACT

Chromatin interactions occur when the physical regions of chromatin in close proximity
interact with each other inside the nucleus. Analyzing chromatin interactions plays a crucial role
in deciphering the spatial organization of the genome. Identifying the significant interactions and
their functionalities reveals great insights on gene expressions, gene regulations and genetic diseases
such as cancer. In addition, single cell chromatin interaction data is important to understand the
chromatin structure changes, diversity among individual cells, and the genomics differences between
different cell types. In recent years, Hi-C, chromosome conformation capture with high throughput
sequencing, has gained widespread popularity for its ability to map genome-wide chromatin inter-
actions in a single experiment and it is capable of extracting both single cell and bulk chromatin
interaction data.

With the evolution of experimental methods like Hi-C, computational tools are essential to
efficiently and accurately process the vast amount of genomic data. Since the experiment costs are
notably higher, optimized computational tools and methods are needed to extract most possible
information from the data. Moreover, processing single cell Hi-C data imposes number of challenges
due to its sparseness and limited interaction counts. So the development of computational methods
and tools to process data from both single cell Hi-C and bulk Hi-C technologies are focused in this
work and those are proven to be enhancing the efficiency and accuracy of Hi-C data processing
pipelines.

In this dissertation, each chapter consists of a single individual method or a tool to enhance
chromatin interaction processing pipelines and the final chapter focuses on the interplay between
epigenetic data and chromatin interactions data. The studies that are focused on building com-
putational methods include increasing data read accuracy for bulk Hi-C, identifying statistically
significant interactions at single cell Hi-C data, and imputation of single cell Hi-C data to improve
quality and quantity of raw reads. It is anticipated that the utilization of the tools and methods
outlined in these studies will significantly enhance the workflows of future research on chromatin

organization and its correlation with cellular functions and genetic diseases.
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1. INTRODUCTION

Bioinformatics involves the storage, retrieval and analysis of large amount of biological data
including genomic information, nucleotide, amino acid, protein structures and regulatory informa-
tion. It enables scientists to understand complex biological processes and diseases, and plays a key
role in developing new medical treatments and personalized therapeutic strategies by identifying
genetic markers and pathways associated with various conditions across a vast collection of genomic
datasets|79]. The primary application of bioinformatics is the analysis of DNA, RNA, and protein
sequences, and their functional implications on cellular activities. This includes identifying genes,
analyzing regulatory elements, predicting the functionality of proteins, and their relationship with
genomic structure. Advanced computational techniques are often required to address complex bio-
logical challenges related to sequencing and processing due to the massive volume of data involved.
With its strong foundation in algorithms, data structures, and high performance computing, Com-
puter Science principles serve as the backbone for developing computationally effective tools and
software that can efficiently store, manage, process, and visualize biological data. Thus the inte-
gration of numerous computer science and statistical concepts, such as data mining and machine
learning, with the analysis of biological processes has greatly accelerated biological research in many
aspects including gene and protein expression analysis, mutations in cancer, and modeling biological
systems [137] [91] [169] [95] [103].

Deciphering the three-dimensional organization of the genome still remains a major focus in
the field of biology as it can disclose great insights into gene regulation and their correlation with
genetic diseases such as cancer [148|. This involves analyzing chromatin interaction data generated
using experimental methods such as chromosome conformation capture [143]. More advanced ex-
perimental methodologies, such as high-throughput sequencing (the most comprehensive method
to analyze genome-wide chromatin interactions) can often result in millions to billions of reads per
sample [104]. These need to go through numerous processing pipelines to filter out higher-quality
and meaningful reads. Despite the development of numerous tools for curating this information
1.1 1.2, not all challenges associated with processing chromatin interactions data have been re-

solved. In addition, some of the existing methodologies face various practical challenges due to the



limitations of available datasets and computational resources. To overcome these limitations, the
development of more robust and efficient computational tools is necessary. further research should
be conducted to utilize various computer science concepts, including different algorithms and data
structures. Furthermore, the application of advanced data mining and machine learning techniques
to genomics data can facilitate the extraction of meaningful patterns, the inference of relationships,
and the generation of insights from large datasets.

The analysis of genome structure data has significantly advanced since the introduction of
the first experimental method, chromosome conformation capture, in the early 2000s [160]. More
robust and advanced experimental methods to analyze genome wide chromatin organization, such
as Hi-C, were developed in 2009 [104|. However, effective computational methods for processing
and analyzing this data, particularly for single-cell data, have only recently been introduced [191].
This may be attributed to several factors, including the limited availability of public datasets and
the need for high-performance computing resources. Moreover, researchers are continuously making
effort to model genomic data into more accurate representations to enhance our understanding of
its functional applications. The development of more efficient and effective computational method-
ologies could streamline this process, bringing us closer to a deeper comprehension of the complex
interactions between chromatin structures and their functions. Such advancements could lead the
way for novel therapeutic strategies for a variety of genetic diseases, including cancer and other
disorders.

All the studies presented in this thesis introduce computational methods specifically de-
signed for analyzing and processing chromatin interaction data, particularly generated using Hi-C
methodology. These methods have proven to enhance both single-cell and bulk Hi-C data pro-
cessing pipelines and are expected to contribute to further genomic research focused on analyzing
chromatin organization and its biological functional implications. Section 1.1.1 offers a concise
overview of chromatin organization topology and its role in gene regulation. Section 1.1.2 describes
the relationship between epigenetics and chromatin interactions, along with their functional im-
plications for gene regulation. Section 1.1.3 discusses how analyzing chromatin organization can
provide valuable insights into human health and genetic diseases. Section 1.1.4 introduces the ex-
perimental methodologies used to capture data on chromatin interactions. Section 1.1.5 outlines the

techniques for capturing epigenetic data. Section 1.1.6 provides a brief overview of the existing com-



putational methods for analyzing chromatin organization and addresses the need for more advanced
computational methodologies to process chromatin interaction data, considering the limitations and
challenges of existing techniques and methodologies. Section 1.1.7 discusses various representation
capabilities of chromatin interaction data and their impact on computational methods. Section
1.2 outlines our motivation for pursuing the studies presented along with the problem definition.
Finally, Section 1.3 lists our contributions.

1.1. Background

1.1.1. Chromatin Architecture and Gene Regulation

Chromatin organization within the nucleus is a hierarchical structure ranges from the small-
est loops formed by DNA and histone proteins to the higher level organization such as compart-
mentalization and chromosome organization. This multi-tiered structure plays a critical role in gene
regulation, genome stability and cellular function. Sections 1.1.1.1-1.1.1.4 provide brief explanation
to the most significant units in the chromatin organization and their functional implications.
1.1.1.1. Formation of Chromatin Interaction

The genetic information of an organism is stored in DNA which is composed of two com-
plementary strands that form a double-helix structure. The DNA is primarily made up of a sugar
phosphate backbone and four types of nucleotides: Adenine, Thymine, Cytosine, and Guanine, rep-
resented as A, T, C, and G bases. Within the DNA, Adenine pairs with Thymine, and Cytosine
pairs with Guanine.

Chromatin interactions play a pivotal role in the regulation of gene expression which in-
fluences the cell and genomic functionality. These interactions occur within the nucleus of a cell,
where DNA is packaged into a complex structure known as chromatin. This structure undergoes var-
ious modifications and reorganizations that enable or restrict access to specific genetic information.
Through mechanisms such as looping, chromatin brings distant genes or regulatory elements into
close proximity which facilitates or hinders the recruitment of transcription factors and other regu-
latory proteins. This dynamic interplay is crucial for the orchestration of developmental processes,
the maintenance of cellular identity, and the response to external signals.

Chromatin interactions can be further categorized into those occurring within the same
chromosome (intra-chromosomal interactions) and those occurring between different chromosomes

(inter-chromosomal interactions) (Figure 1.1).
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Figure 1.1. Intra vs Inter chromosomal interactions

1.1.1.2. Role of Chromatin Interactions in Gene Regulation

Gene regulation is essential for the proper functioning of an organism. It ensures that specific
genes are expressed at the appropriate times, within the correct cells, and in precise quantities.
This process ensures that cells are adapted to various environmental conditions, facilitating proper
development, functioning, and survival. Disruptions in gene regulation can lead to the development
of various diseases, such as cancer, or other abnormalities [82]. Therefore, precise gene regulation
is fundamental for proper complex biological processes and the maintenance of healthy functioning
cell.

Regulatory elements acts as critical components for controlling the flow of genetic informa-
tion from DNA to functional proteins and those are key components in gene regulation. Those
elements such as promoters, enhancers, silencers and insulators, interact with transcription factors
and other associated proteins which influence the transcriptional machinery inside a cell. Promot-
ers are DNA sequences located directly upstream of the corresponding gene and they provide the
binding sites for RNA polymerase and transcription initiation. Enhancers are located far away
from the gene and are responsible for enhancing the transcription of a gene by increasing the rate
of transcription. Silencers can repress gene expression and decrease the rate of gene transcription.
Insulators are regulatory elements that restrict the influence of enhancers or silencers on the ex-
pression of nearby genes and act as boundaries and ensure that those regulatory elements affect

only their target genes. These regulatory elements are associated with each other to control and



maintain the complex and dynamic process of gene expression and essential for proper functioning
of cells, normal growth, development and response to environmental changes [23].

Chromatin interactions and loops bring distant genomic regions and their respective regula-
tory elements into close proximity. Known regulatory elements, such as enhancers and promoters,
often interact with each other to initiate gene transcription, despite being physically separated by
large genomic distances. Chromatin loops form when two such distant genomic regions, separated by
thousands to millions of base pairs, are brought into close proximity within the three-dimensional
organization of chromatin. These loops are frequently anchored by protein complexes, including
Cohesin and CTCF. Consequently, this looping mechanism plays a crucial role in gene regulation
and the control of gene expression. By examining these loops, scientists can understand how al-
terations in the three-dimensional genome structure are linked to a range of applications, including
disease-associated studies [148], epigenetic research [133], and gene regulation across different cell
types under various conditions [99].
1.1.1.3. Topologically Associating Domains (TADs)

Topologically associating domains (TADs) are representation of genomic regions where DNA
sequences interact more frequently with each other than with sequences outside the region. These
regions typically can span to hundereds of kilobases to several megabases and varies among different
organisms [10] [32]. TADs act as a structural unit that organize and regulate gene expression in
which regulatory elements such as enhancers and promoters are brought into close proximity. Even
though the genomic regions in these regions tend to interact more frequently with each other, the
cross-TAD interactions were also observed in recent studies [68]. Topologically Associating Domains
(TADs) are crucial for identifying regulatory elements and understanding their correlations with gene
regulation across different cell types or conditions [74]. Furthermore, analyzing disruptions in TADs
can provide insights into the mutations present in cancer genomes and the regulatory mechanisms
of oncogenes [173| [64] [44] [78].
1.1.1.4. Compartmentalization of Chromatin(A /B compartments)

Compartmentalization of Chromatin refers to the higher order organization of chromatin
in the nucleus into two main distinct types such as A compartments and B compartments. A
compartments refer to actively transcribed regions and those are usually located more internally

within the nucleus. A compartments associate with the regions of the genome that are involved in



active transcriptional process. In contrast, B compartments correspond to inactive regions. These
regions typically has a lower density of genes and low levels of gene expression. B compartments
generally located near the nuclear lamina.

The dynamic interplay between A and B compartments within the nuclear architecture
reflects not only the current state of cellular function but also plays a crucial role in revealing their
relationship with gene regulation [62]. Moreover, this interplay significantly impacts the changes in
gene expression associated with cancer progression [140).

1.1.2. Epigenetics and Chromatin Interactions

Epigenetics is a field that focuses on the chemical modifications of DNA and its associated
proteins, which can affect gene expression without altering the corresponding genetic sequence
[72]. Two common epigenetic modifications are DNA methylation and histone modification. DNA
methylation is a biochemical process involving the addition of a methyl group to the DNA molecule
which is typically at cytosine bases, leading to changes in gene expression [164|. As the evidence
suggests, changes in methylation in the promoter region of a gene can impact gene silencing [116]
[180]. Additionally, disruptions in DNA methylation patterns can lead to altered gene functionalities
and are implicated in various diseases, including cancer [152] [75] [192].

Histone modifications refer to the chemical changes in histone proteins which serve as the
structural framework around which DNA coils [132]. For instance, histone modifications associ-
ated with transcriptional activation relax the chromatin structure, making DNA more accessible
to the transcription machinery [29]. However, histone modifications can lead to either activation
or repression of gene expression, depending on the specific methylated amino acids and methyl
groups involved. Histone modification is crucial for cell cycle regulation and development and is
also associated with various genetic diseases [8] [151].

Both epigenetic modifications and chromatin interactions are associated with the control
of gene expression and gene regulation. Epigenetic modifications can activate or repress gene ex-
pression without altering the genetic sequence, using mechanisms such as DNA methylation and
histone modifications. Similarly, chromatin interactions control gene regulation by bringing distant
genomic regions and regulatory elements into close proximity. Thus, understanding epigenetics and
chromatin interactions, as well as their interplay, is crucial for unraveling the dynamics of gene

expression across various environments and cell development [120] [24].



1.1.3. Chromatin Organization in Health and Disease

The structural and organizational dynamics of chromatin are fundamental to the regula-
tion of gene expression. Disruptions in this organization are closely linked to a spectrum of health
complications and genetic diseases, including cancer and various other pathologies. Higher-order
chromatin organizations, such as topologically associating domains (TADs), are essential for orches-
trating gene regulation. Alterations in TADs can significantly affect the regulatory landscape over
long distances and potentially lead to the emergence of disease-related phenotypes [36] [113].

Instances of human limb malformations have been linked to genomic structural changes, such
as deletions, inversions, or duplications within the TAD-spanning locus of WNT6/IHH/EPHAA4-
/PAX3 [113]. Laboratory studies, involving mice engineered to carry similar genomic rearrange-
ments, have replicated these findings, emphasizing the critical role of TADs in regulating gene
expression. Moreover, alterations in the structure and organization of the genome are associated
with changes in gene expression levels, which contribute to the analysis of various pathological
conditions [58] [159].

In cancer, alterations and disruptions in the three-dimensional organization of chromatin
play a significant role in the progression of the disease. These disruptions can manifest through
various mechanisms, including copy-number variation, long-range epigenetic changes, and the ac-
tivation of atypical gene expression programs, particularly in prostate cancer cells [165]. Despite
cancer cells’ ability to organize their genomes into TADs, these domains are often smaller with ad-
ditional cancer-specific domain boundaries. These newly formed boundaries frequently occur with
areas of copy-number variation and leads to altered chromatin interactions and regulatory region
activities. This results in long-range epigenetically activated or silenced regions with concordant
gene activation or repression in prostate cancer. It illustrates the relationship between long-range
epigenetic and genomic dysregulation with the changes in higher-order chromatin interactions in
cancer [165].

The phenomenon of long-range epigenetic silencing (LRES) affecting neighboring genes has
been observed across various cancers [124] [134] [162|. That shows how 3D chromatin architecture
influences cancer hallmarks such as sustaining proliferative signalling, evading growth suppressors,

resisting cell death, activating invasion and metastasis, enabling replicative immortality, inducing



angiogenesis, reprogramming of energy metabolism, creating the tumour microenvironment, inflam-
mation, evading immune destruction, and genome instability due to mutations [57]. Therapeutic
interventions targeting spatial genome organization such as curaxins, have shown promising results
in contributing to affect this regulatory level [81] [80].

The relationship between three-dimensional genome organization and active mutational pro-
cesses influences the observed large-scale variations in mutation rates across human cancers. An
analysis of 3,000 tumor-normal paired whole-genome datasets across 42 types of cancer revealed
a significant correlation between somatic mutations and topologically associating domain (TAD)
boundaries. This finding indicates that somatic mutational load in cancer genomes co-localizes
with TAD boundaries, suggesting a significant impact of genome architecture on mutation rates [2].

The molecular mechanisms that underlie transcriptional dysregulation in cancer, including
dysregulated enhancers and aberrant enhancer-promoter interactions, offer new insights into cancer
development and progression [163] [63] [13]. They suggest potential therapeutic targets, indicating
that alterations in chromatin topology can activate oncogenes and contribute to cancer phenotypes
[52]. Structural variants such as inversions [52| and translocations [123] can facilitate the expression
of oncogenes by positioning enhancers proximal to oncogene promoters. This highlights the complex
relationship between chromatin structure and the evolution of cancer [63].

1.1.4. Chromosome Conformation Capture Methodologies

Chromosome conformation capture methods have been developed to map chromatin interac-
tions within cells. Numerous experimental approaches exist to extract these chromatin interactions,
as described below. Comprehensive list is available at [117].
1.1.4.1. Chromosome Conformation Capture (3C)

The Chromosome Conformation Capture (3C) technique is the foundational method for
identifying locations of chromosomal interactions [34]. It has served as the foundation for many
subsequent methodologies and is utilized to analyze the frequency of interactions between specific
genomic regions, providing a one-to-one mapping. The 3C technique has the capability of confirming
the existence of chromatin loops between proximal chromatin regions.

The 3C procedure involves several steps, beginning with the cross-linking of spatially proxi-
mal regions within the nucleus using formaldehyde, which stabilizes the contacts. Subsequently, the

DNA is fragmented using a restriction enzyme to isolate these contacts, followed by the ligation of



the DNA fragments. The DNA is then purified, and the genomic sites of interaction are identified
using Polymerase Chain Reaction (PCR).
1.1.4.2. Circular Chromosome Conformation Capture (4C)

The 4C (Circular Chromosome Conformation Capture) method, an evolution of the 3C
(Chromosome Conformation Capture) technique, is adept at identifying genomic sites across the
entire genome that interact with a specific locus of interest (one-to-many mapping) [156]. This
method can generate high-resolution contact maps surrounding the target genomic site and requires
fewer reads compared to methods such as Hi-C, making it more efficient in specific contexts, such
as analyzing interactions related to a particular locus or gene[157].

The 4C protocol includes several initial steps from the 3C process, such as crosslinking at the
ligation sites and fragmenting DNA using a primary restriction enzyme. Following in situ ligation of
these fragments, the crosslinks are reversed, and the DNA is purified. Then the purified fragments
are cut using a secondary restriction enzyme and ligated once more to create circularized DNA
molecules. These circularized molecules are then processed through inverse PCR, which cleaves the
ligations and attaches primers specific to the region of interest. Finally, the fragments are sequenced
using next-generation sequencing techniques. The contact frequencies are determined by analyzing
the proportion of reads mapped to particular genomic sites.
1.1.4.3. Chromosome Conformation Capture Carbon Copy or 3C-Carbon Copy(5C)

The 5C technique represents an extension of the 3C method, involving high-throughput
and comprehensive analysis of many interactions concurrently [38]. It involves the simultaneous
examination of interactions between multiple loci. Similar to the 3C method, the 5C approach
starts with the cross-linking of ligation sites, followed by fragmentation using a restriction enzyme.
After that, 5C utilizes ligation-mediated amplification to investigate interactions between multiple
loci. The amplified products are then subjected to sequencing or microarray analysis to generate
chromatin interactions.
1.1.4.4. Chromosome Conformation Capture with High Throughput Sequencing (Hi-

C) and Variants

The Hi-C method is capable of identifying genome-wide chromatin interactions, and it has

become increasingly popular due to its ability to generate a vast number of genome-wide chromatin

interactions compared to earlier methods [174] [11]. There are two primary types of Hi-C methods:



single-cell Hi-C and bulk Hi-C. Single-cell Hi-C captures chromatin interactions within individual
cells, whereas bulk Hi-C captures chromatin interactions from a mixture of cells.

The Hi-C method expands upon the 3C process by labeling the ends of DNA fragments
with biotin, assisting in the identification of ligation sites. This method involves ligating the frag-
ments, shearing the DNA to remove cross-links, and finally analyzing the chimeric reads using
high-throughput paired-end sequencing.

Due to its widespread adoption, several variants of the Hi-C method have been introduced to
address different research needs. Diploid Chromosome Conformation Capture (Dip-C) is a variant
designed for analyzing chromatin interactions at the single-cell level, thus providing insights into
cell-to-cell heterogeneity and the dynamics of chromosome organization. In situ Hi-C improves upon
the original protocol by performing the proximity ligation step within intact nuclei, thereby reducing
DNA loss during the process and enhancing the resolution and efficiency of interaction detection.
Micro-C utilizes micrococcal nuclease (MNase) for chromatin digestion, in contrast to the restriction
enzymes used in traditional Hi-C, resulting in finer resolution maps of chromatin interactions [87].
This method is particularly effective in mapping nucleosome-nucleosome interactions and revealing
detailed chromatin organization. Lastly, HIChIP modifies the Hi-C protocol by incorporating a
chromatin immunoprecipitation (ChIP) step, making it valuable for studying chromatin interactions
mediated by specific proteins of interest, similar to the ChIA-PET method.
1.1.4.5. Chromatin Interaction Analysis by Paired-End Tag Sequencing(ChIA-PET)

Compared to the Hi-C method, which provides a comprehensive overview of all chromatin
interactions within the nucleus, ChIA-PET specifically targets interactions mediated by particular
proteins. It combines chromatin immunoprecipitation (ChIP) with DNA sequencing to identify
interactions between DNA regions bound by a specific protein. We will discuss another variation
of the Chromatin Immunoprecipitation method, called ChIP-Seq, which focuses on the interactions
between DNA and proteins, in later sections on epigenetic analysis.

This method involves several steps, including cross-linking to stabilize protein-DNA inter-
actions, immunoprecipitation to enrich DNA segments bound by specific proteins, and sequencing
to identify the interacting DNA regions. This technique is often utilized to analyze the role of
transcription factors in the formation of interactions between DNA elements and their relationship

to gene regulation. Consequently, ChIA-PET is particularly useful for revealing the role of pro-
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teins such as transcription factors [195], estrogen receptors [59], CTCF binding factors, and histone
proteins in the organization of the genome into functional domains.
1.1.5. Techniques in Epigenetic Analysis

Epigenetic analysis techniques are essential for understanding gene regulation beyond mere
DNA sequence analysis. These methods focus on studying DNA methylation, histone modifications,
and DNA-binding proteins, and etc. In this dissertation, we analyzed data generated using tech-
niques specifically aimed at processing histone modifications, DNA methylation, and transcription
factor binding sites. Chromatin Immunoprecipitation Sequencing (ChIP-Seq) stands out as a robust
and powerful technique that merges chromatin immunoprecipitation with high-throughput DNA se-
quencing to investigate protein-DNA interactions within the genome. The ChIP-Seq process begins
by crosslinking proteins to DNA, fragmenting the DNA, and then selectively isolating specific DNA-
protein complexes. Then the DNA is purified, sequenced, and mapped to a reference genome for
enrichment analysis. The enrichment of DNA sequences in corresponding genomic regions signifies
the locations of those specific protein binding sites.

H3K4me3 and H3K27ac are examples of histone modifications, each representing a distinct
epigenetic mark that plays a crucial role in the regulation of gene expression. H3K4me3 involves
the addition of three methyl groups to the lysine 4 residue of histone H3 and is strongly associated
with actively transcribed genes, primarily located near the promoter regions. This modification
serves as an indicator of active gene promoters, facilitating transcription initiation [66]. Conversely,
H3K27ac, which involves the addition of an acetyl group to the lysine 27 residue of histone H3, is
associated with chromatin relaxation and active gene transcription. Typically found near enhancer
regions, H3K27ac serves as an indicator of active enhancers [26]. The presence and patterns of these
epigenetic markers are essential for understanding gene activity and the various aspects of active
gene regions.

1.1.6. Existing Computational Methods for Analyzing Chromatin Interactions

In this thesis, we propose advanced computational methodologies for processing chromatin
interaction data. This section analyzes existing computational techniques and organizes them based
on their application to various aspects of chromatin interaction analysis. These include methods
for single-cell interactions, bulk interactions, the analysis of raw interaction reads, and integrative

analytical approaches. The underlying principles and methodologies of these existing techniques
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have provided a solid foundation, enabling us to introduce novel computational methods. These
existing methods are crucial for identifying appropriate reference datasets, conducting thorough
benchmarking of results, and perform comprehensive comparisons. Additionally, we do not cover
the most common genomic tools such as FastQQC, BWA, and Bowtie, as they are widely recognized
for quality control and alignment tasks in various sequencing analyses. Instead, our focus is on
more specialized computational methods specifically designed for chromatin interaction processing
workflows.

Tables 1.1 and Table 1.2 list the majority of the Hi-C tools and methodologies utilized in our
proposed computational methodologies for various purposes, including preprocessing, visualization,
and benchmarking, as well as comparing results.
1.1.6.1. Computational Methods for Analyzing Bulk Chromatin Interactions

Bulk chromatin interaction analysis enables researchers to examine the three-dimensional
structure of the genome and its functional implications. The Bulk Hi-C method is widely regarded
as the most effective for analyzing chromatin interactions, due to its ability to generate large vol-
umes of experimental data. However, the raw data from Hi-C experiments include noise, biases,
and artifacts resulting from experimental procedures and sequencing technologies. Advanced com-
putational methods are required to correct these biases, normalize the data, and transform the raw
interaction frequencies into meaningful biological insights. These methods should be capable of
identifying chromatin interactions with higher confidence along with the comparison of chromatin
structures across different cell types or conditions, and assisting to uncover the underlying prin-
ciples of genome organization. Without such computational preprocessing, our ability to explore
the complexities of genomic architecture and its impact on cellular functions would be significantly
limited.

Numerous bulk Hi-C datasets are available across various organisms, including different
human tissues, disease cells, various animal species, and even plants [31|. This extensive collec-
tion enables the exploration of chromatin interactions between different species, cell cycles, disease
phases, and between normal and disease cells. Comprehensive end-to-end pipelines exist, ranging
from the processing of raw interaction data to the generation of processed contact matrices and
visualizations. HiC-Pro [150], hiclib [71], Hicup [182] and Juicer [40] are among the most commonly

used tools in the research community.
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Table 1.1. Existing Hi-C tools and methodologies-1

Tool Purpose Source Reference
HiC-Pro Pipeline to process data from raw reads to https://github.com/ [150]
normalized contact maps nservant/HiC-Pro
FitHiC and  Identify significant inter-chromosomal and https://github.com/ [6], [85]
FitHiC2 intra-chromosomal interactions from given ay-lab/fithic
contacts
HiCCUPS  Identify significant inter-chromosomal and https://github.com/ [136]
intra-chromosomal interactions from given aidenlab/juicer
contacts
hiclib Generate contact maps from raw reads https://github. [71]
com/mirnylab/
hiclib-legacy
scHiC- Set of tools to analyze, process and visu- https://github. [184]
Explorer alize hi-C and single cell Hi-C data com/joachimwolff/
scHiCExplorer
cooltools A toolset to analyze Hi-C data for var- https://github.com/ [126]
ious tasks including normalization, com- open2c/cooltools?
partment and TADs analysis tab=readme-ov-file
mHi-C Recover multimapping reads when align- https://github.com/ [200]
ing hi-c raw data keleslab/mHiC
HiCrep Measure reproducibility of Hi-C contact https://github.com/ [189]
matrices TaoYang-dev/hicrep
HiC-DC Identify Significant interactions https://bitbucket.  [2]]
org/leslielab/
hic-dc/src/master/
diffHic Detect differential genomic interactions in  https://www. [111]
Hi-C data bioconductor.org/
packages/release/
bioc/html/diffHic.
html
SnapHiC Identify significant interactions from sin- https://github.com/ [191]
gle cell Hi-C data HuMingLab/SnapHiC
Hicup Provide a pipeline to process raw fastq https://github.com/ [182]
reads including steps: Truncating, map- StevenWingett/HiCUP
ping, filtering and deduplicating
Hic- Provide a suite of tools designed for Hi-C https://github. [22]
inspector data processing tasks including aligning, com/HiC-inspector/

counting, filtering, and generating contact
maps

HiC-inspector
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https://github.com/nservant/HiC-Pro
https://github.com/nservant/HiC-Pro
https://github.com/ay-lab/fithic
https://github.com/ay-lab/fithic
https://github.com/aidenlab/juicer
https://github.com/aidenlab/juicer
https://github.com/mirnylab/hiclib-legacy
https://github.com/mirnylab/hiclib-legacy
https://github.com/mirnylab/hiclib-legacy
https://github.com/joachimwolff/scHiCExplorer
https://github.com/joachimwolff/scHiCExplorer
https://github.com/joachimwolff/scHiCExplorer
https://github.com/open2c/cooltools?tab=readme-ov-file
https://github.com/open2c/cooltools?tab=readme-ov-file
https://github.com/open2c/cooltools?tab=readme-ov-file
https://github.com/keleslab/mHiC
https://github.com/keleslab/mHiC
https://github.com/TaoYang-dev/hicrep
https://github.com/TaoYang-dev/hicrep
https://bitbucket.org/leslielab/hic-dc/src/master/
https://bitbucket.org/leslielab/hic-dc/src/master/
https://bitbucket.org/leslielab/hic-dc/src/master/
https://www.bioconductor.org/packages/release/bioc/html/diffHic.html
https://www.bioconductor.org/packages/release/bioc/html/diffHic.html
https://www.bioconductor.org/packages/release/bioc/html/diffHic.html
https://www.bioconductor.org/packages/release/bioc/html/diffHic.html
https://www.bioconductor.org/packages/release/bioc/html/diffHic.html
https://github.com/HuMingLab/SnapHiC
https://github.com/HuMingLab/SnapHiC
https://github.com/StevenWingett/HiCUP
https://github.com/StevenWingett/HiCUP
https://github.com/HiC-inspector/HiC-inspector
https://github.com/HiC-inspector/HiC-inspector
https://github.com/HiC-inspector/HiC-inspector

Table 1.2. Existing Hi-C tools and methodologies-2

Tool Purpose Source Reference

Hippie A pipeline to extract intra and inter- http://wanglab. [70]
chromosomal enhancer-target gene rela- pcbi.upenn.edu/
tionships hippie/

Hicdat Provide a graphical interface to perform https://github.com/ [145]
hic processing tasks along with other data MWSchmid/HiCdat
types including Chip-seq and RNA-seq

Hifive A set of tools for processing HiC and 5C https://github.com/ [144]
data bxlab/hifive

Hic-bench A set of pipelines for Hi-C and ChIP-Seq https://github.com/ [93]
analysis NYU-BFX/hic-bench

Hic-spector A matrix library for spectral and repro- https://github. [188]
ducibility analysis of Hi-C contact maps com/gersteinlab/

HiC-spector

Hibrowse A locally deployable browser designed for https://github. [101]
the visualization and analysis of Hi-C com/lyotvincent/
data, along with its genetic and epigenetic HiBrowser
annotations

Juicebox visualization software for Hi-C contact https://github.com/ [40]
maps aidenlab/Juicebox

HiCPlus Enhance the resolution of Hi-C contact https://github.com/ [19§]
maps utilizing convolutional neural net- zhangyan32/HiCPlus
works

HiCNN HiCPlus iteration using deep convolu- http://dna.cs. [109]
tional neural networks miami.edu/HiCNN/

HicGAN Improve resolution of Hi-C maps using https://github.com/ [108]
generative adversarial networks (GANs)  kimmo1019/hicGAN

DeepHiC Enhance the resolution of Hi-C contact https://github.com/ [65]
maps through Generative Adversarial Net- omegahh/DeepHiC

work
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http://wanglab.pcbi.upenn.edu/hippie/
http://wanglab.pcbi.upenn.edu/hippie/
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https://github.com/MWSchmid/HiCdat
https://github.com/MWSchmid/HiCdat
https://github.com/bxlab/hifive
https://github.com/bxlab/hifive
https://github.com/NYU-BFX/hic-bench
https://github.com/NYU-BFX/hic-bench
https://github.com/gersteinlab/HiC-spector
https://github.com/gersteinlab/HiC-spector
https://github.com/gersteinlab/HiC-spector
https://github.com/lyotvincent/HiBrowser
https://github.com/lyotvincent/HiBrowser
https://github.com/lyotvincent/HiBrowser
https://github.com/aidenlab/Juicebox
https://github.com/aidenlab/Juicebox
https://github.com/zhangyan32/HiCPlus
https://github.com/zhangyan32/HiCPlus
http://dna.cs.miami.edu/HiCNN/
http://dna.cs.miami.edu/HiCNN/
https://github.com/kimmo1019/hicGAN
https://github.com/kimmo1019/hicGAN
https://github.com/omegahh/DeepHiC
https://github.com/omegahh/DeepHiC

HiC-Pro offers an integrated pipeline for processing Hi-C data, starting with the alignment
of reads to the reference genome. These reads are then mapped to restriction fragments, followed by
the classification and removal of invalid interaction pairs. The pipeline concludes by providing raw
contact matrices alongside ICE-normalized contacts. Additionally, HiC-Pro supports allele-specific
analysis when relevant data are supplied [150|. Similarily, hiclib is a Python library that provides a
flexible framework for Hi-C data analysis. It supports preprocessing, mapping, and filtering of Hi-C
data, allowing users to interact with the data throughout each step [71|. However, hiclib requires a
more involved setup and poses a steeper learning curve for individuals unfamiliar with programming.
Juicer is another platform that specializes in generating Hi-C maps from raw reads. It offers a suite
of command-line tools for various annotations and analyses. Typically, these pipelines focus solely
on uniquely mapping reads and overlooked multi-mapping reads and other read types. To overcome
this limitation, multi-mapping reads recovery algorithms similar to mHiC have been developed [200].
Drawing inspiration from these, this thesis proposes a heuristic strategy-based method to recover
multi-mapping reads.

However, the above mentioned tools lack the capability to identify statistically significant
and more meaningful interactions. To address this, tools such as FitHiC , followed by FitHiC2 [6]
[85] and HiCCUPS [136], were introduced to filter out statistically significant interactions. FitHiC
applies a statistical approach to assign confidence scores on interactions based on the frequency of
contact between genomic loci and utilizes a spline regression model to represent distance-dependent
interaction frequencies. FitHiC2 was later introduced to enhance the effectiveness of distinguishing
between random noise and biologically meaningful interactions. HICCUPS, similar to FitHiC, is a
peak-calling algorithm and it identifies areas where interactions between parts of the genome are
unusually high considering the surrounded local neighborhood. It compares the frequencies of pixels
in the contact matrices to those of surrounding areas and identifies statistically significant peaks
according to the predefined four neighborhoods around the corresponding pixel.

Furthermore, various computational tools have been implemented to serve different purposes
in Hi-C processing pipelines. HOMER is a comprehensive suite designed to provide functionalities
such as annotation, normalization, integration with other genomic data, and visualization [60].
However, HOMER does not include read mapping functionality. GOTHiC provides a probabilistic

model to identify genuine interactions using a binomial test while correcting for biases [115]. As
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the need to compare Hi-C data increases, tools such as diffHiC [111] have been introduced to
detect differential genomic interactions in Hi-C data. HiCExplorer [184] is another comprehensive
suite that includes the functionalities for processing, normalization, analysis, and visualization of
Hi-C data. It includes additional capabilities such as the identification of topologically associating
domains (TADs) and A /B compartments. These tools and frameworks have laid a strong foundation
for Hi-C data analysis and opened up numerous possibilities for continuing to enhance and introduce
more advanced computational methodologies.

1.1.6.2. Computational Methods for Analyzing Single Cell Chromatin Interactions

Single-cell Hi-C data provide an opportunity for researchers to analyze the heterogeneity and
dynamic nature of genome architecture across different cell types, developmental stages, and disease
states [121] [17]. Unlike bulk Hi-C data, which aggregates chromatin interactions from millions
of cells, single-cell Hi-C captures the chromatin interactions within individual cells. Consequently,
single-cell Hi-C data present unique challenges, including sparse contact matrices and increased noise
and variability between cells due to lower number of reads generated per experiment. Furthermore,
there are fewer single-cell Hi-C datasets available compared to bulk Hi-C datasets. For example,
a dataset comprising 10,696 mouse and human single cells, introduced by Ramani et al. [135]
as part of the single-cell combinatorial indexed Hi-C (sciHi-C) method, contains an average of
25,632 contact pairs per cell. Followed by that, Kim et al. [86] generated data from over 19,000
cells across five human cell lines (GM12878, H1Esc, HFF, IMR90, and HAP1) using the sci-Hi-C
method, averaging 8,167 contacts per cell. Consequently, most available single-cell experimental
data introduce significant sparsity into the contact matrices. The single-cell dataset of the human
brain, generated by Lee et al. [94] using the single-nucleus methyl-3C sequencing method, consists
of 398,726 contacts per cell. Similarly, the cell cycle dataset of mouse embryonic cells produced
by Nagano et al. [121] shows comparable numbers of contacts per cell. However, these figures still
represent a relatively low sequencing depth for revealing insightful patterns.

To mitigate these issues, imputation methods have been introduced to enhance single-cell
data by predicting missing interactions and reducing data sparsity. These imputation algorithms
utilizes probabilistic approaches, such as the random walk with restart [191], to impute and filter
out significant interactions. Despite their benefits, these algorithms also have limitations, which

are discussed in subsequent chapters. Beyond identifying significant interactions, clustering within
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single cells according to the cell type or phase has emerged as a major application. Approaches
based on random walks and linear convolution have been adapted to implement a single-cell clus-
tering algorithm|[201], facilitating the analysis of TADs (Topologically Associating Domains) across
single cells and enabling visualizations. Additionally, methods based on nearest neighbors and
unsupervised embedding have been utilized in clustering single cells [183] [106].

Single-cell Hi-C analysis tools and methodologies are still in their early stages, and re-
searchers often resort to applying bulk Hi-C methodologies to single-cell data to avoid limitations.
Further research is needed to experiment advanced computational algorithms and data structures
on single cell hi-c¢ data to uncover hidden patterns and variations. As a result, in this work, we
introduce two novel computational tools designed to identify statistically significant interactions
from single-cell Hi-C data.
1.1.6.3. Computational Methods for Integrative Analysis

Hi-C data serves as a valuable resource for deciphering chromatin topology and functional
regulatory elements. However, Hi-C data alone may not provide a complete picture of the relation-
ship between gene regulation and chromatin structure. The capabilities of Hi-C experiments are
primarily limited to reflecting genomic regions in close proximity without necessarily representing
the functional relationship between them. Additionally, various noises and biases associated with
Hi-C data complicate the differentiation between specific interactions occurring due to random noise
or actual functional relationships.

By integrating Hi-C data with other omics datasets, such as gene expression, DNA methy-
lation, histone modifications, transcription factor binding, and chromatin accessibility, researchers
can gain a comprehensive overview of the regulatory mechanisms correlating gene expression with
cellular function. Moreover, one-dimensional (1D) chromatin data, generated using experimental
approaches like ChIP-Seq, tend to produce genomic signals at a much higher resolution than Hi-
C data and it offers a more fine-grained analysis of genomic structure. Numerous computational
methods have been introduced to understand the interplay between different types of data related
to chromatin structure [56] [76] [5]. These methodologies enhance our understanding of the complex
interactions within the genome and provides a more holistic view of cellular function and regulation.

Higashi is a computational strategy for integrating single-cell Hi-C data with methylation

data [196]. It utilizes a hypergraph neural network to model the relationships between different
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chromatin regions and generate low dimensional embedding which allows for the characterization
of genome structures into compartments and TADs along with cell type classification. The method
offers a refined perspective on chromatin organization, illustrating how the integration of Hi-C data
with other omics datasets at the single-cell level can support the development of an embedding
model that reflects diverse cell types and cellular states.

Graph embedding techniques have successfully been used to identify genomic subcompart-
ments from Hi-C data along with integration of other omics data for evaluation [4]. By convert-
ing high-dimensional chromatin interaction data into a more manageable lower-dimensional space,
these methods unveil patterns and structures that remain obscured by standard Hi-C workflows and
pipelines. Unsupervised learning algorithms can identify clusters within this data, corresponding to
genomic regions with similar interaction profiles. Similarly, graph embeddings of both 1D genomic
signals and interactions have also been utilized to annotate chromatin domains [155].

Approaches based on Hidden Markov Models have also been applied in the annotation of
chromatin states using epigenomic signals. DeepChIA-PET, a deep learning framework, is designed
to predict ChIA-PET interactions from Hi-C and ChIP-seq data through a convolutional neural
network. This reveals that integrating ChIP-seq data enhances model performance compared to
using the Hi-C network alone which implies that the combination of different omics datasets leads
to a more nuanced understanding of chromatin complexity [110].

Resources such as LungCancer3D [185] offer comprehensive databases for merging lung can-
cer chromatin architecture information with multi-omics data. These databases are crucial in un-
derstanding disease-specific alterations in chromatin organization and their implications for cancer
biology. Moreover, the integration of Hi-C data with gene expression data can reveal how chromatin
contacts affect gene regulation and co-expression, as demonstrated by studies from [141] [100] [146].
1.1.7. Computational Concepts and Data Representations

Experiments such as Hi-C, which generate genome-wide chromatin interactions, consists of a
high noise-to-signal ratio in the output. This issue arises from various factors, including the inherent
nature of the biological elements, limitations of experimental techniques, and the complexity of the
data being collected. Additionally, the costs associated with expanding experimental data coverage
are substantial which makes it crucial to implement sophisticated computational strategies to derive

meaningful biological insights from the data. To manage these types of data, advanced data mining
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and statistical techniques are often applied due to their ability to filter out noise and identify patterns
hidden within vast datasets. Moreover, robust data structures are required for efficient analysis
and processing of this information. The unique characteristics of chromatin interaction data offer
numerous opportunities to apply advanced computational concepts tailored to their specific nature
and representations. Chromatin interaction data are deposited as raw FAST(Q reads in repositories.
After alignment to the reference genome, these data are typically represented as interaction pairs,
where two genomic regions are shown to interact with each other. These paired reads enable
representation through various data structures, including matrices, graphs, and contact maps.

Representing interactions as matrices is the most common approach, as it is capable to
handle the application of various statistical and matrix operations efficiently. When converting
paired reads into matrices, genomic bins are often used to generate more meaningful interaction
pairs based on the resolution and nature of the experimental data. A genomic bin is created by
dividing the entire genome, or a chromosome, into regions of equal size. The resolution of bins in
Hi-C experiments can range from kilobases to millions of bases, determined by the study’s nature
and functional implications. Kilobase resolutions are utilized to analyze regulatory elements, loops,
and other functional elements associated with gene regulation. For analyzing higher-order chro-
matin topologies, such as topologically associating domains (TADs) and compartments, megabase
resolutions are often used. After grouping the raw reads into genomic bin pairs, 2D matrices are
created, representing the linear genome divided into genomic bins as dimensions. This results in a
symmetric matrix in which the entries correspond to the number of raw reads associated with each
pair of genomic bins.

Another representation of chromatin interactions is through graphs or networks. An interac-
tion graph can be constructed with nodes representing genomic bins or regions, and edges indicating
whether a corresponding pair of bins contains an interaction. This graph may also be weighted,
where the weight corresponds to the raw read count or a normalized value that represents the sig-
nificance of the edge. Various graph learning techniques and network related information such as
centrality and connected components can be utilized to decipher underlying hidden representations
and patterns within these graphs [127]. Additionally, graph embedding algorithms can be applied

to learn the latent representations of these graphs [4].
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Chromatin interaction data are represented using various visualization techniques to extract
information from different perspectives, including heatmaps, arc diagrams, 3D genome models, and
browser-based tools. Heatmaps are particularly useful in analyzing global interaction patterns across
the entire genome or within specific chromosomal regions. They aid in identifying regions of high
interaction (hotspots) that could be crucial for gene regulation and chromatin domain formation
including Topologically Associating Domains (TADs) and compartments. In arc diagrams, such as
Circos Plots [193], the genome is typically arranged in a circular layout, facilitating the visualiza-
tion of interactions between distant genomic regions. These diagrams are especially effective for
visualizing inter-chromosomal interactions. Furthermore, 3D genome models have been developed
recently due to advances in technology and computational methods, to model the organization of
chromatin within the nucleus in three-dimensional space. These models are designed to study the
spatial context of genomic interactions and get accurate representations of physical interactions in
chromatin. Browser-based tools, such as the UCSC Genome Browser [83] or WashU epigenome
browser [98], allow users to visualize chromatin interaction data alongside a wide array of other
genomic signals, including epigenetic and regulatory element information. These tools assist in
studies that are focused on integrative genomic analysis and hypothesis generation.

1.2. Motivation and Problem Definition

Within the broad domain of genomics, understanding the three-dimensional organization of
the genome is essential for deciphering the complexities of cellular function and gene regulation.
Chromatin interaction data, particularly generated by Hi-C, capture genome-wide interactions,
which can be used to explain functional relationships and regulatory mechanisms in cellular growth,
cancer development, and other pathologies. However, the interpretation of Hi-C data remains a
significant challenge due to various computational challenges in analysis, processing, and integration
with other genomic datasets.

The main obstacle in interpreting Hi-C data lies in the limitations of current computational
methodologies, which are often constrained by data, resolution, and accuracy. These issues need to
be addressed at various stages of the Hi-C processing pipelines. Firstly, it is necessary to recover as
many reads as possible from the raw genomic data during alignment to the genome and to assess
the possibility of recovering multi-mapping reads in addition to unique mapping reads to enhance

the output. Secondly, after generating read pairs, it is crucial to filter out significant interactions to
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accurately distinguish biologically meaningful interactions. Currently, very few methodologies have
been developed for identifying significant interactions from single-cell Hi-C data. Lastly, integrating
Hi-C data with other genomic datasets, such as epigenomic data, is essential for uncovering hidden
representations and identifying the role of different data in genome organization.

In response to these challenges, our research is aimed at developing advanced computational
strategies to overcome the limitations present in various stages of the Hi-C processing pipeline. By
leveraging advancements in data mining, machine learning, and high-performance computing, we
propose the construction of diverse computational tools and methodologies specifically designed to
process, analyze, and interpret Hi-C data with greater accuracy and efficiency. We anticipate that
the studies detailed in this thesis will significantly enhance future research efforts to decode the com-
plexities of chromatin organization and provide new insights into a deeper understanding of human
health and disease, ultimately contributing to the development of novel therapeutic strategies.
1.3. Contributions

We introduced a novel methodology for identifying statistically frequent inter-chromosomal
interactions using single-cell Hi-C data. To the best of our knowledge, this is the first implementa-
tion of a tool for this purpose that is publicly available. In the proposed method, inter-chromosomal
interactions are represented as a network. This is followed by the application of a Binomial dis-
tribution measurement for filtering, to identify loci with statistically significant interactions. The
results were evaluated both statistically and biologically, in comparison with existing literature [18].

We proposed a methodology for recovering multi-mapping reads using a heuristic strategy
to enhance Hi-C data. The method involves the recovery of reads based on their distance from the
restriction enzyme cutting sites. The performance was compared with that of mHi-C, the only other
existing tool of its kind. Additionally, the results were evaluated through biological interpretation
[19].

We proposed a computational method to filter statistically significant intra-chromosomal
interactions from single-cell Hi-C data. This proposed method comprises three key steps: imputation
based on the nearest neighbor, normalization, and identification of significant interactions. SnapHiC,
the only existing method, was utilized to benchmark the results, and ChIP-seq data, along with

promoter data, were used to evaluate the biological interpretation of the output [20].
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We conducted an integrative analysis of chromatin interaction data and epigenetic signals
using a graph embedding model. In this study, we focused on identifying the roles of interaction
and epigenetic data in constructing chromatin organization. The results were evaluated using a
statistical approach, ensuring the global preservation of the chromatin network.

1.4. Dissertation Overview

The dissertation introduces advanced computational strategies designed to enhance both the
efficiency and accuracy throughout various phases of the Hi-C processing pipeline. Typically, Hi-C
processing pipelines encompass several critical stages, including the mapping and filtering of reads,
the paring of valid reads, and the identification of significant chromatin interactions, as illustrated
in Figure 1.2. These identified valid pairs and significant chromatin interactions are pivotal for
downstream analytical tasks. Such tasks include visualizations, analysis of higher-order chromatin

organization, and integrative analysis, also depicted in Figure 1.2.

Hi-C processing pipeline

Paired End Reads . 1. Mapping and 2. Binning and . 4. Significant chromatin
(Fastq format) [ Filtering » normalization » 3. Contact Matrix » interactions

Heatmaps Topologically associated domains « Epigenetics

Visualization Analyze domains . Integrative anaIYSIS
. . * Multiple types or organisms
* Browser based methods ¢ Compartments .
* Gene expression

Downstream Analysis

Figure 1.2. Hi-C processing pipeline

Each chapter introduces a distinct computational methodology or tool tailored for specific
stages of the process. Specifically, the methodologies discussed in Chapters 2 and 4 concentrate
on detecting significant chromatin interactions at the single-cell level, correlating with Step 4 of
the Hi-C processing pipeline, as illustrated in Figure 1.2. Chapter 3 is dedicated to improving the

mapping and filtering stages of Hi-C reads, aligning with Step 1 in Figure 1.2. Chapter 5 delves into
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an integrative analysis that combines chromatin interaction data with epigenetic markers, correlated

to the downstream analysis stage.
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2. NETWORK-BASED METHOD FOR REGIONS WITH
STATISTICALLY FREQUENT INTERCHROMOSOMAL
INTERACTIONS AT SINGLE-CELL RESOLUTION

2.1. Abstract
2.1.1. Background

Chromosome conformation capture-based methods, especially Hi-C, enable scientists to de-
tect genome-wide chromatin interactions and study the spatial organization of chromatin, which
plays important roles in gene expression regulation, DNA replication and repair etc. Thus, de-
veloping computational methods to unravel patterns behind the data becomes critical. Existing
computational methods focus on intrachromosomal interactions and ignore interchromosomal in-
teractions partly because there is no prior knowledge for interchromosomal interactions and the
frequency of interchromosomal interactions is much lower while the search space is much larger.
With the development of single-cell technologies, the advent of single-cell Hi-C makes interrogating
the spatial structure of chromatin at single-cell resolution possible. It also brings a new type of
frequency information, the number of single cells with chromatin interactions between two disjoint
chromosome regions.
2.1.2. Results

Considering the lack of computational methods on interchromosomal interactions and the
unsurprisingly frequent intrachromosomal interactions along the diagonal of a chromatin contact
map, we propose a computational method dedicated to analyzing interchromosomal interactions of
single-cell Hi-C with this new frequency information. To the best of our knowledge, our proposed
tool is the first to identify regions with statistically frequent interchromosomal interactions at single-
cell resolution. We demonstrate that the tool utilizing networks and binomial statistical tests can
identify interesting structural regions through visualization, comparison and enrichment analysis

and it also supports different configurations to provide users with flexibility.
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2.2. Introduction

Stretching the DNA in a human cell, it would be about two meters long, but how can it
fit into a tiny space of about 6 microns across? DNA of cells of different tissues (e.g. neural cells
and heart cells) are essentially the same, but why do these cells function disparately and what
factors turn the genes’ on and off and result in the disparities? To gain insights into these ques-
tions, advances in chromosome conformation capture-based technologies have provided researchers
a great opportunity to study the higher-order spatial organization of chromatin. A popular method
is chromosome conformation capture with high-throughput sequencing (Hi-C), in which genomes
are cross-linked with formaldehyde, fragmented with enzymes, randomly ligated in proximity and
finally sequenced by next-generation sequencing platforms. After raw reads are processed by bioin-
formatics pipelines, a genome-wide contact map of a collection of cells is generated and it reveals
intrachromosomal interactions and interchromosomal interactions. Intrachromosomal interactions
refer to the valid ligations between DNA fragments of the same chromosome and interchromosomal
interactions refer to the valid ligations between DNA fragments of different chromosomes. Intra-
chromosomal interactions are the majority of chromatin interactions in Hi-C experiments and their
interaction frequencies are genomic distance dependent [90]. Interchromosomal interactions are
two orders of magnitude weaker than intrachromosomal interactions [142| and interchromosomal
interactions contain a higher proportion of noise than intrachromosomal interactions [105].

As the popularity of the Hi-C approach grows, large amounts of data have been generated
and significant endeavors are devoted to developing computational methods and tools. These com-
putational methods and tools can be coarsely divided into two categories, Hi-C data processing and
downstream analysis. For the first category, there are some existing tools used to generate valid
chromatin interactions from raw sequencing reads [182][71][22][69][145]|[150]{144][41][93]. They fol-
low similar processing steps and may adopt different sequence alignment strategies (pre-truncation,
iterative and trimming), filtering criteria (read-level, read-pair level, strand and distance) and nor-
malization methods (explicit-factor correction, matrix balancing and joint correction). Besides,
there are some computational tools to exam the quality of Hi-C data by measuring the reproducibil-
ity of Hi-C replicates [144][189][172][188]. For the second category, there are several major analysis

tasks to gain insights into the spatial structure and function of chromatin. A /B compartments which
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correspond to open and closed chromatin can be identified by using Principle Component Analysis
on transformed chromatin contact maps [104]. Megabase-sized Topologically Associating Domains
(TADs) can be discovered by using a Hidden Markov Model with a directionality index [36]. There
are other methods available to detect TADs [43][136][97][149][181][154]. As TADs are defined as
continuous chromosomal loci, these methods only take intrachromosomal interactions into consider-
ation. Statistically significant long-range chromatin interactions are extracted from Hi-C data. As
there is no prior knowledge about interchromosomal interactions, computational methods focus on
intrachromosomal interactions because the frequency of interactions between two intrachromosomal
loci heavily depends on the genomic distance between the loci. Some methods identify statisti-
cally significant chromatin interactions by fitting the frequencies of intrachromosomal interactions
with certain distributions, such as power-law [104], double-exponential [168] and negative binomial
[74]. Instead of assuming a certain distribution, a nonparametric method [6] identifies statisti-
cally significant chromatin interactions by estimating the genomic distance-dependence relationship
with splines. Furthermore, there is a method [136] extracting significant chromatin interactions as
calling peaks in a chromatin contact map within the surrounding two-dimensional region. Hi-C
data are also used to construct three-dimensional models of chromatin structure. Some methods
[168][39][7][175][199][12]|9][96] try to learn a consensus chromatin structure of a collection of cells.
Some methods [138][49][67][179][130][171] are intended to learn a set of chromatin structures repre-
sentative of the observed chromatin interaction data. Besides the above downstream analysis tasks,
there are some computational methods to carry out differential analysis on Hi-C data [111][107]
and multiple two-dimensional visualization tools exist [202][129][40]. For a comprehensive list of
computational tools on Hi-C data, please check out the Omictools website [61] on high-throughput
chromosome conformation capture data analysis software tools.

There are substantial computational methods and tools for downstream analysis of Hi-C
data, however, most of them focus on intrachromosomal interactions and little attention is paid
to interchromosomal interactions. Partly because there is no prior knowledge such as the strong
genomic distance-dependence relationship between frequency of intrachromosomal interactions and
the genomic distance. In addition, the frequency of the interchromosomal interactions is much
lower than intrachromosomal interactions while their search space is much larger (bin pairs across

chromosomes VS bin pairs within chromosomes). To the best of our knowledge, there are few
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computational studies that are dedicated to bulk Hi-C interchromosomal interactions. One study
presents an investigation on human and mouse interchromosomal contacts and provides insights into
mammalian chromatin organization [36|. A recent work develops a computational method based on
an autoencoder and a multilayer perceptron classifier to impute high-resolution interchromosomal
interactions [187]. Another paper presents two computational methods to estimate the transcription
factors enriched in the interchromosomal interactions in yeast [27].

With the development of single-cell technologies, some single-cell Hi-C (scHi-C) approaches
[121][45][135] are invented and therefore we can examine chromatin interactions at single-cell resolu-
tion. They also bring a new type of frequency information, the number of single cells with chromatin
interactions between two disjoint chromosome regions. Generally these chromosome regions are de-
fined by dividing chromosomes into equal-sized bins according to a resolution specified by users.
Considering the lack of computational methods on interchromosomal interactions and the obvious
pattern of intrachromosomal interactions along the diagonal of a chromatin contact map, we pro-
pose a computational method dedicated to analyzing interchromosomal interactions of single-cell
Hi-C with this new frequency information. The fundamental difference between our research and
previous research on interchromosomal interactions is our research is based on the new frequency
information observed from each cell among all cells profiled. Since a bulk Hi-C experiment pools
cells together at the very beginning so it can’t discern whether a chromosomal interaction is shared
by single cells or not. Therefore, computational methods on bulk Hi-C experiments don’t consider
the new frequency information at single-cell level, which is not available in bulk Hi-C experiments.
In addition, when dealing with frequent interchromosomal interactions our method takes multiple
contact maps as its inputs while computational methods on bulk Hi-C take one contact map as
their inputs. What is more, to the best of our knowledge there is no tool available for frequent in-
terchromosomal interactions. Specifically, we develop a computational tool to identify regions with
statistically frequent interchromosomal interactions and make it accessible to the public. We be-
lieve that the regions associated with statistically frequent interchromosomal interactions under the
single-cell context may be helpful for new hypotheses and functionally important therefore deserve
more attention. Finally, frequent pattern mining is a longstanding topic in data mining research
[55].

Our contributions may be stated as follows:
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e We propose a computational method to identify regions associated with statistically frequent

interchromosomal interactions at single-cell resolution.

e To the best of our knowledge, we are the first to implement a tool to serve the purpose and
make it open to the public. To accommodate different scHi-C experiments, the tool is flexible

on configurations.

o We demonstrate that using our proposed tool on two real scHi-C data sets, it can identify

interesting structural regions.

The rest of chapter is organized as follows. The “Method” delineates our proposed method
in detail. The “Data” introduces two scHi-C data sets as our inputs. The “Results and discussion”
demonstrates that our proposed tool’s usability on identifying interesting regions and flexibility of
configurations. The “Conclusion” sections concludes that the tool will be useful for analyzing scHi-C
interchromosomal interactions.

2.3. Method

In Fig. 2.1, the workflow of our proposed tool is illustrated and it includes three steps,
network construction, statistical measurement calculation and region selection. The inputs of our
tool are chromatin interactions of single cells, which are represented in heatmaps and can be eas-
ily generated with scHi-C processing pipelines such as NueProcess [161|. The outputs of our tool
are identified regions, whose interchromosomal interactions are statistically frequent, along with fre-
quencies and p-values. They are provided to help users refine identified regions with some frequency
or p-value cutoff.

First, we construct a network by using interchromosomal interactions for each cell respec-
tively. Due to low read coverages of scHi-C experiments and the more complex chromosomal struc-
tures of larger mammalian genomes, i.e. homo sapiens and mus musculus, chromosomes are divided
into equal-sized bins to accumulate sufficient signals. Each bin is represented as a node with an
index, and if there is an interchromosomal interaction whose two ends fall within two bins then
the corresponding two nodes are connected with an edge. Instead of counting the number of in-
terchromosomal interactions between bins, we are more concerned about their presence or absence
because of the scarcity and variability of interchromosomal interactions in single cells. Therefore,

an unweighted network is constructed for each cell.
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Figure 2.1. Workflow of the proposed method based on networks and statistical tests.
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Second, we develop a measurement to quantify how statistically frequent for an edge to
be detected among single cells. To avoid an overestimation of this measurement and therefore
reduce false positives, we first remove nodes without any intrachromosomal and interchromosomal
interactions among all cells to narrow down the search space of edges, which originally is all node
pairs of different chromosomes. Assume the number of edges in the edge search space is M, the
number of single cells is N, and the number of interchromosomal interactions for cell i is represented
as n;. Then 3+ represents the probability for cell i to have an edge between two nodes of different
chromosomes. If a given edge is observed in t cells, we can use the following equations(2.1, 2.2, 2.3)

to calculate its p-value.

N
p —value = Z (7)])’(1 —p)V (2.1)

1=t

ny n2 nN-1 NN

p:func(ﬂvﬂv“wv’ﬁ) (22)

func € {max, mean, min} (2.3)

Similar to previous research [39](88][84], in Eq. 2.1 the binomial distribution is applied to
estimate the p-value that reflects how likely it is for an edge to be observed in at least a given number
of cells among all single cells. The rationality behind the selection of the binomial distribution is
assuming whether there is an edge between two nodes of different chromosomes is a Bernoulli trial,
the binomial distribution can capture edges that appear so frequent in multiple single cells that
they reach statistical significance among all single cells. These frequent edges can only be detected
in scHi-C experiments instead of bulk Hi-C experiments because subtle single-cell level information
is pooled in bulk Hi-C experiments. Equation 2.2 is used to quantify the probability of an edge
with all cells considered, which is determined by a function in Eq. 2.3. Users can configure the
selection of these functions through a parameter. For scHi-C experiments with larger genomes or low
sequencing depths, it is recommended to use max to select regions with highly statistically frequent
interchromosomal interactions; therefore fewer regions would be selected. To the contrary, min is
applied to select more regions. For scHi-C experiments with smaller genomes or high sequencing
depths, min increases the odds for some regions to be selected while max may find nothing. mean

is a balance between max and min, so the number of identified regions falls between them.
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At last, p-values are adjusted by the Bonferroni correction and a user provided p-value
cutoff, e.g. 0.05, is applied to select regions associated with statistically frequent interchromosomal
interactions.

2.4. Data

To demonstrate that our proposed tool can be used to identify interesting structural regions,
we use data from two existing scHi-C studies as our input data sets.

The first study [122] investigated the cell-cycle dynamics of chromosomal organization at
single-cell resolution. The authors processed single F1 hybrid 129 x Castaneus mouse embryonic
stem cells (mESCs) grown in 2i media using 1.5 million reads per cell on average. They analyzed
1,171 cells with fluorescence-activiated cell sorting, which labeled these cells to different cell-cycle
phases based on levels of the DNA replication marker geminin and DNA content. Among them,
280 cells with a prefix of 1CDX1 were labeled as G1 phase; 303 cells with a prefix of 1CDX2 were
labeled as Early-S phase; 262 cells with a prefix of 1CDX3 were labeled as Mid-S phase; 326 cells
with a prefix of 1CDX4 were labeled as Late-S phase. We treat cells of different cell-cycle phases
separately and feed them as inputs of our tool respectively. Therefore we identify regions with
statistically frequent interchromosomal interactions for different cell-cycle phases.

The second one [45] developed a single-nucleus Hi-C protocol which provides >10-fold more
contacts per cell than the previous method [121] to investigate chromatin organization at oocyte-to-
zygote transition in mice. There are 40 transcriptionally active oocytes labeled as non-surrounded
nucleolus (NSN), 76 transcriptionally inactive oocytes labeled as surrounded nucleolus (SN), 30
maternal nuclei from zygotes and 24 paternal nuclei from zygotes. Maternal and paternal nuclei are
extracted from predominantly G1 phase zygotes.

2.5. Results and Discussion

Both data sets have single cells/nuclei of four conditions, therefore we run the proposed
tool on single cells/nuclei of each condition respectively. Since the genomes used in the two experi-
ments are large and sequencing read coverages are low, to accumulate sufficient interchromosomal
interactions in a bin, we set the bin size to 500 kilobases (kb), which is also used in other existing
studies [84][106]. We first show that our tool can identify regions with statistically frequent in-
terchromosomal interactions, then demonstrate that our tool is flexible to different configurations,

which support sliding windows for region diversity, different functions to estimate the probability
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of having an edge between two nodes thereby providing adaptability of identified regions, and a
configuration of different bin sizes e.g. 500kb VS 1 megabases (Mb).
2.5.1. Usability of Identifying Interesting Regions

To demonstrate the usability of our proposed method, we first display identified regions in
visualization, then compare the identified regions and at last carry out enrichment analysis with
other genomics features such as CTCF binding sites and enhancers etc.
2.5.1.1. Identification of Statistically Frequent Regions

In Fig. 2.2, identified regions associated with statistically frequent interchromosomal inter-
actions among single cells of the cell-cycle data set are visualized in Circos [89]. The max function is
configured for our method. The banded ideograms are mouse chromosomes (1-19, X and Y) and the
black lines between them are interchromosomal interactions and the ends of these lines correspond
to identified regions in chromosomes. Figure 2.2a shows the results of single cells of G1 phase; Fig.
2.2b shows the results of single cells of Early-S phase; Fig. 2.2c shows the results of single cells of
Mid-S phase; and Fig. 2.2d shows the results of single cells of Late-S phase.

Among all four Circos plots, there is an apparent common hub in chromosome 11 (between
3Mb and 3.5Mb) whose interchromosomal interactions are highly enriched. The finding of this hub
is corroborated by previous research with bulk Hi-C experiments to study interchromosomal contact
networks in mammalian genomes [84]. They also discovered this hub in the mouse genome. Our
finding confirms the hub’s existence at single-cell level and rules out the possibility that its existence
is solely contributed by very few cells with a large amount of interchromosomal interactions in the
region. In addition, these four Circos plots are similar but not exactly the same, which means
single cells of different cell phases share some interchromosomal interactions but also have some
variabilities on interchromosomal interactions.

In Fig. 2.3, identified regions associated with statistically frequent interchromosomal inter-
actions among single cells/nuclei of the oocyte-to-zygote data set are visualized. Figure 2.3a shows
the results of single oocytes labeled as NSN; Fig. 2.3b shows the results of single oocytes labeled
as SN; Fig. 2.3c shows the results of single maternal nuclei from zygotes; and Fig. 2.3d shows the
results of single paternal nuclei from zygotes. Our tool reports much fewer regions on this data set
and there is no hub. The absence of the hub may be partly because of cell discrepancies on cell types

and cell cycles. To be more specific, in the second research, oocytes and maternal/paternal nuclei
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Figure 2.2. Identified regions of the cell-cycle data set. Visualizing genome-wide identified regions
and their interchromosomal interactions of the cell-cycle data set with an adjusted p-value cutoff
of 0.05 in Circos plots. a single cells of G1 phase; b single cells of Early-S phase; c single cells of
Mid-S phase; d single cells of Late-S phase
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Table 2.1. Pairwise comparisons of the cell-cycle data set

Comparison Common Unique in former Unique in latter
G1 VS Early-S 757 219 569
G1 VS Mid-S 526 450 198
G1 VS Late-S 708 268 335
Early-S VS Mid-S 595 731 129
Early-S VS Late-S 767 559 276
Mid-S VS Late-S 597 127 446

from zygotes only contain a single set of chromosomes. However, for the chromosome 11 from 3Mb
to 3.5Mb, there are comparatively more interchromosomal interactions among all four Circos plots.
Additionally, a similar interchromosomal interaction pattern is observed: there are some shared
interchromosomal interactions but there are also some variabilities at single-cell resolution.
2.5.1.2. Pairwise Comparisons of Identified Regions

For the cell-cycle data set, we compare the identified regions from single cells of different
phases and examine the similarity and dissimilarity. In Table 2.1, single cells of different phases
share a lot of common regions. There are some unique regions in each phased single cells. All pairs
have more common regions than unique regions except the comparison between Early-S and Mid-S.
Because the number of common regions is limited by the identified regions from single cells at Mid-S
phase and single cells at Early-S phase report the most identified regions.

We also compare the identified regions from single cells of the oocyte-to-zygote data set. In
Table 2.2, single cells of different conditions share some regions and there are more unique regions
than common regions. This phenomenon seems inconsistent with what we have observed in the
cell-cycle data set. But it does make sense and reflects the different types of single cells/nuclei used
in their experiments. When identified regions from oocytes labeled NSN are compared with the
ones from other cells/nuclei, the oocytes labeled SN share the most common regions because both
of them are the same type of cells and their common regions are limited by the identified regions
from oocytes labeled NSN; single maternal nuclei share more regions than single paternal nuclei
because oocytes and single maternal nuclei are both from females while single paternal nuclei are
from males. The same reason can also be applied to explain why oocytes labeled SN share more

common regions with single maternal nuclei than single paternal nuclei. At last, single maternal
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Figure 2.3. Identified regions of the oocyte-to-zygote data set. Visualizing genome-wide identified
regions and their interchromosomal interactions of the oocyte-to-zygote data set with an adjusted
p-value cutoff of 0.05 in Circos plots. a single oocytes labeled as NSN; b single oocytes labeled as
SN; ¢ maternal nuclei from zygotes; d paternal nuclei from zygotes
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Table 2.2. Pairwise comparisons of the oocyte-to-zygote data set

Comparison Common Unique in former Unique in latter
NSN VS SN 35 2 49
NSN VS maternal 18 19 15
NSN VS paternal 15 22 36
SN VS maternal 21 63 12
SN VS paternal 19 65 32
maternal VS paternal 13 20 38

nuclei and single paternal nuclei share the fewest common regions because some are from females
and the others are from males.
2.5.1.3. Enrichment Analysis of Identified Regions

To improve the interpretation of identified regions, we carry out enrichment analysis of
identified regions with genomic features, which are available in the cell-cycle data set. As there
are too many identified regions in the data set, we select top ranked regions/nodes according to
the numbers of statistically frequent unweighted edges with a cutoff (> 3 except > 4 for single
cells at Early-S phase because there are too many top regions). Therefore we obtain 16 regions for
single cells at G1 phase, 37 regions for single cells at Early-S phase, 34 regions for single cells at
Mid-S phase and 47 regions for single cells at Late-S phase. Genomic features of mESC cell line
are downloaded from this paper [153] and they are CTCF binding sites, enhancer sites, H3K4me3
peaks, H3K27ac peaks and Pol II peaks.

For the above selected regions of each phase, the numbers of genomic features are counted
respectively. Then we ranomly select the same number of regions and count the numbers of genomic
features falling into these randomly selected regions respectively. We carry out this randomization
strategy 50,000 times and therefore we obtain empirical background samples for each genomic
feature. We calculate the z-score for each genomic feature. In Table 2.3, most of genomic features are
enriched (> 1.97, which corresponds to 0.05 in p-value) except enhancer. What is more important,
for single cells at Early-S phase, all the genomic features are highly enriched. (When > 3 is used as
the cutoff, the results become more enriched.) H3K4me3 and H3K27ac are active gene transcirption
marks. Pol II plays very important roles in gene transcription. An enhancer increases the likelihood

of gene transcription. CTCF plays important rols in chromatin structure and insolates the spread
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Table 2.3. Identified Regions’ Enrichment Analysis of the cell-cycle data set

Input CTCF enhancer H3K4me3 H3K27ac Pol Il

Gl 2.82 1.05 1.75 2.63 2.48
Early-S  10.86 9.81 12.48 12.05 12.58
Mid-S 2.81 1.48 3.08 2.7 3.64
Late-S  3.37 1.74 4.33 4.36 5.05

of heterochromatin. Early-S phase corresponds to the commencement of DNA replication. These
genomic features seems working coordinately to facilitate the initialization of DNA replication.
2.5.2. Flexibility of Configurations

To make our tool flexible to accommodate different scHi-C experiments, we support different
configurations, which include sliding windows for region diversity, edge probability functions for
adjustability of identified regions and different bin sizes.
2.5.2.1. Configuration of Sliding Windows

By default, our tool divides chromosomes into bins from the first bases of chromosomes to
the last ones, which limits the starting and ending positions of regions. To overcome this limitation,
our tool supports a sliding window strategy by moving bins toward the last bases certain bases
(e.g. 100kb). It lets users decide where their regions’ starting and ending positions through a
parameter. In Table 4, we adopt four sliding windows of sizes of 100kb, 200kb, 300kb and 400kb
and compare the identified regions with the ones by default (no sliding window). If identified regions
mediated by some interchromosomal interactions from the no sliding window condition overlap with
identified regions from a sliding window condition at both ends, we treat these regions as common
identified regions; otherwise they are different. Therefore, we can calculate the common identified
regions between no sliding window and sliding windows. In Table 2.4, we conclude that most
identifed regions between no sliding window and sliding windows are common because some shared
interchromosomal interactions fall into these regions. But as these common regions’ starting and
ending positions are different, our tool diversifies the identified regions to users. What is more
interesting is the single cells at Early-S phase share the fewest identified regions between no sliding
window and sliding windows of different sizes. As DNA synthesis commences at Early-S phase,

interchromosomal interactions may vary or involve in DNA synthesis initialization activites more at
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Table 2.4. Overlapping identified regions of the cell-cycle data set with no sliding window and
sliding windows of different sizes

Input Data  100kb ~ 200kb ~ 300kb  400kb
Gl 92.11% 92.01% 92.01% 95.49%
Early-S 85.52% 86.05% 86.73% 89.22%
Mid-S 90.33% 89.92% 91.16% 93.65%
Late-S 93.19% 91.08% 91.66% 94.44%

Table 2.5. Overlapping identified regions of the oocyte-to-zygote data set with no sliding window
and sliding windows of different sizes

Input Data 100kb ~ 200kb  300kb  400kb
oocyte NSN 100%  92.01% 92.01% 95.49%
oocyte SN 86.90% 89.29% 89.29% 92.86%

pronucleus maternal  93.94% 93.94% 90.91%  100%
pronucleus paternal  94.12% 90.20% 90.20% 92.16%

this phase than other phases. In Table 2.5 of the oocyte-to-zygote data set, we can reach the same
conclusion that most identified regions are common between no sliding window and sliding windows
of different sizes and meanwhile there are some different regions.
2.5.2.2. Configuration of Edge Probability Functions

Our proposed tool supports three functions, max, mean and min, to estimate the proba-
bility of an edge between two nodes of different chromosomes, therefore improving adjustability of
identified regions. In Table 2.6 of the cell-cycle data set and Table 2.7 of the oocyte-to-zygote data
set, our tool configured with the max function identifies the fewest regions; our tool configured with
the min function identifies the most regions and our tool configured with the mean funciton falls
between them. This is because if we fix other variables except p in Eq. 2.1, a large p entails a large
p-value and a small p entails a small p-value. As we have explained in the second to last paragrpah
of Method, users can select these functions according to the sizes of genomes and sequencing depths
used in their experiments. Therefore, our proposed tool provides adaptability of identified regions.
2.5.2.3. Configuration of Bin Sizes

Finally, our tool also supports different bin sizes. As scHi-C experiments have low read

coverages and scarce interchromosomal interactions, we need to use large bin sizes to accumulate
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Table 2.6. Number of identified regions of the cell-cycle data set with edge probability functions

Input Data max mean min
Gl 976 1651 2133
Early-S 1326 2579 7714
Mid-S 724 1833 2991
Late-S 1043 1999 6058

Table 2.7. Number of identified regions of the oocyte-to-zygote data set with edge probability
functions

Input Data max mean min
oocyte NSN 37 79 199
occyte SN 84 229 1846

pronucleus maternal 33 50 268
pronucleus paternal 51 51 274

sufficient interchromosomal interactions in a bin. We run our tool with bin_size=1Mb on the two
data sets and compare the identified regions with the ones of bin _size=500kb. We find that the
identified regions of bin _size=500kb and bin _size=1Mb are quite similar for most single cells except
the Early-S phased single cells in the cell-cycle data set. In Fig. 2.4b of bin_size=1Mb, the hub
of the chromosome 11 at 3Mb becomes less obvious as it is overshadowed by enrichment of other
interchromosomal interactions because of the increased bin size and single cells of this particular
cell phase. Therefore, different bin sizes may affect the identified regions.
2.6. Conclusion

In this paper, we introduce a computational method to identify regions associated with
statistically frequent interchromosomal interactions at single-cell resolution and implement it as an
open source tool, which is the first serving the purpose to the best of our knowledge. Its workflow
includes network construction, binomial statistical measurement calculation and region selection.
We demonstrate its usability on two existing scHi-C data. On the cell-cycle data set, the tool
discovers a hub in the mouse chromosome 11 from 3Mb to 3.5Mb, which is endorsed by a previous
study on interchromosomal contact networks with bulk Hi-C experiments. On the oocyte-to-zygote
data set, there is no apparent hub at the region, but comparatively interchromosomal interactions

are enriched. Identified regions’ pairwise comparisons show that our method identifies common
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Figure 2.4. Comparing identified regions of Early-S phased single cells with different bin sizes. a
bin size=500kb b bin_size=1Mb

regions between different data sets and also reflects the true dissimilarity such as different cell types.
Identified regions’ enrichment analysis helps improve the interpretation of top ranked identified
regions and these genomic features are highly enriched for single cells at Early-S phase, which
implies our top ranked regions may be functionally important. We also exhibit our proposed tool’s
flexibility on configurations, which support sliding windows for diverse regions, edge probability
functions for adjustable regions and different bin sizes. Overall, it will be a useful tool for analyzing
scHi-C interchromosomal interactions.

Due to low sequencing depths of scHi-C experiments and the paucity of interchromosomal
interactions, identifying high resolution regions of several kilobases (e.g. 8kb) is extremely difficult.
Our tool can run with this resolution but due to the limitation of scHi-C data, it can’t identify
any regions passing the statistical tests. We will try to mitigate this problem by imputing high-
resolution interchromosomal interactions with data of other experiments such as interchromosomal
interactions from bulk Hi-C experiments. In addition, further research is needed to improve the

signal-to-noise ratio for scHi-C experiments.
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2.7. Availability of Data and Materials
For the implementaion details of our tool, please check out it at GitHub. Currently it
supports the following genomes, mm9, mm10, hgl8 and hgl9. It can be easily extended to other

organisms.
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3. A HEURISTIC STRATEGY FOR MULTI-MAPPING READS
TO ENHANCE HI-C DATA

3.1. Abstract

Current Hi-C analysis approaches focus on uniquely mapped reads and little research has
been carried out to include multi-mapping reads, which leads to a lack of biological signals from
DNA repetitive regions. We propose a heuristic strategy to assign multi-mapping reads to loci
according to the distance to their closest restriction enzyme cutting sites. We demonstrate that the
heuristic strategy can rescue multi-mapping reads thus enhance the quality of Hi-C data. Compared
with mHi-C, it not only improves replicate reproducibility in the same cell type, but also maintains
the difference between replicates of different cell types. Moreover, the strategy identifies much
more common statistically significant chromatin interactions between Hi-C experiments of different
restriction enzymes, improves performance on chromatin state annotation analysis, especially on two
repetitive annotations, and has a huge advantage on computing resources. Therefore, the heuristic
strategy can be used to enhance Hi-C data by utilizing multi-mapping reads.
3.2. Introduction

Three-dimensional genome organization plays important roles in many biological processes,
which include long-range gene regulation [33], DNA replication and repair [114, 42]. The alteration
of three-dimensional genome architecture leads to human diseases, such as cancer [48, 3|. As the de-
velopment of chromosome conformation capture-based technologies, high-throughput chromosome
conformation capture (Hi-C) [104] emerges as a popular method to detect genome-wide chromatin
interactions. In Hi-C experiments, crosslinked DNA is fragmented with restriction enzymes. Then
DNA fragments are ligated, selected, sheared and finally sequenced as paired-end reads. After these
paired-end reads are processed by Hi-C analysis pipelines, chromatin contact maps are generated for
downstream analysis and exploration. Recent studies have discovered some multi-scale spatial ge-
nomic structures, which include A /B compartment [104], topologically associating domains (TADs)

[36], chromatin loops [136] and frequently interacting regions (FIREs) [147].
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Owing to the sequencing cost, few studies generate high-resolution data sets. To enable
high-resolution structure discovery on low-resolution data sets, some computational methods are
proposed to enhance Hi-C data with machine learning algorithms. HiCPlus [198] and HiCNN [109]
both use deep convolutional neural networks. HicGAN [108] and DeepHiC [65] infers high-resolution
Hi-C data with generative adversarial networks. However, all of these methods depend on one high-
resolution data set as their training sets and ignore heterogeneity among cell types.

Though machine learning algorithms are popular, they are not the only method to enhance
Hi-C data. In fact, for each Hi-C data set, a large number of reads are discarded at the very
beginning. Because most Hi-C pipelines only consider uniquely mapped reads (unique reads) and
ignore multi-mapping reads, which are mapped to multiple genomic loci. To the best of our knowl-
edge, there is only one study, mHiC [200]|, accounting for multi-mapping reads. mHi-C assigns
multi-mapping reads according to the interacting patterns learned from unique reads, therefore the
multi-mapping read assignment depends on unique reads. Here we propose a heuristic strategy
which doesn’t depend on unique reads to utilize multi-mapping reads. The heuristic strategy not
only enhances Hi-C data, but also enables exploration of new interacting patterns.

Our contributions may be stated as follows:
e We propose a heuristic strategy to utilize multi-mapping reads for Hi-C data processing.

e We demonstrate that using our proposed strategy on Hi-C data sets can enhance Hi-C data
in quantity and reproducibility and recover more common statistically significant chromatin

interactions between experiments of different restriction enzymes.

e Through chromatin state annotation analysis, we show that our proposed strategy can recover

more signals at DNA repetitive regions.

The rest of paper is organized as follows. The second section delineates the heuristic strategy
to use multi-mapping reads. The third section introduces two human cell lines and two Arabidopsis
data sets as our test data. The fourth section evaluates the heuristic strategy by comparing it with
mHi-C and a method that only considers unique reads. The last one concludes that the heuristic

strategy complements multi-mapping reads in Hi-C analysis.
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3.3. Method

We propose a heuristic strategy to utilize multi-mapping reads in Hi-C experiments to
strengthen chromatin interaction data. As shown in Figure 3.1A, for Hi-C read ends, there are
three possible outcomes, unaligned, unique and multi-mapping reads. Compared with unaligned
reads, multi-mapping reads are reads with high quality alignment scores, but their alignment loci
cannot be uniquely determined. To avoid the abuse of utilizing multi-mapping reads, we only rescue
multi-mapping reads with less than a specific number of alignments. For example, mHi-C by default
utilizes multi-mapping reads with less than 100 alignments. In order to assign a multi-mapping read
to a unique locus among its alignments, we hypothesize that the locus closer to restriction enzyme
cutting sites has a higher probability to be the origin as shown in Figure 3.1B. The hypothesis is
based on the Hi-C processing of unique reads. In Hi-C processing pipelines, the closest restriction
enzyme cutting sites are picked to filter unique reads. Second according to our empirical experience,
an object’s breakage because of outside forces is most likely to happen at the object’s periphery with
defects. In Hi-C experiments at the shearing step, shearing may happen preferentially close to the
restriction enzyme cutting sites, which can be viewed as defects as these sites are cut by restriction
enzymes before. Therefore, we select the loci for multi-mapping reads according to the distance to
the closest restriction enzyme cutting sites. What is more important, as our multi-mapping read
assignment is carried out at the sequence alignment step, there is no impact on following Hi-C data
processing and the same filtering criteria (such as distance to restriction enzyme cutting sites) can
be applied to unique and multi-mapping reads to remove invalid chromatin interactions.
3.4. Data

To demonstrate that the heuristic strategy can rescue multi-mapping reads in Hi-C ex-
periments, thus increasing detected chromatin interactions and expanding the breadth of genome
coverage, we test the strategy on Hi-C experiments of two cell lines from a study [36] on revealing
topological domains in mammalian genomes and Hi-C experiments of Arabidopsis thaliana seedling
tissues from two studies [194, 139] with different restriction enzymes. The first cell line is human
embryonic stem cell (hESC) and the second cell line is derived from human fetal lung (IMR90). For
each cell line, Hi-C experiments were conducted independently with two biological replicates (rl

and r2) using HindIII as the restriction enzyme to cut crosslinked DNA into fragments. Thereafter,
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Figure 3.1. Hi-C read alignment outcomes and the heuristic strategy for multi-mapping reads.
A: three types of reads, unaligned, unique and multi-mapping reads, B: a multi-mapping read is
assigned to a locus closest to restriction enzyme cutting sites.



DNA fragments in close proximity were ligated in a diluted environment and the resulting liga-
tion products were sonicated, filtered and finally sequenced by paired-end sequencing. Therefore,
two paired read files were generated for each replicate, e.g. hESC rl 1 and hESC rl1 2. For
Arabidopsis thaliana seedling tissues, the first study [194] carried out the Hi-C experiments using
HindIII with two biological replicates (rl and r2), which are named HindIII rl and HindIII r2.
The second study [139] carried out the Hi-C experiments using Dpnll with three biological replicates
(rl, r2 and r3), which are named Dpnll rl, Dpnll r2 and Dpnll r3.
3.5. Results
3.5.1. Sequence Alignment Statistics Necessitate Utilizing Multi-Mapping Reads

We adopt Hi-C processing pipelines consisting of a sequence of processing functions or com-
mands, for example, Hiclib [71], to process paired reads of hESC and IMR90’s replicates. Because
it is convenient to incorporate the heuristic strategy into these pipelines and understanding the
inner complex logic of a holistic tool is not this study’s research focus. As Hi-C processing pipelines
ignore multi-mapping reads at the sequence alignment step, we need to carry out our own sequence
alignment to keep multi-mapping reads. A sequence alignment tool, for example, Bowtie 1 [92], is
applied to align two ends of Hi-C reads independently with its default settings and the statistics of
sequence alignment for each replicate are listed in Table 3.1. For each replicate, multi-mapping reads
are more than unaligned reads at both ends. This means there are more multi-mapping reads than
unaligned reads to be rescued. This phenomenon can be explained by the fact that these reads are
short reads which are more likely to be aligned to multiple loci than nowhere. In addition, prevalent
short-read sequencing in Hi-C experiments necessitates the need of utilizing multi-mapping reads
to enhance chromatin interaction data.
Table 3.1. hESC and IMR90 paired-end sequence alignment statistics.Two ends of Hi-C paired-end

reads are mapped independently because distance constraint of paired-end reads doesn’t apply to
Hi-C reads.

replicate hESC rl hESC 12 IMR90 rl IMR90 r2
#reads 237,662,270 496,522,946 397,194,480 259,123,992
unique reads(%) 69.77 68.74 7231 70.96 T71.65 69.04 7044 70.26

unaligned reads(%) 1199 13.16 9.79 1145 1082 13.87 11.74 11.70
multi-mapping reads(%) 18.24 18.10 17.9 17.59 17.53 17.09 17.82 18.04

46



3.5.2. The Heuristic Strategy Increases Detected Chromatin Interactions

To demonstrate that the heuristic strategy can strengthen chromatin interaction data, we
test the strategy on each replicate with hiclib and mHi-C respectively. hiclib only considers unique
reads and incorporating our strategy takes both unique and multi-mapping reads into count. mHi-
C leverages multi-mapping reads in a sequence of commands and it is convenient to replace its
multi-mapping read assignment method with our strategy. The numbers of detected chromatin
interactions for each replicate are shown in Table 3.2. Compared with unique reads, the heuristic
strategy increases millions of chromatin interactions because it also accounts for multi-mapping
reads. Compared with mHi-C, the heuristic strategy gains chromatin interactions marginally be-

cause they both leverage unique and multi-mapping reads.

Table 3.2. hESC and IMR90 chromatin interactions with hiclib and mHi-C under different con-
figurations. hiclib+ represents incorporating hiclib with the heuristic strategy. mHi-C(unique)
represents limiting mHi-C to unique reads. mHi-C+ represents replacing mHi-C’s multi-mapping
read assignment method with the heuristic strategy.

method hiclib hiclib+ mHi-C(unique) mHi-C mHi-C+
hESC r1 16,156,824 21,528,337 17,043,308 20,325,529 20,819,070
hESC r2 117,150,577 139,527,552 105,617,771 124,622,391 124,955,453
IMRO0 11 81,524,268 97,985,497 83,161,703 97,444,579 98,380,530
IMR90 r2 89,322,274 104,647,014 83,381,123 96,099,798 98,325,832

3.5.3. The Heuristic Strategy Enhances the Reproducibility of Chromatin Interaction

Data

Replicate reproducibility is an important measurement used to assess the quality of chro-
matin interaction data. We calculate the reproducibility scores among hESC and IMR90’s replicates
by chromosome (from chromosome 1 to chromosome 22) with HiCRep [189]. As shown in Figure
3.2, for each configuration [mHi-C (unique), mHi-C and mHi-C+|, there are two types of replicate
reproducibility scores. The first type (at the top) represents the average of replicate reproducibility
scores in the same cell line (hESC r1 VS hESC r2 and IMR90 rl1 VS IMR90 r2). The second
type (at the bottom) represents the difference between the average of replicate reproducibility scores

in the same cell line and the average of replicate reproducibility scores between different cell lines
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(hESC_r1 VS IMR90 rl1, hESC r1 VS IMR90 r2, hESC r2 VS IMR90 rl and hESC r2 VS
IMR90 r2). For the first type of replicate reproducibility scores, mHi-C and mHi-C+ are better
than mHi-C(unique). This means compared with the configuration only utilizing unique reads,
configurations utilizing both unique and multi-mapping reads improve the reproducibility between
replicates in the same cell line. In addition, mHiC’s multi-mapping read assignment method (mHi-C)
is slightly better than our strategy (mHi-C+) on improving the reproducibility between replicates in
the same cell line. But for the second type of replicate reproducibility scores, our strategy performs
better than mHi-C. Among the 22 chromosomes, our strategy has noticeably larger differences on 7
chromosomes, while mHi-C’s multi-mapping read assignment method has 2 noticeably larger differ-
ences on 2 chromosomes. What is more important, our strategy achieves similar performance with
the method only utilizing unique reads. Taking these two types of replicate reproducibility scores
into consideration, we conclude that our strategy not only improves the replicate reproducibility in
the same cell line, but also maintains the difference between different cell lines.
3.5.4. The Heuristic Strategy Improves Statistically Significant Chromatin Interactions
Enhanced chromatin interaction data enable downstream analysis and exploration for new
discoveries. Therefore, we apply Fit-Hi-C [6] to normalized chromatin interactions to identify statis-
tically significant chromatin interactions with respect to a false discovery rate of 0.05. In Table 3.3,
both configurations utilizing unique and multi-mapping reads report more statistically significant
chromatin interactions than the configuration utilizing only unique reads. In addition, mHi-C’s
multi-mapping read assignment method seems identifying more statistically significant chromatin
interactions than our strategy. It can be explained if we further examine detected chromatin in-
teractions and keep only unique chromatin interactions. As shown in Table 3.4, incorporating our
strategy gains much more unique chromatin interactions because mHi-C assigns multi-mapping reads
according to the interacting patterns in the unique reads. Therefore, interacting patterns in the
unique reads would be enriched to be statistically significant. The heuristic strategy doesn’t assign
multi-mapping reads according to unique reads and consequently it can explore more interacting
patterns. However, these dispersed interacting patterns may become less statistically significant.
To further investigate two approaches utilizing multi-mapping reads on identifying statisti-
cally significant chromatin interactions, we apply them on Hi-C experiments of Arabidopsis thaliana

seedling tissues from two studies [194, 139] with different restriction enzymes, HindIII and Dpnll.
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Figure 3.2. Replicate reproducibility scores for human chromosome 1-22. HiCRep is used to cal-
culate reproducibility scores among hESC and IMR90’s replicates. For each configuration [mHi-
C(unique), mHi-C and mHi-C+|, there are two types of replicate reproducibility scores. The first
type (at the top) represents the average of replicate reproducibility scores in the same cell line. The
second type (at the bottom) represents the difference between the average of replicate reproducibil-
ity scores in the same cell line and the average of replicate reproducibility scores between different
cell lines.

Table 3.3. Statistically significant chromatin interactions identified by Fit-Hi-C. mHi-C(unique)
represents limiting mHi-C to unique reads. mHi-C+ represents replacing mHi-C’s multi-mapping
read assignment method with the heuristic strategy.

method ~ mHi-C(unique) mHi-C mHi-C+
hESC rl 4,206 8,412 7,226
hESC 12 34,630 54,642 53,236
IMR90_r1 49,500 78,574 69,476
IMR90 r2 55,124 85,160 74,396

Table 3.4. hESC and IMR90’s unique chromatin interactions with mHi-C under different configu-
rations. mHi-C(unique) represents limiting mHi-C to unique reads. mHi-C+ represents replacing
mHi-C’s multi-mapping read assignment method with the heuristic strategy.

method  mHi-C(unique) mHi-C mHi-C+
hESC rl1 11,589,365 12,696,565 14,656,936
hESC_r2 48,065,862 51,792,951 61,564,215
IMR90 rl 54,974,139 58,975,514 66,763,164
IMRI0_r2 63,548,605 67,705,423 76,033,914
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Fit-Hi-C is used to identify statistically significant chromatin interactions with respect to a false
discovery rate of 0.05 for each replicate respectively. Pairwise comparison is carried out between
replicates of different restriction enzymes and the common statistically significant chromatin inter-
actions are counted as shown in Table 3.5. Our strategy identifies much more common statistically
significant chromatin interactions than mHi-C (>32%) because when assigning multi-mapping reads,
our strategy does not depend on unique reads and therefore improving the identification of common

statistically significant chromatin interactions.

Table 3.5. Common statistically significant chromatin interactions on Arabidopsis thaliana Hi-
C experiment. HindIII and Dpnll were used on Arabidopsis thaliana seedling tissues. Pairwise
comparision between replicates of different restriction enzymes is carried out.

mHiC VS mHiC+  Dpnll rl Dpnll r2  Dpnll r3
HindIIT rl1 1561, 2064 2079, 2838 2067, 2877
HindIII r2 2020, 3250 2817, 4083 2757, 4084

3.5.5. The Heuristic Strategy Improves Performance on Chromatin State Annotation

Analysis

To further investigate the statistically significant chromatin interactions, we download 15
chromatin state annotations of hESC cell line at this website and study how these annotations
overlap with statistically significant chromatin interactions. To make a fair comparison, we select the
same number of statistically significant chromatin interactions. For each chromatin state annotation,
we calculate the average of number of statically significant chromatin interactions overlapping with
chromatin regions associated with the annotation.

In Table 3.6, mHi-C’s multi-mapping read assignment method achieves similar performance
on the first 13 chromatin state annotations with our strategy. But for the two repetitive annotations
highlighted in red, our strategy outperforms mHi-C’s multi-mapping read assignment method in
very large margins. Multi-mapping reads are mostly located at repetitive genome regions because
multi-mapping reads are reads that can be mapped to multiple loci. Both strategies utilize multi-
mapping reads. Our strategy reports higher overlapping with two repetitive annotations, this means
our strategy can recover more signals at repetitive genome regions, which helps exploring these

uncharted regions.
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Table 3.6. Chromatin state annotations overlapping with hESC statistically significant chromatin
interactions. mHi-C+ represents replacing mHi-C’s multi-mapping read assignment method with
the heurstic strategy.

method mHi-C mHi-C+
1 _Active_Promoter  1.00 1.00
2 Weak Promoter 1.09 1.07
3_Poised Promoter  0.46 0.49
4 Strong Enhancer  0.35 0.36
5_ Strong Enhancer  0.51 0.49
6 Weak Enhancer 0.87 0.85
7 Weak FEnhancer 0.46 0.46
8 Insulator 0.77 0.77
9 Txn_ Transition 0.16 0.16
10_Txn Elongation  0.49 0.48
11 Weak Txn 0.45 0.44
12 Repressed 0.49 0.51
13_Heterochrom/lo  2.00 1.99
14 Repetitive/CNV ~ 1.08 1.19
15_Repetitive/CNV  1.52 1.68

3.5.6. The Heuristic Strategy has a huge Advantage on Computing Resources

Computing resources are essential to bioinformatics research, especially for researchers and
students with a limited budget. We compare the running time and memory usage on the same
computing resource. As some commands (such as sequence alignment) in the pipeline are shared
under different configurations, we only summarize the computing resources pertaining to the multi-
mapping read assignment in Figure 3.3. mHi-C’s multi-mapping read assignment method takes
at least five-fold running time and ten-fold RAM than our strategy. When two configurations are
applied to high resolution Hi-C data sets, the difference on computing resources becomes more
glaring. Therefore, the heuristic strategy has a huge advantage on computing resources than mHi-
C’s multi-mapping read assignment method.
3.6. Conclusion

In this paper, we introduce a heuristic strategy to include multi-mapping reads into Hi-C
analysis by assigning these reads according to the distance to their closest restriction enzyme cutting
sites. Through the evaluation of Hi-C human data, we display that there are more multi-mapping
reads than unaligned reads to be rescued. Compared with methods only considering unique reads,

the strategy improves the quantity and reproducibility of Hi-C data, which enables new discoveries
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mHi-C under different configurations.
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of statistically significant chromatin interactions. Compared with mHi-C, the strategy maintains
the difference between replicates of different cell lines, reports more common statistically significant
chromatin interactions (>32%) between experiments with different restriction enzymes, improves
performance on chromatin state annotation analysis, especially on two repetitive annotations and
shows a huge advantage on computing resources (at least 5-fold in running time and 10-fold in
RAM). Therefore, our strategy is an important complement to incorporating Hi-C multi-mapping
reads.

Due to most Hi-C reads used in this paper are short reads (36 base pairs), we didn’t rescue
unaligned reads. For longer sequence reads, more efforts can be extended to study whether Hi-C
data can be further enhanced by rescuing both unaligned reads with recursive mapping and multi-
mapping reads with our proposed strategy. We also plan to combine our proposed strategy and

machine learning algorithms to achieve high-resolution and high coverage Hi-C data.
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4. SCHI-CNN: A COMPUTATIONAL METHOD FOR
STATISTICALLY SIGNIFICANT SINGLE-CELL HI-C
CHROMATIN INTERACTIONS WITH NEAREST
NEIGHBORS

4.1. Abstract

The intricate interplay of regulatory elements, spatial arrangements, and transcription fac-
tors shapes the complex chromatin architecture within individual cells, offering valuable insights into
cellular diversity and heterogeneity in the realm of chromatin biology. Nevertheless, the analysis
of single-cell Hi-C data presents notable challenges due to its sparse nature and limited interaction
counts. In this study, we introduce a novel algorithm, scHi-CNN, designed for the detection of
statistically significant single-cell Hi-C chromatin interactions. Our method comprises three key
steps: imputation of single-cell matrices, normalization, and identification of statistically significant
interactions. To assess the robustness and scalability of scHi-CNN across various conditions, we
evaluate its performance using three distinct datasets: human cortex cells, mouse embryonic stem
cells, and a mouse cell cycle dataset. Moreover, we delve into the biological relevance of the derived
significant interactions by examining CTCF binding sites, known promoter-related interactions, and
the overlap between different datasets of the same cell type. The results underscore the ability of
scHi-CNN to identify more biologically meaningful interactions from single-cell data, facilitating a
deeper comprehension of regulatory elements and spatial arrangements within individual cells and
across diverse cell types.

Code and sample data for this paper are available on the GitHub repository at https:
//github.com/bignetworks2019/scHi-CNN
4.2. Introduction

Single-cell chromatin interaction data plays a crucial role in unraveling the intricacies of
three-dimensional chromatin structure, capturing cellular heterogeneity, and elucidating genomic
variations across diverse cell types. Identifying significant interactions from raw interaction data is

imperative for examining regulatory elements, spatial arrangements, transcription factor functions,
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and other functional elements in individual cells. However, processing single-cell Hi-C data presents
several challenges due to its inherent sparseness and limited interaction counts.

Despite the availability of single-cell chromatin interaction datasets to the public, the anal-
ysis of significant intra-chromosomal interactions within individual cells is still in its nascent stage.
Existing tools primarily focus on imputing and modeling chromatin interactions in single-cell contact
matrices, utilizing approaches such as analyzing topologically associating domains, embeddings, and
cluster domains|201, 102, 186, 196]|. Furthermore, a computational tool has been developed for iden-
tifying frequent inter-chromosomal interactions from single cells using a network-based method[18].
However, none of these tools effectively address the identification of significant intra-chromosomal
interactions at the single-cell level. In many cases, researchers resort to employing bulk Hi-C tech-
nologies like HICCUPS[136| and FitHiC|6] to derive significant interactions by aggregating individual
cell interactions. Unfortunately, these methods typically yield suboptimal results as they are not
tailored to identify significant chromatin interactions specifically within single cells.

Recently, SnapHiC, a random walk algorithm-based method, has been introduced as a pi-
oneering computational approach for identifying significant intra-chromosomal interactions from
single-cell Hi-C data[191]. The method has shown promise in enabling the analysis of very high-
resolution chromatin interactions (e.g., 10kb) from single-cell Hi-C data. However, the high-
resolution nature of these chromatin interactions imposes stringent requirements on the raw single-
cell Hi-C data. It is recommended that each single cell possesses a minimum of 150,000 raw chro-
matin contacts, a threshold that most existing unfiltered single-cell Hi-C data fails to meet. More-
over, SnapHiC treats chromatin interactions in each cell as independent entities, disregarding the
local similarities of chromatin interactions between different cells. Notably, leveraging local similar-
ities has proven effective in enhancing the analysis of single-cell Hi-C data|196] and single-cell Hi-C
data clustering [183|. Furthermore, the majority of single-cell studies[122, 135, 45, 161, 86, 121, 119]
have been conducted at resolutions of hundreds of kilobases or several megabases. Consequently,
there is a need for new computational methods that can accommodate a wider range of single-cell
Hi-C data while considering the local similarities of chromatin interactions between different cells,
particularly at a comparatively relaxed resolution (e.g., 100kb).

In this study, we propose a novel algorithm for statistically significant single-cell Hi-C chro-

matin interactions with Nearest Neighbors, named scHi-CNN. The algorithm comprises three
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main steps: imputation of single-cell matrices utilizing a k-nearest-neighbor-based approach, nor-
malization, and identification of statistically significant chromatin interactions. To evaluate the
performance of our proposed method, we primarily compared it with the SnapHiC algorithm. We
utilized three distinct types of single-cell datasets and compared the counts of significant interactions
as well as the overlapping interactions between different datasets of the same cell type. Additionally,
we assessed the relevance of the derived significant interactions by analyzing CTCF binding sites
considering the fact that CTCF plays an important role in three-dimensional genome organization
and presumely contributes to the formation of higher-order chromatin structure [47|. To provide
a comprehensive comparison, we utilized bulk Hi-C data and contrasted the outcomes obtained
from the different methods. Furthermore, we conducted an analysis of chromatin loops generated
using varying numbers of cells, focusing on known regulatory elements. The results demonstrated
that our proposed algorithm is capable of identifying more biologically meaningful interactions from
single-cell data, even when utilizing a smaller number of cells compared to SnapHiC. We firmly be-
lieve that our method serves as a valuable tool for identifying significant chromatin interactions in
single-cell data, thereby contributing to the analysis of three-dimensional chromatin organization.
4.3. Background

SnapHiC[191] is a computational pipeline which is designed to identify significant intra-
chromosomal chromatin loops from single cell Hi-C data and it is the closest work related to this
study. It utilizes the random walk with restart(RWR) algorithm to impute the contact probability
between the intra-chromosomal interactions. The primary steps of the SnapHiC method include
estimating contact probabilities using the RWR algorithm, normalizing based on genomic distances,
identifying loop candidates through statistical measurements, and clustering loop candidates to
identify the summits. They offers a comparative analysis of the results between existing bulk Hi-C
techniques such as HICCUPS, FastHiC, FitHiC2, and HiC-ACT and provided a tool for public use.

HiCCUPS|136] is another computational tool to capture significant long range chromatin
loops using Bulk Hi-C data and does not work with single cell Hi-C data. It analyze the local
enrichment patterns comparing to the existing local background. The algorithm checks for signifi-
cant enrichment relative to four different neighborhoods around the pixel in the contact matrix and

identify peaks using a statistical measurement.
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FitHiC|6] is a computational tool which is capable of identifying mid range chromatin inter-
actions from Bulk Hi-C data. It uses a spline to map observed contact counts versus their genomic
distances and provides a statistical measurement value(corrected p-value) for chromatin interactions
using a binomial distribution approach and hypothesis testing correction.

ScHiCluster[201] is a single-cell clustering algorithm for Hi-C contact matrices, which relies
on imputations using linear convolution and random walk. scHiCluster demonstrates improved
clustering accuracy in low coverage datasets compared to existing methods. After imputation with
scHiCluster, topologically associating domain (TAD)-like structures can be identified within single
cells, and their consensus boundaries are enriched at TAD boundaries observed in bulk cell Hi-C
samples which enables visualization and comparison of single-cell 3D genomes.

4.4. Method
4.4.1. Proposed Algorithm

Our proposed algorithm consists of three key steps: imputation, normalization, and identi-
fication of significant chromatin interactions. Our algorithm workflow is visually represented in Fig
4.1.
4.4.1.1. Imputation of Single Cell Contact Matrices

The initial step involved partitioning each chromosome into equal-sized bins for each indi-
vidual cell. One of our aim is to handle datasets with fewer chromatin interactions, so we’ve chosen
to broaden the bin size resolution of SnapHiC from high resolution bins (like 10Kb, 25Kb) to 100Kb.
We then assigned chromatin interactions to specific bin pairs and tallied these interactions to gen-
erate contact matrices. For contact matrices that contained empty pixels (i.e., zero contact count),
we implemented a strategy to impute these empty pixels. Specifically, we extracted a surrounding
region measuring (2d+1)x(2d+1) (e.g d=5 bin pair differences in each direction from the empty
pixel) to identify the closest neighbors. To perform imputation, we only considered pixels that had
at least one chromatin interaction within their surrounding region.

Subsequently, we retrieved the surrounding matrices corresponding to the same position in
the other cells for the same chromosome. From these matrices, we selected the top k (e.g k=4, which
is also used in [201]) neighbors based on the Pearson correlation coefficient. The mean of these top
k closest neighbors was then used to impute the empty pixel. Note that after the imputation, the

empty pixel can still be zero if the same entries are zeros for all top k£ neighbors.
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To maintain the integrity of the analysis, we imposed a maximum distance threshold (e.g.
1 million base pairs) for the imputation of interactions. This ensures that the imputed values are
derived from nearby genomic regions that are more likely to exhibit chromatin interactions. Also,
given the symmetry of a Hi-C matrix, our procedure involved only the imputation of the upper half
matrix within the specified distance.
4.4.1.2. Normalization

To standardize our contact matrices, we employed a normalization approach that involved
grouping interactions with the same genomic distance, effectively normalizing them diagonally with
the same parameters used in SnapHiC [191] for a fair comparison. For each diagonal segment within
a contact matrix, we started by filtering the top 1% of the interactions with the highest contact
values. Subsequently, we computed the mean and standard deviation using the remaining values
and calculated corresponding z-scores. Diagonals with a standard deviation lower than 1076 were
disregarded, and those segments were filled with zeros to account for their negligible variability.
4.4.1.3. Identification of Significant Chromatin Interactions

To identify significant chromatin interactions , we implemented similar criteria used in
SnapHiC to determine if a interaction bin pair qualified as a peak compared to its surrounding
region. For an interaction pair to be considered, its mean normalized contact counts across all cells
needed to exceed zero. Additionally, we require that at least 10% of single cells exhibited a nor-
malized contact count greater than 1.96 (corresponding to a pvalue < 0.05). For interactions that
meet these criteria, we conducted a paired t-test with the local neighborhood to assess significance.
The local neighborhood was defined as the surrounding regions within a 2-bin genomic distance,
excluding the closest neighbors (i.e., bin pairs within a 1-bin genomic difference). Using the mean
of the local neighborhood values, we performed the paired t-test and obtained t-statistics and p-
values. Subsequently, we grouped the p-values based on genomic distance and converted them into
false discovery rates (FDRs) using the Benjamini-Hochberg procedure. Finally, we identified the
significant chromatin interactions based on a t-statistic greater than 3 and an FDR value less than
0.1.
4.4.2. Processing Single-Cell Hi-C Data

In this study, we utilized several publicly available single-cell Hi-C datasets. Firstly, for the

cell cycle dataset [122], we obtained contact matrices for single cells categorized into four distinct
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cell cycle phases. The labels G1 phase, Early-S phase, Mid-S phase, and G2 phase correspond to
the datasets 1CDX1, 1CDX2, 1CDX3, and 1CDX4 respectively. Each phase included interaction
data for a total of 390 individual cells. Secondly, we acquired contact matrices for Mouse ES cells
[94] comprising a total of 475 cells. Lastly, we obtained contact matrices for human frontal cortex
single cells [94] that comprise a total of 4,238 cells. To process the single-cell Hi-C data, we applied
both the proposed algorithm and the SnapHiC algorithm, allowing for a comparison of the results
obtained from each method.
4.4.3. Processing Bulk Hi-C Data

In the study, we obtained the Fastq files for the bulk Hi-C data [16] corresponding to the cell
cycle dataset. These files were then processed using HiC-Pro to generate contact matrices [150]. For
the bulk Hi-C data related to Mouse ES cells [94], we directly downloaded the contact matrices from
the NCBI database. To identify significant chromatin interactions within these contact matrices,
we applied the HICCUPS [136] and FitHiC2[6| algorithms. In order to compare these findings with
the single-cell Hi-C data, we focused on the common interactions identified by both HICCUPS and
FitHiC2 algorithms.
4.4.4. Processing CTCF ChIP-Seq Data

The Mouse ES cells CTCF ChlIP-seq narrow peak data were obtained from the ENCODE
project (ENCSR362VNF) [25]. Similarly, for Homo sapiens neural cells derived from H1, the CTCF
ChIP-seq data were downloaded from ENCODE (ENCSR822CEA). To analyze the single-cell Hi-C
datasets, we performed a counting of CTCF-enriched interactions. An interaction was classified as
CTCF-enriched if both ends of the interaction overlapped with at least one CTCF binding site.
This criterion allowed us to identify and examine interactions that exhibited a potential association
with CTCF binding events.
4.4.5. Processing Promoter Related Interactions

In this study, we utilized a previously reported set of promoter-related interactions, including
promoter-promoter and promoter-other interactions, as a reference dataset [77|. These interactions
were derived from a study conducted on human cortex cells. To evaluate the performance of our
proposed methodology, we compared our results with those obtained from SnapHiC with varying
numbers of cells. We then examined the overlap between these interactions and the reference

promoter-related interactions. This analysis allowed us to assess the accuracy and effectiveness
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of our methodology in capturing relevant chromatin interactions within the context of promoter
activity in human cortex cells.
4.5. Results
4.5.1. Quantity of Significant Chromatin Interactions

For the analysis of human cortex cells, we used both methodologies across varying cell num-
bers, namely 10, 25, 50, 100, 200, and 500 cells. To ensure unbiased and representative results, we
performed multiple random selections of cell numbers, as depicted by the error bars in Figure 4.2C.
The outcomes consistently demonstrate that scHi-CNN identifies a significantly higher number of
chromatin loops, even when applied to a small cell population. In contrast, SnapHiC’s performance
appears to be less effective, particularly in detecting interactions among smaller cell groups. To
extend our evaluation, we applied both methodologies to the whole and each cell phase in the cell
cycle dataset. The performance remains consistent across the cell phases, as illustrated in Figure
4.2E. Also scHi-CNN is capable of identifying the increasing trend of significant chromatin inter-
actions in cells at varying stages of the cell cycle, a phenomenon attributed to DNA replication
during the S phase. In contrast, SnapHiC is unable to capture these inherent biological states of
the cell. Furthermore, we quantified the raw interactions corresponding to the identified significant
interactions (Figure 4.2A and B). Notably, when analyzing smaller cell groups (around 10 cells),
scHi-CNN identifies interactions that were present in approximately 60% of the cells, whereas the
interactions identified by the SnapHiC method are present in a much smaller fraction of cells. This
showcases the superiority of scHi-CNN in identifying frequently occurring chromatin interactions
among cells, thereby highlighting its potential to derive more relevant chromatin loops.
4.5.2. CTCF Enriched Interactions

CTCF plays an important role in three-dimensional genome organization and presumely
contributes to the formation of higher-order chromatin structure [47]. We assessed the CTCF
enrichment of the significant interactions obtained from scHi-CNN and SnapHiC by leveraging pre-
viously collected CTCF methylation data (Figure 4.2D,F). Our analysis reveals that the percentage
of CTCF-enriched interactions derived from scHi-CNN remains consistent across different cell quan-
tities, whereas SnapHiC struggles to generate CTCF-enriched interactions, especially when dealing
with smaller cell populations. SnapHiC requires a minimum of 50-100 cells to produce 50% of the

CTCF-enriched interactions. In contrast, scHi-CNN consistently identifies more than 60% of CTCF-
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enriched interactions in both human cortex cell and cell cycle datasets, regardless of the number
of cells used. These findings suggest that the results obtained using scHi-CNN encompass a higher
proportion of biologically meaningful data, indicating an improvement over existing methodologies
in terms of data quality and relevance.
4.5.3. Common Interactions between Different Datasets from the Same Cell Type

To investigate the overlap of interactions between different datasets, we analyzed the cell
cycle dataset and mouse embryonic stem cell (mESC) dataset, which used the same cell type. We
specifically examined the common interactions between each phase of the cell cycle and mESC cells
for both scHi-CNN and SnapHiC (Figure 4.3). Additionally, we determined the common interactions
across each cell phase within the cell cycle dataset (Figure 4.4). Interestingly, scHi-CNN consistently
identifies a significantly higher percentage of common interactions in both cases. In addition, the
Figure 4.3 illustrates that scHi-CNN outperforms SnapHiC in terms of stability, as evidenced by a
lower maximum variation in the common percentage (6.36% for scHi-CNN compared to 7.86% for
SnapHiC). This observation suggests that scHi-CNN excels in deriving meaningful interactions by
effectively identifying a greater number of common interactions within the same cell type.
4.5.4. Identified Promoter Centered Interactions

To gain further insights into the identified interactions, we conducted an evaluation using
Layer 2/3 (L2/3) type cells from human cortex cells, considering different quantities of cells. In order
to facilitate more comparison, we also employed SnapHiC at 10kb resolution with 100 1.2/3 cells. We
specifically focused on four known promoters and genes associated with cortex and neural cells, as
highlighted in previous studies|77, 158, 112], to assess the identified chromatin interactions. Figure
4.5A showcases the identified interactions for each cell quantity using scHi-CNN, while highlight-
ing the promoters of interest. Remarkably, scHi-CNN successfully identifies these promoter-related
interactions even with a very low cell count, whereas SnapHiC fails to detect most of these interac-
tions even with a higher cell count at 100kb resolution. Although SnapHiC manages to identify a
few promoter-related interactions at 10kb resolution, its performance fells short compared to scHi-
CNN. Furthermore, Figure 4.5C,D,EF illustrates the overlapping promoter-centered interactions
identified using 100 cortex single cells, in comparison with the promoter-centered interactions re-
ported in a previous study|77]. Though scHi-CNN identifies less number of significant interactions

(Figure 4.5B) than SnapHiC, our method, scHi-CNN, reports a significantly higher percentage of
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promoter-centered interactions compared to SnapHiC (Figure 4.5C,D,E,F). These findings further
highlight the superior performance of scHi-CNN in identifying a greater proportion of biologically
meaningful interactions.

4.6. Conclusion

In conclusion, this study presents a novel and robust methodology for identifying significant
intra-chromosomal chromatin loops from single-cell Hi-C data, addressing the limitations of existing
tools and expanding our understanding of chromatin architecture in individual cells. Our method
consists of three primary steps: 1) imputing contact matrices using a K-nearest-neighbour-based
approach, 2) normalization, and 3) identifying significant chromatin interactions using a statistical
test. We evaluated the performance of our proposed approach using three distinct datasets, including
human cortex cells, mouse embryonic stem (ES) cells, and a mouse cell cycle dataset, with varying
numbers of cells to assess the robustness and scalability of our method across different conditions.

To validate the biological relevance of the interactions identified by our approach, we utilized
several criteria, including CTCF binding sites, analysis of known promoter-related interactions,
and quantification of common interactions between different datasets of the same cell type. Our
method shows a greater ability to generate a significantly higher number of biologically meaningful
interactions compared to SnapHiC. The capabilities were demonstrated through a higher percentage
of CTCF-enriched interactions, greater overlap with known promoter-centered interactions, and
increased common interactions between the same cell types, thus highlighting the potential of our
method in deciphering complex regulatory networks in single cells.

Future research could focus on refining and optimizing the methodology to further enhance
its performance, sensitivity, and generalizability across diverse cell types and conditions. Addi-
tionally, integrating our method with other single-cell genomics data modalities, such as single-cell
RNA-seq, ATAC-seq, or ChIP-seq, could provide a more comprehensive view of the molecular mech-
anisms associating with chromatin architecture and gene regulation in single cells. This multi-modal
integration would enable researchers to better understand the complex interplay between chromatin
structure and function, ultimately leading to novel therapeutic strategies for various diseases, in-
cluding cancer and developmental disorders, which are often characterized by aberrant chromatin

organization and gene expression patterns.
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5. INTEGRATIVE ANALYSIS OF EPIGENETICS AND
CHROMATIN INTERACTION DATA

5.1. Introduction

A key research field in bioinformatics involves studying how DNA is organized in three-
dimensional structures inside cells and identifying crucial genomic components that play significant
roles in gene expression and regulation, thus affecting cells functionality. Chromatin interactions
significantly influence gene regulation by bringing corresponding regulatory elements into close prox-
imity [30]. Chromatin interactions data are important in identifying key chromatin topological
structures, such as TADs and compartments, which are essential for analyzing genomic functions.
Additionally, various genetic disorders, including cancer and other pathologies, are associated with
disruptions in this chromatin architecture [58] [159] [36] [113]|. The study of epigenetics offers pro-
found insights into gene activity by examining chemical modifications in DNA and histone proteins.
Epigenetic markers, which impact gene regulation without altering DNA sequences, are crucial
for understanding cell behavior and differences in cell types. Epigenetic changes, such as histone
modifications and DNA methylation, have been linked to genomic instability, potentially leading
to genetic disorders like cancer by interfering with the functions of associated genes or oncogenes
[24]. Therefore, analyzing epigenetic data can reveal information on mutations or oncogenes re-
lated to genetic diseases. Furthermore, DNA methylation is particularly critical for studying cell
development and disease [73|. Hence, analyzing the correlation among these factors is essential to
understanding their impact on gene regulation and cellular function. Recent research suggests an
interplay between epigenetic markers and chromatin structure in genomic function [56]. This corre-
lation is observed through studies focused on analyzing and prediction of the relationship between
A/B compartments, TADs and chromatin modifications [46] [118], as well as through analyzing
different epigenetic domains and chromatin interactions using imaging techniques [15|. However,
current studies have revealed only a limited relationship between these factors at more finer scales

[56] and most of the studies focused on their individual role than the interplay. Consequently,
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the influence of chromatin interactions and epigenetic markers on chromatin organization remains
unclear, and exploring this through biological experiments alone presents significant challenges.

In recent years, significant advancements in the field of genomics have emerged due to the ap-
plication of advanced computational models such as machine learning and deep learning. Genomics
data, known for its complexity and volume, requires sophisticated computing techniques for proper
analysis. Graph embedding algorithms, particularly those based on deep learning approaches, ef-
fectively transform complex real world graph structures and relationships into a lower-dimensional
space which enhances the efficiency of downstream data processing such as prediction, classification,
clustering and visualization [51]. The ability to transform chromatin interaction data into a graph
structure, along with the characterization of epigenomic markers as features, enables the synthesis
of these distinct omics data using a graph embedding strategy. This process allows a systematic
evaluvation of their collective impacts on interpreting the structural organization of chromatin. In
various cases, graph embedding algorithms have been applied to predict tasks related to chromatin
interactions. The Sub-compartment Identifier (SCI) is an algorithm that utilizes graph embeddings
to predict sub-compartments from chromatin interaction data [4]. Varrone et al. introduced a
computational framework for predicting co-expression networks from chromatin conformation data.
They argue that a non-linear relationship exists between chromatin conformation and gene regula-
tion, and that gene topological embeddings contain relevant information [176]. Recently, epigenomic
markers data has been used in conjunction with chromatin interaction embedding data for the an-
notation of chromatin domains [155|. In this approach, the LINE embedding algorithm was utilized
to generates embeddings from chromatin structure data, which are subsequently aligned with epige-
nomic markers data for annotation. However, to the best of our knowledge, no existing studies have
thoroughly assessed the role of chromatin structural information using a integrative computational
methodology.

Graph embedding algorithms have shown promising outcomes in various fields, including
social networks|[178], computational biology [4], natural language processing [177], and recommen-
dation systems [35], by transforming the structural integrity of graphs into latent spaces. Graph
convolutional networks (GCNs) represent a major step forward compared to traditional graph em-
bedding methods such as DeepWalk [131], LINE [167], and Node2Vec [53] in analyzing large graphs

with node features. GCNs encapsulate graph information by aggregating feature data from a node’s
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local neighborhood, which allows for effective integration of information from its immediate sur-
roundings [197]. Moreover, GCNs integrate node features, enabling the model to consider both
feature and structural information of the neighborhood. Drawing inspiration from GCNs, Graph-
Sage [54] was introduced as a framework for inductive representation learning on large graphs
through the sampling and aggregation of features from a node’s local neighborhood. GraphSage
accommodates large graph data and can adjust to various graph structures. Numerous extensions
and applications have been built upon GraphSAGE to leverage its capabilities, including PinSAGE
[190] for handling large and complex graphs and HinSAGE [28] for heterogeneous graphs. Given
GraphSage’s ability to manage large graphs and relevant node feature information, it demonstrates
the capability to integrate chromatin structural information to learn latent embeddings.

In this study, we investigate the impact of chromatin interactions and epigenomic data on
chromatin structure and organization by integrating this information into a graph embedding model
to generate embeddings. We evaluated the accuracy of the predictions of these embeddings under
three distinct scenarios that disrupt the graph’s structure but maintain global characteristics such
as node degree and edge count. In addition, we applied a clustering approach on the generated
embeddings to predict TADs like domains. The findings indicate that while epigenetic markers
assist in the model’s training and predictions, chromatin interactions are crucial in preserving the
structural integrity of the chromatin. Although the approach is based on statistical analysis, it
suggests that chromatin interactions are vital in determining the effects of chromatin architecture
on genomic functions through gene regulation, with epigenetic markers serving to modulate these
interactions. Moreover, our findings highlight the significance of incorporating multi-dimensional
genomic data (structural, epigenetic, genetic) for a thorough understanding of genome structure
and function.

5.2. Data

This study utilized three distinct datasets. The initial dataset includes data on chromatin
interaction and epigenetics, derived from three cell lines associated with breast cancer: parental
endocrine-sensitive ER+ MCF7 cells, tamoxifen-resistant (TAMR) cells, and fulvestrant-resistant
(FASR) cells [1] [25]. This dataset incorporates chromatin interaction information generated through
the Hi-C method and data on epigenetic markers collected via ChIP-Seq techniques. Specifically,
we analyzed ChIP-Seq data for H3K4me3, H3K4mel, H3K27ac, H3K27me3, H2AZac markers, and
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Table 5.1. Breast cancer related cell lines

Cell Line Data type Data format Accession Reference
FASR Hi-C allValidPairs GSE118712 [1]
FASR H3K27ac Bigbed GSE118711 1]
FASR  H3K4me3  Bigbed GSE118711 1]
FASR  H3Kdmel  Bigbed GSE118711 1]
FASR  H2AZac Bigbed GSE118711 1]
FASR  CTCF Bigbed GSE118711 1]
MCEF7 Hi-C allValidPairs GSE118712 [1]
MCF7  H3K27ac narrowPeak ENCSR752U0D [25]
MCEF7 H3K4me3 narrowPeak  ENCSR985MIB [25]
MCF7  H3K4mel narrowPeak ENCSR493NBY [25]
MCF7  H2AZac Bighed GSE118711 1]
MCEF7 CTCF narrowPeak ENCSRO00DWH [1]
TAMR Hi-C allValidPairs GSE118712 1]
TAMR H3K2T7ac Bigbed GSE118711 [1]
TAMR  H3K4me3  Bigbed GSE118711 1]
TAMR  H3Kdmel  Bigbed GSE118711 1]
TAMR H2AZac Bigbed GSE118711 [1]
TAMR  CTCF Bigbed GSE118711 1]

CTCF binding sites across all three breast cancer cell line types for a comprehensive analysis in
conjunction with Hi-C data. Details related to the data from the breast cancer cell lines, including
accession IDs and associated publications, are presented in Table 5.1.

We utilized chromatin interactions and epigenomic indicators from three prostate cancer cell
lines for the second dataset. This dataset comprises genomic information from prostate cancer cell
lines (PC3 and LNCaP) and normal human prostate epithelial cells (PrEC) [165] [14] [166]. Addi-
tionally, this dataset includes data on chromatin interactions obtained through the Hi-C method,
and we obtained the H3K4mel, H3K4me3, H3K27ac epigenetic markers, along with CTCF binding
sites data, gathered via ChIP-Seq for further analysis. Detailed information on the prostate cancer
dataset is presented in Table 5.2.

This study incorporates a single-cell dataset to analyze the effects of the proposed approach
on single versus bulk cell data with paired sequencing. The dataset includes 4,238 single human brain
prefrontal cortex cells, obtained through single-nucleus methyl-3C sequencing (sn-m3C-seq) [94].
This method simultaneously captures chromatin interactions and DNA methylation information.

The dataset has been made available under the accession number GSE130711. It should be noted
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Table 5.2. Prostate cancer related cell lines

Cell Line Data type Data format Accession Reference
LNCAP Hi-C fastq GSE73785 [165]
LNCAP  H3K27ac fastq GSE73785 [165]
LNCAP H3K4mel fastq GSE73785 [165]
LNCAP H3K4me3 fastq GSE38685 [14]
LNCAP CTCF fastq GSE38685 [14]
PrEC Hi-C fastq GSE73785 [165]
PrEC H3K27ac fastq GSE57498 [166]
PrEC H3K4mel fastq GSE57498 [166]
PrEC H3K4me3 fastq GSE57498 [166]
PrEC CTCF fastq GSE38685 [14]
PC3 Hi-C fastq GSET73785 [165]
PC3 H3K27ac fastq GSE57498 [166]
PC3 H3K4mel fastq GSE57498 [166]
PC3 H3K4me3 fastq GSE57498 [166]
PC3 CTCF fastq GSE57498 [166]

that the datasets related to breast and prostate cancer are not part of paired experiments. In
contrast, the single-cell experiment is designed as a paired experiment, capturing both chromatin
interaction and DNA methylation data simultaneously.

5.3. Method

The overall processing pipeline is illustrated in Figure 5.1
5.3.1. Processing Chromatin Interaction Data

Raw and processed chromatin interaction data from bulk Hi-C cell lines were obtained from
relevant repositories as mentioned in Tables 5.1, 5.2 and single cell data was obtained from the GEO
accession GSE130711. Given the diversity in experimental approaches and techniques applied for
these datasets, we adopted distinct processing pipelines as outlined below.

Prostate cancer cell lines consist of multiple replicates for each type. We merged the associ-
ated FASTQ files for replicates and processed them using HiCPro[150] to generate contact matrices
for each cell line. Specifically, there were three replicates for normal human prostate epithelial cells
(PrEC), eight for LNCaP prostate cancer cells, and two for PC3 prostate cancer cells. Following
merging, the datasets were aligned to the hgl9 reference genome build using the Bglll restriction

enzyme. Subsequently, significant interactions were identified from the ICE-normalized data us-
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Figure 5.1. Method workflow

ing FitHiC2[85], with a specific p-value threshold. We then applied the HiC-breakfinder[37] tool
to exclude interactions associated with regions potentially containing structural variants in cancer
genomes.

For breast cancer cell lines, we obtained already processed chromatin interaction data from
the GEO repository, as detailed in Table 5.1. Similar to the prostate cell lines, each breast cancer
cell type included three replicates, and we merged the processed data for MCF7, FASR, and TAMR
cell types. These datasets were processed using the HiCPro tool with the hg38 reference genome
build and the Ncoll restriction enzyme to generate all valid pairs files. We continued the rest of the
HiC-pro pipeline to generate ICE normalized matrices and utilized FitHiC2 to identify significant

interactions.
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For single-cell Hi-C data generated from human prefrontal cortex cells, each cell’s data was
deposited separately, totaling 4,238 cells. The deposited chromatin interaction data for each cell was
processed using Bismark with Bowtiel against the hgl9 reference genome. We merged all deposited
contact data for each individual cell to identify significant interactions using FitHiC2 as in Figure
5.1.

5.3.2. Processing ChIP-Seq and DNA Methylation Data

We processed the ChIP-seq data related to prostate cancer cell lines, as detailed in Table
5.2, starting with raw fastq files. Initially, we assessed the quality of the reads using FastQC,
followed by alignment to the reference genome using Bowtie2. We sorted the resulting output
SAM files and converted them into BAM files using SAMtools. For peak detection, MACS2 was
utilized to compare the ChIP-seq sample data against a control sample to identify regions showing
significant enrichment of sequenced tags, consequently identifying statistically significant ChIP-seq
peaks. After determining a significance threshold, we excluded less significant peaks and normalized
the remaining output to integrate with Hi-C data.

The processed ChIP-seq data for breast cancer cell lines, stored in peak file format, appears
in Table 5.1. We downloaded this processed data from the corresponding GEO and ENCODE
repositories, then applied binning and normalization for integration with relevant Hi-C data. In a
similar manner, we merged and processed the available DNA methylation data for individual cell
lines and match with the resolution of Hi-C contact maps.

5.3.3. Graph Embedding Generation

Considering the genome’s length and the Hi-C network’s resolution, the resulting genomic
graphs are often significantly larger compared to traditional graphs. Therefore, a robust embedding
algorithm is essential for processing genomic graphs in unsupervised manner to generate embeddings.
Based on the Hi-C datasets applied in this study, the resulting graph consists of 50,000 to 110,000
nodes, as detailed in Table 5.3 which illustrates a large and complex structure. Moreover, it is
necessary to integrate epigenomic data to characterize the genomic regions as node features. After
evaluating various graph embedding techniques, including traditional methods, Graph Convolutional
Networks (GCNs), graph autoencoders (GAEs), and various attributed network embedding tools,
we selected GraphSAGE as the graph embedding model. Compared with other GCN-based and

traditional methods, GraphSage offers more scalability for large graphs due to its sampling approach.
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This choice was based on its capabilities in unsupervised learning, managing larger graphs, and
associating node features.

We first constructed the graph from the processed Hi-C data, where nodes represent ge-
nomic regions, and edges indicate the interactions between these regions. Thus, an edge appears
in the graph only when marked as a significant interaction through tools like fithic. We utilized
chip-seq and DNA methylation data, aggregated for the respective genomic regions, as node fea-
tures. For model training, we split the edge space into a training set and a testing set in a 70:30
ratio. The models were trained over 1 million cycles with a learning rate of 0.001 to understand
latent representations across 128 dimensions. In addition, we adjusted the relevant neural network

hyperparameters to optimize model performance.

AGGREGATEY = mean({o(W poohk +b),Vu; € N'(v)}) (5.1)

GraphSAGE provides several model variants, including mean-based aggregators, LSTM-
based aggregators, GCN-based aggregators, and pooling aggregators. In our experiments, we utilized
GraphSAGE with the mean-pooling aggregator, as outlined in equation 5.1 [54], following an analysis
of the performance of alternative aggregators. The mean-pooling aggregator applies an element-wise
mean-pooling operation to collect information from a set of neighbors, each processed individually
through a fully-connected neural network.

5.3.4. Identify TAD like Domains

GraphSage K-Mear\s
Clustering

Node Embeddings

TAD like domains (>200KB)

Figure 5.2. TAD like domains identification methodology.

Topologically Associating Domains (TADs) are large regions of the genome that preferen-
tially interact within themselves, creating distinct three-dimensional structures in the nucleus. They

play a crucial role in gene regulation, influencing gene expression by facilitating or restricting inter-
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actions between regulatory DNA elements and their target genes. To further assess the performance
of the generated embeddings, a clustering-based method was utilized for identifying TAD-like do-
mains, drawing inspiration from TAD identification algorithms such as ClusterTAD [125|. This
process began with clustering the generated embeddings through K-means clustering (k=5). Sub-
sequently, adjacent bins within the same chromosome that were assigned to the same cluster were
grouped together as identified domains similar to the approach in ClusterTAD. Previous research
indicates that the size of a TAD can range from several hundred kilobases to a few megabases [50].
Based on that, domains exceeding 200KB were classified as TAD-like domains, while smaller seg-
ments were regarded as boundaries or gaps between TADs. The high level overview of the approach
is represented in Figure 5.2.

This methodology was applied across three disruption scenarios to assess both the quality
and quantity of the TADs identified in each. The evaluation of TAD quality involved measuring
the statistical significance of differences between intra-TAD and inter-TAD interactions, following
the method used in ClusterTAD. Intra-TAD interactions denote the interactions within a TAD-like
domain, whereas inter-TAD interactions refer to the interactions between consecutive TADs. The
average number of raw interaction counts was calculated to gather these statistics. Moreover, the
average lengths of the TAD-like domains identified in each scenario were examined. Lastly, the
count of TAD-like domains identified in each scenario was analyzed, alongside random clustering,
to serve as a benchmark.

5.3.5. Evaluate using Statistical Measurements

The models were evaluvated through statistical metrics. We assessed the capability of the
proposed model to generate precise embeddings by analyzing the model’s performance across var-
ious disrupted graphs, derived from the initial graph. Our experiments included three distinct
scenarios: the initial graph, the edge-disrupted graph, and the feature-disrupted graphs. In the
case of edge-disrupted graphs, we rearranged the structure by shuffling the edges while maintaining
the same node degrees and using an identical set of nodes. In the feature-disrupted variant, we
shuffled node features across genomic regions while preserving the initial structure of the graph.
We statistically assessed these disruptions to determine their collective and seperate impact on the

chromatin structural integrity.
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To generate an adequate sample size, we conducted model training sessions using a sufficient
number of permuted graphs for each scenario. In each case, we collected the training and validation
accuracy of the learned embeddings as sample populations for further analysis. We first assessed the
normality of the generated samples and applied the paired t-test to compare the significant difference
between the groups. For this statistical test, we generated three different sample populations based
on accuracies from the initial graph, edge disruption, and feature disruption. We then compared
the accuracy of the disrupted graphs against the performances of the initial graph to understand
how graph structure and node features influence embedding prediction. To evaluate accuracy, we
utilized the Mean Reciprocal Rank (MRR), which assesses a ranked list based on the similarity or

disparity in the embedding space, as shown in Equation 5.2.

| @

1
MRR = —
Q| Z:ZI rank;

(5.2)

5.4. Results
5.4.1. Graph Embedding Predictions

Table 5.3 shows resultant graph structural information after processing Hi-C data from raw
fastq files to identify significant chromatin interactions based on threshold p-value 0.05. The edge
count reflects the number of significant interactions, while the node count indicates genomic regions
containing at least one interaction. Analysis reveals a significant portion of genomic regions was
discarded in post-filtering, as demonstrated by the node count. For example, in graphs associated
with breast cancer cell lines, approximately only 50,000 genomic regions out of a total 150,000
(mapped at a resolution of 20,000 bins) register at least one significant interaction. Consequently, the
resulting Hi-C contact matrices demonstrates a high degree of sparsity which complicates biological
interpretation.

After constructing graphs for each cell line, we initially analyzed the training and validation
curves of the model to verify the impact of adding additional node features on the embedding
accuracy. The Figure 5.3 illustrates the training and validation mean reciprocal rank (MRR) spread
across one million epochs for breast cancer and prostate cancer cell lines, highlighting the effect of
epigenetic markers on chromatin organization. The relevant box plots indicating the significance

in differences is represented in Figure 5.4. The data indicate that utilizing only a single epigenetic
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Table 5.3. Graph information

Cell line Number of nodes Number of edges
FASR 50,612 133,693
MCF7 51,543 142,562
TAMR 55,880 170,786

Single cell-cortex 111,238 270,889
LNCAP 95,722 426,754
PC3 100,703 478,726
PReC 101,623 408,625

marker, the MRR peaks at approximately 0.55, whereas it increases up to to 0.8 with the inclusion
of all five ChIP-seq markers for the FASR breast cancer cell line. A similar pattern can be observed
in both the training and validation accuracy for LNCaP prostate cancer cell lines, as shown in
Figure 5.4. We derived these results by averaging data from samples collected from models with
different training and validation sets to minimize biases.

To analyze the impact of chromatin interaction and epigenetic data along with their inter-
play on embedding predictions, we assessed the significance of the differences between initial and
disrupted model variants. The accuracy distribution for the gathered samples across three scenarios
is represented for breast cancer cell lines, prostate cancer cell lines and single cells in Figure 5.5.
We conducted the Shapiro-Wilk test to determine the normality of the data sets, as shown in Table
5.4. The related statistical information is provided in Table 5.5 and visualized in Figure 5.6 for
breast cancer cell lines, prostate cancer cell lines and single cells. The paired t-test results across
all these cell lines indicate a significant difference between the initial and disrupted graphs which
highlights the interplay between chromatin and epigenetics, as supported by existing literature [56].
However, the results also reveal that graphs with edge disruptions tend to show lower prediction
accuracies than those with feature disruptions which suggests that chromatin interaction data may
play a pivotal role in this correlation and epigenetics data could assist in modulating these inter-
actions. Furthermore, in the edge-disrupted graphs, we altered the local structure while preserving
the global structure which highlights the significant role of local chromatin configurations, such as
chromatin loops between regulatory elements and higher-order structures like TADs. While this

provides a biological intrepretation through statistical analysis and graph embedding techniques,
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Table 5.4. Normality test using Shapiro-Wilk Test

Cell line  Initial Edge Disrupt Feature Disrupt
FASR 0.528 0.340 0.970
MCF7 0.582 0.619 0.328
TAMR 0.078 0.958 0.537

Single Cell  0.298 0.039 0.488
LNCAP 0.380 0.082 0.386
PC3 0.105 0.100 0.441
PrEC 0.074 0.000 0.987

Table 5.5. Mean and Standard Deviation of the sample populations

Cell line Initial Edge Disrupt Feature Disrupt
FASR M=0.772, SD=0.015 M=0.500, SD=0.020 M=0.725, SD=0.016
MCF7 M=0.788, SD=0.015 M=0.480, SD=0.018 M=0.727, SD=0.015
TAMR M=0.778, SD=0.015 M=0.450, SD=0.019 M=0.736, SD=0.015

Single Cell M=0.545, SD=0.033 M=0.313, SD=0.025 M=0.477, SD=0.036
LNCAP  M=0.652, SD=0.017 M=0.401, SD=0.016 M=0.592, SD=0.017
PC3 M=0.667, SD=0.017 M=0.284, SD=0.045 M=0.571, SD=0.020
PrEC M=0.679, SD=0.015 M=0.222, SD=0.033 M=0.568, SD=0.021

further exploration is necessary to clarify the biological significance of the data and the practical
uses of the embeddings, especially in solving problems related to experimental data and limitations
of existing tools.
5.4.2. Identified TAD like Domains

We first assessed the quality of the identified TAD-like domains through analysis of inter-
TAD and intra-TAD interactions. The figure 5.7 demonstrates a significant difference between
the counts of intra-TAD interactions and inter-TAD interactions. For qualification as a TAD-like
domain, the count of intra-TAD interactions should greatly exceed that of inter-TAD interactions.
The results indicate that the identified TAD-like domains exhibit a significant difference between
these two interaction types across all scenarios and remain consistent in each cell line. This suggests

that the identified domains meet the criteria for TAD-like domains in every scenario. Subsequently,

we examined the average size of TAD-like domains, as illustrated in the figure 5.8. The violin
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plots reveal that the lengths of the domains range from 200KB to 3MB, aligning with findings from
previous studies.

Finally, we evaluated the number of identified TAD-like domains in each scenario, as depicted
in the figure 5.9. The figure reveals that random baseline clustering discovered the fewest TAD-
like domains, indicating the effectiveness of identifying TAD-like domains through corresponding
graph embeddings. Original/initial graph embeddings detected a higher number of those domains
compared to disrupted graph embeddings, and feature-disrupted graphs identified more TAD-like
domains than edge-disrupted graphs. These findings align with those from the embedding accuracy
analysis, suggesting that chromatin interactions play a crucial role in the identification of a higher
number of TAD-like domains compared to epigenetic features. Moreover, the combined use of these
elements leads to the identification of an even larger number of TADs, underscoring the significance
of their interplay.

5.5. Discussion

The structure of chromatin is non-random, biologically significant, and represents the spa-
tial arrangement within the nucleus, influencing gene expression and regulation. Analyzing the
interplay between chromatin interactions and epigenetics is essential for understanding their impact
on genomic functions. However, the specific correlation between these two factors and significance
of their roles are not well defined and still remain as a question [56]. This study expects to carry
out an integrative analysis of chromatin structural data through a graph embedding model to de-
cipher the underlying patterns and relationships between chromatin interactions and epigenetic
data, and to identify their importance in genomic function. Graph embedding algorithms such as
GraphSAGE, a neighborhood aggregation algorithm, generates node embeddings by iteratively ag-
gregating and transforming feature vectors of a node’s neighbors. These embeddings can be utilized
for downstream tasks such as link prediction, node classification, etc. In this proposed approach,
we assessed the differences in performance of learning graph embeddings following disruptions to
the graph structures while preserving their global integrity, to identify the key elements within the
interplay between chromatin interactions and epigenetics against genomic functions.

Since the initial network demonstrates the highest validation accuracy and higher number
of TAD like domain identification, it indicates that the chromatin interactions (edges) together

with epigenetic information (node features) hold essential information for predicting latent low-
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dimensional feature embeddings. It suggests that the physical proximity and interaction among
various genomic regions (as captured by chromatin interactions) along with their epigenetic mark-
ers play a critical role in biological processes and chromatin organization. This finding aligns with
current biological understanding [170] [128], which recognizes the interplay between chromatin in-
teractions and epigenetics as influential in gene regulation and consequently, cellular functions.

The fact that graphs with disrupted features (where node features represent epigenetic
markers) maintain some level of predictive accuracy, less than the initial but more than networks
with disrupted edges (chromatin interactions), suggests that while epigenetic markers are important,
their specific association to specific genomic regions (nodes) might not be as critical as the local
structure of chromatin interactions in generating embeddings and identifying TAD like domains.
This scenario indicates that epigenetic markers itself do not play as specific or vital role as the
precise organization of chromatin interactions.

The lower performance of edge-shuffled graphs (where chromatin interactions are disrupted
while maintaining global graph properties) suggests that the local structure and specific connections
between regions (local chromatin architecture) are more important for the biological processes than
the global structure alone. This might indicate that specific interaction patterns, such as enhancer-
promoter interactions or insulator functions, and higher order chromatin structures such as TADs
or compartments are crucial for understanding the regulatory mechanisms at play.

Combining these observations, we can conclude that in the context of the chromatin ar-
chitecture, specific chromatin interactions (and the local genomic architecture they represent) are
crucial and likely govern key biological processes by facilitating or restricting access to regulatory
elements. The epigenetic context, while important, may act more as a modulator rather than the
primary driver, enhancing or diminishing the effects based on the chromatin context.

However, integrating analysis methods that merge multi-omics data with Hi-C data intro-
duces several significant challenges. One primary challenge is the difference in resolution between
Hi-C data, which typically ranges from 1 kb to 1 MB, and one-dimensional (1D) chromatin data,
such as ChIP-seq, which provides a much finer resolution of 100 bp to 1 kb. This variance com-
plicates the effective integration of information across different scales and may lead to the loss of

essential high-resolution details. Although we have aggregated the ChlIP-seq signals into genomic
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bins to align with the resolution of Hi-C experiment data, this approach can result in the underrep-
resentation of certain aspects of ChIP-seq data.

Additionally, assessing the relationship between proposed models and their biological rele-
vance is often complicated due to the incomplete nature of processed experimental data. Although
bulk Hi-C experiments can generate a vast amount of reads, from millions to billions, the count of
biologically meaningful interactions is likely to be considerably lower once noise is removed and bi-
ases are corrected using tools like FitHiC and HiCCUPS. For instance, in the breast cancer dataset,
the resulting graphs contain about 50,000 nodes (genomic bins) at a 20k bin resolution, even though
the total number of genomic region<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>