
A MULTI-OMICS MULTI-ENVIRONMENT PREDICTION IN PULSE CROP 

 

 

 

 

A Dissertation 

Submitted to the Graduate Faculty 

of the 

North Dakota State University 

of Agriculture and Applied Science 

 

 

 

 

By 

Rica Amor Gregorio Saludares 

 

 

 

 

In Partial Fulfillment of the Requirements 

for the Degree of 

DOCTOR OF PHILOSOPHY 

 

 

 

 

Major Department: 

Plant Sciences 

 

 

 

  

April 2024 

 

 

 

 

Fargo, North Dakota 

  



North Dakota State University 

Graduate School 
 

Title 
 

A MULTI-OMICS MULTI-ENVIRONMENT PREDICTION IN PULSE 

CROP 

  

  

  By   

  
Rica Amor Gregorio Saludares 

  

     

    

  The Supervisory Committee certifies that this disquisition complies with North Dakota 

State University’s regulations and meets the accepted standards for the degree of 

 

  DOCTOR OF PHILOSOPHY  

    

    

  SUPERVISORY COMMITTEE:  

    

  
Dr. Nonoy Bandillo 

 

  Chair  

  
Dr. Qi Zhang 

 

  
Dr. Megan Orr 

 

  
Dr. Julie Pasche 

 

    

    

  Approved:  

   

 April 8, 2024  Dr. Richard Horsley  

 Date  Department Chair  

    

 



 

iii 

ABSTRACT 

Understanding the genetic bases underlying seed yield and protein, and eventually 

recombining them in desired genetic backgrounds, continues to be a challenge to pulse crop 

breeders. Phenotypic selection for seed yield and protein in preliminary yield trials is hindered 

by the need to phenotype a large number of early-generation lines (>10,000) with limited seeds, 

resulting to trials with few replications and limited environments. In this study, we evaluated and 

applied a multi-trait multi-environment (MTME) and a multi-omics prediction framework to 

address phenotyping bottleneck and the complexities underlying negatively correlated traits, and 

maximize connectivity among genotypes for predicting performance of untested genotypes in 

diverse set of environments. Using over 200 NDSU modern advanced breeding lines and 300 

USDA diverse accessions, our findings demonstrated that MTME prediction significantly 

enhanced predictive ability by 1.3 and 1.8-fold for yield and protein, respectively. For the 

environments with low heritability of tested trait, however, using the MTME prediction led to 

small increases in prediction accuracy. To further maximize connectivity among genotypes and 

environments, a subset of individuals was included from the testing population that led to 1.6 and 

1.2-fold improvement for yield and protein, respectively. Incorporating additional orthogonal 

information such as gene expression (RNA) into the prediction framework showed potential for 

further increasing prediction accuracy. Using ~300 USDA diverse accessions assessed in two 

environments, integrating genotypic and expression data (DNA+RNA) resulted to higher 

predictive ability (0.48-0.55) over using DNA only (0.42) or RNA only (0.43-0.53). Overall, we 

found that maximizing the relationship among genotypes and environments, along with 

integration of additional orthogonal information (e.g. RNA) into genomic prediction framework 

can further enhance predicting performance of untested genotypes in diverse environments.   
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CHAPTER 1: LITERATURE REVIEW 

1.1. Pea (Pisum sativum) 

1.1.1. A historical overview 

Field pea, also known as dry pea, is a member of the third largest flowering plant family, 

Fabaceae or Leguminosae with approximately 18,000 species and 800 genera (Foyer et al., 2016; 

Lewis, 2005). It is considered as one of the world’s first domesticated crops and is cultivated in 

most temperate regions (Warkentin et al., 2015). Vavilov and Dorofeev (1992) identified the 

Mediterranean region as the center of origin for most cultivated vegetables, including peas, along 

with Central Asia, the Near East, and Ethiopia (Kalloo and Bergh, 2012). Peas were introduced 

to the Americas by European immigrants around 1500 AD, following early explorers. They 

quickly became one of the first seed crops cultivated in the United States. According to 

(Shoemaker and Delwiche, 1934), the initial pea-seed growing operations were established near 

Lake Ontario, situated in northeastern New York and Canada. Over time, the cultivation of field 

peas expanded, with significant production occurring in the Washington and Idaho Palouse 

region. Subsequently, North Dakota, South Dakota, Montana, and Minnesota joined the ranks of 

pea-producing states, beginning in the 1990s (Endres and Kandel, 2021). The period from 1949 

to 1960s saw the formation of several growers’ associations aimed at enhancing trade within the 

industry. Ultimately, in 1965, the USA Dry Pea & Lentil Council (USADPLC) was established 

to further these objectives which plays a crucial role in facilitating and funding research for 

improved varieties, developing new products, and analyzing the nutritional profiles of these 

commodities (USA Pulses, 2024). 
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1.1.2. Characteristics and growth patterns 

Peas are diploid plants with a chromosome number of x= 7 and a genome size of 4.45 GB 

(Kreplak et al., 2019). Field pea is one of the two main classes of pea cultivars, the other being 

garden pea. Garden peas are typically harvested at a young, tender stage by shelling them from 

the pods. In contrast, field peas are harvested at the dry mature stage from pods that are not 

edible. The seeds of field peas are typically round, containing either yellow or green cotyledons, 

and their seed coats may be clear or pigmented (Endres and Kandel, 2021). Field pea varieties 

can be broadly categorized into two main types based on their leaf structure: the conventional 

leaf type, characterized by normal leaves and vine lengths that can reach up to 9 feet; and the 

semi-leafless type, which features leaves that have been modified into well-developed tendrils 

and usually has shorter vines, measuring about 2 ft (Miller et al., 2005; Uzun et al., 2005; Mikic 

et al., 2011, Tafesse et al., 2019; Endres and Kandel, 2021). Field peas can display two growth 

habits: indeterminate, where the terminal bud remains vegetative and continues growing as long 

as conditions permit; or semi-determinate, where vegetative growth continues after plant 

transitions to reproductive mode and begins flowering, but may stop before moisture becomes 

scarce, depending on the variety (Krall et al., 2006; Clark, 2019). They are classified as hypogeal 

plants, with cotyledons remaining below the ground and inside the seed coat during germination, 

providing protection against frost, wind erosion, and insect damage, as new stems can sprout 

from buds at or below ground level (Wulf and Reid, 2020; GRDC, 2018; Lamb and Podder, 

2008). 

1.1.3. Economic importance 

Field pea production is primarily for human consumption or as livestock feed (Miller et 

al., 2005). Often referred to as the “poor man’s meat”, field pea is valued for its high protein 
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content, rich vitamins and mineral profile, and affordability, making it a popular choice in 

vegetarian diets, particularly among lower-income consumers (Amarakoon et al., 2012). 

Compared to wheat and other cereals, peas boast higher levels of protein, total dietary fiber, and 

total sugar content (Tulbek, 2014). This inherent nutritional richness highlights the importance of 

peas as a source of protein and dietary fiber, particularly for developing and underdeveloped 

countries. Dry peas exhibit a wide range of market classifications, with green and yellow 

cotyledon types being the primary ones. However, only selected varieties meet the standards for 

being sold in the green or yellow human edible market (Endres and Kandel, 2021). 

1.2. Challenges in pea production 

Peas are cultivated primarily in Canada, Russia, USA, France, and Australia (Tulbek et 

al., 2017). World production of dry peas has shown significant fluctuations in recent years 

culminating at 14.2 million metric tons in 2022, according to (FAOSTAT, 2024). Apart from 

their nitrogen-fixing ability, sustaining gains in grain yield is crucial for peas to remain an 

attractive option in crop rotations. However, expanding world pea production poses several 

challenges that require concerted efforts from pea breeders globally. Peas are highly vulnerable 

to various biotic stresses, including powdery mildew (León et al., 2020; Sulima & Zhukov, 2022; 

Rana et al., 2023), ascochyta blight (Bretag, 2006; Joshi et al., 2022; Tivoli & Banniza, 2007), 

rust (Osuna-Caballero et al., 2022; Chand et al., 2004), wilt (Kraft, 1994; Haglund and Kraft, 

2001) and root rots (Chatterton et al., 2018; Wu et al., 2022). Additionally, abiotic factors such 

as heat (Devi et al., 2022; Mohapatra et al., 2020), frost (Shafiq et al., 2012), drought (Stagnari et 

al., 2016; Sorensen et al., 2003), salinity (Ehtaiwwesh and Emsahel, 2020; Popova et al., 2023; 

Duzdemir et al., 2009) and soil pH (Rice et al., 2000; Chaudhari et al., 2020) present major 

constraints on yield. Addressing these biotic and abiotic stresses is crucial for breeders aiming to 
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stabilize and increase grain yield (Warkentin et al., 2015). Breeders prioritize improving crop 

yield as the main trait for ensuring the long-term success of cultivars, along with disease 

resistance and other agronomic factors. Consequently, they primarily select for traits related to 

yield such as plant height, vegetative growth form, maturity, number of pods, and others. On the 

other hand, nutrition and quality are seen as secondary attributes, such as protein content, 

cooking quality, color, and taste, which impact the acceptability of varieties in the global 

marketplace (Tulbek et al., 2017). 

1.3. Addressing pea production problems through breeding 

Continued improvement for pea grain yield is challenged by limited available genetic 

resources. To overcome this, international germplasm exchange and the utilization of diverse 

Pisum accessions are crucial for achieving new yield gains (Warkentin et al., 2015). These 

genetic resources often possess unique traits that are essential sources of variation for enhancing 

germplasm. They provide a valuable reservoir of genetic diversity that can sustain long-term 

genetic gains in breeding programs (Bari et al., 2021).  

Over the past four decades, molecular markers have played a significant role in revealing 

DNA-level polymorphisms, thereby enhancing breeding efforts, thus has revolutionized plant 

breeding. Marker-assisted selection (MAS) allows breeders to identify and select plants carrying 

specific genes or genomic regions associated with target traits. This technology has become 

increasingly important in recent years and has expedited the breeding process by reducing the 

time and resources required for traditional breeding phenotypic selection, especially in enhancing 

tolerance to both abiotic and biotic stressors (Barman and Kundu, 2019; Javid et al., 2015). The 

USDA Pea Single Plant Plus Collection (PSPPC) has been instrumental in pea breeding. 

Holdsworth et al. (2017) assembled this collection, which contains 431 P. sativum accessions 
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with a wide range of morphological, geographic and taxonomic diversity. Through genotyping-

by-sequencing, 66,591 high-quality SNPs were generated, aiding in the identification of novel 

sources of favorable alleles. Notably, accessions from Central Asia exhibit diversity comparable 

to the sister species P. fulvum and subspecies, P. sativum subsp. elatius, indicating their potential 

for breeding programs. 

The emergence of next-generation sequencing technologies and various genotyping 

platforms has significantly reduced the cost of genotyping, making it more affordable than 

phenotyping. This has opened up new avenues for plant breeding, particularly through the 

implementation of genomic selection (GS). GS allows breeders to predict an individual’s 

breeding value using genome-wide genotypic data, enabling the selection of superior genotypes 

at an early stage (Belamkar et al., 2018; Desta and Ortiz, 2014; Jarquín et al., 2017; Pérez-

Rodríguez et al., 2017; Poland, 2015; Poland and Rife, 2012). In GS, a training set or population 

with both phenotypic and genome-wide marker data is used to develop a prediction model 

through cross-validation (Meuwissen et al., 2001). This model is then utilized to calculate the 

genome-estimated breeding value (GEBV) of a breeding or testing population, which only 

requires genotypic data. Selection of the best-performing lines is based on these predicted 

GEBVs (Bhat et al., 2016). The adoption of GS in pea breeding has allowed breeders to 

accelerate the development of elite lines with enhanced traits that can adapt to changing 

environmental conditions. This approach is crucial for meeting the increasing demand for 

improved pea varieties (Annicchiarico et al., 2019; Budhlakoti et al., 2022; Cazzola et al., 2021; 

Gosal and Wani, 2020; Haile et al., 2020; Li et al., 2022; Pratap et al., 2022). 
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1.4. Genomic selection models 

Genomic selection has emerged as a powerful tool in modern plant breeding, offering 

significant potential for accelerating crop improvement (Meuwissen et al., 2001). By reducing 

the cost per breeding cycle and shortening the generation interval, it enables more rapid genetic 

gain, leading to increased efficiency in the crop breeding process (Bhat et al., 2016; Kaler et al., 

2022). In GS, a training set or population with both phenotypic and genome-wide marker data is 

used to develop a prediction model through cross-validation. This model is then utilized to 

calculate the genome-estimated breeding value (GEBV) of a breeding or testing population, 

which only requires genotypic data (Newell & Jannink, 2014). Selection of the best-performing 

lines is based on these predicted GEBVs (Bhat et al., 2016).  

Univariate or single-trait (UNI) models have been widely employed in GS, focusing on 

predicting individual traits independently while assuming no correlation between traits (Atanda 

et al., 2022; Sandhu et al., 2022; Montesinos-López et al., 2022). Multi-trait GS (MT-GS) 

models integrate information from correlated traits and shared genetic information between lines 

to improve the accuracy (Jia and Jannink, 2012; Gill et al. 2021; Atanda et al., 2022; 

Montesinos-López et al., 2022;). As traits are genetically correlated, these MT-GS models have 

demonstrated their ability to enhance prediction accuracy, particularly for traits with inherently 

low heritability. Hayes et al. (2017) reported increased genomic prediction accuracy by ~40% for 

wheat end-use quality traits using a MT-GS model compared to a UNI-GS model. In barley, 

Bhatta et al. (2020) reported an increase of 57 to 61% prediction accuracy for agronomic and 

malting quality traits. In a recent study, Atanda et al. (2022) proposed a sparse-phenotyping-

aided MT-GS model and demonstrated a notable improvement of over 12% in prediction 

accuracy across nutritional traits in field pea. Generally, prediction accuracy in MT-GS improves 
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as correlation between traits increases. However, in practice, the correlation between traits 

ranges from positive to negative, along with varying degrees of heritability. Addressing this 

challenge, Atanda et al. (2022) emphasized composition of traits in the training and prediction 

sets based on the heritability and genetic correlation between traits to enhance the prediction 

accuracy.   

Economically important crop traits are often considered complex due to their polygenic 

nature and strong influence by environmental factors (Campbell et al., 2019; Mondal et al., 2023; 

Riedelsheimer et al., 2012; Shi et al., 2009). To effectively evaluate these traits, it is necessary to 

assess lines across multiple environments to account for genotype-by-environment (GxE) 

interactions. Multi-trait, multi-environment models in GS integrate the analysis of several traits 

evaluated across different environments. This approach, known as multi-trait multi-environment 

genomic prediction (MTME-GP), allows for the selection of pea lines that demonstrate 

consistent and robust performance across various traits and environments. MTME-GP has shown 

promising results in improving prediction accuracy and genetic gain for economically important 

traits. Studies have demonstrated that integrating GxE interactions in the MTME model further 

enhances prediction accuracy. For example, Sandhu et al. (2022) found that MT-based GS 

models outperformed UNI models for within-environment and across-location predictions of 

end-use quality traits in winter wheat. Gill et al. (2021) concluded that MT and MTME models 

offered significant advantages when considering environments and correlated traits. In their 

study on advanced breeding lines of winter wheat, the MTME model proved superior in 

predicting all agronomic traits. Overall, MTME-GP has emerged as a valuable tool for plant 

breeders, enabling them to effectively handle large breeding populations each season and address 

the challenges associated with complex traits and diverse environments. 
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1.5. Multi-omics prediction of crop traits 

Technological advancements have significantly enhanced plant breeding practices, 

thereby playing a crucial role in addressing the challenges of feeding the rapidly expanding 

global population. Omics technologies, encompassing genomics, transcriptomics, and 

metabolomics, have revolutionized crop improvement strategies by providing detailed insights 

into molecular mechanisms underlying complex traits (Dai & Shen, 2022; Yang et al., 2021) 

1.5.1. Genomics 

The field of genomics has experienced significant advancements in recent years, driven 

by the emergence of next-generation sequencing and various genotyping platforms, which have 

made genotyping more accessible and cost-effective. These advancements have not only 

facilitated genome advancement but have also enhanced functional research (Shendure et al., 

2017). Genomics has provided researchers with unprecedented insights into the genetic makeup 

and diversity of various plant species, revolutionizing plant breeding and crop improvement 

strategies (Roychowdhury et al., 2023).  

One key approach in genomics is Quantitative trait locus (QTL) mapping, which aims to 

identify regions of the genome that contribute to variation in traits of interest (Ahmad et al., 

2022). Numerous QTLs related to seed protein content and yield traits in pea have been 

identified through various QTL linkage analysis studies (Burstin et al., 2007; Gali et al., 2018; 

Klein et al., 2020; Ma et al., 2017; Timmerman-Vaughan et al., 1996; Ubayasena et al., 2011). 

However, traditional QTL mapping has limitations in mapping resolution due to the low 

recombination in mapping populations (Yan et al., 2017). 

Genome-wide association studies (GWAS) have furthered our understanding of complex 

traits by associating genetic variants with phenotype variation across diverse germplasm (Korte 
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& Farlow, 2013). This approach, which relies on historic recombination and higher marker 

density (Gali et al., 2018), has been particularly effective in crops with diverse germplasm, such 

as maize and rice, leading to the discovery of novel genes underlying important agronomic traits. 

For example, (Anilkumar et al., 2022) identified three Meta-QTL for grain weight in rice while 

(Hu et al., 2022) identified five QTLs associated with relative spikelet fertility. Similarly, (Zhao 

et al., 2022) discovered three QTLs controlling rice grain length, and (Fei et al., 2022a; Fei et al., 

2022b) identified numerous QTLs for maize yield traits. 

GS has emerged as a transformative tool in plant breeding, utilizing genetic markers 

across the genome to predict the genetic merit of individuals (Meuwissen et al., 2001). While 

effective for many economically important traits (Beyene et al., 2015; Das et al., 2020; Huang et 

al., 2019; Rio et al., 2019; Rutkoski et al., 2012; Sarinelli et al., 2019; Yabe et al., 2018), it may 

not capture all the genetic variation underlying complex traits, due to complex biological 

processes that can influence phenotypes (Guo et al., 2016; Li et al., 2019). To address this 

limitation, researchers have turned to multi-omics prediction, which integrates data from 

multiple omics layers to provide a more comprehensive view of the genetic architecture of traits. 

1.5.2. Transcriptomics 

Transcriptomes, which capture the complete set of RNA transcripts in a cell and tissue, 

offer valuable insights into gene expression patterns that directly influence phenotypic traits 

(Zhou et al., 2022). Studies have shown the utility of gene expression data in predicting complex 

traits, such as hybrid maize yield performance, where a set of genes associated with hybrid 

performance led to higher prediction accuracy compared to using genetic markers alone (Fu et 

al., 2012). Li et al. (2019) integrated gene expression data with the whole-genome SNP data to 

predict various traits in Drosophila melanogaster, employing five different kernel-based 
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methods. Similarly, Azodi et al. (2020) demonstrated that transcriptome-based models 

outperformed baseline predictions derived from genetic marker data, suggesting that 

transcriptome data contributes valuable information to genomic prediction. 

Despite these advancements, integrating omics data has presented challenges. Some 

studies have reported lower predictive abilities of models using transcriptome data compared to 

the benchmark model, GBLUP (Li et al., 2019; Xu et al., 2017). In contrast, others found that 

combining genetic markers and transcript data did not substantially improve performance over 

genetic marker data alone (Azodi et al., 2020). However, despite these challenges, the integration 

of omics data holds promise for advancing genomic prediction models and enhancing our 

understanding of complex trait inheritance. 

In parallel, multi-environment trials in plant breeding provide critical insights into the 

adaptability and stability of breeding lines across diverse environmental conditions (Burgueño et 

al., 2012; Fehr, 1991; Mathew et al., 2018). While much of the focus in integrating multi-omics 

prediction has been on single-environment trials and single traits, a study by Hu et al. (2021) 

stands out for its evaluation of multi-omics multi-trait prediction models in multi-environment 

trials in oats. Their findings, demonstrating the superiority of these models over traditional 

approaches, highlight the potential of multi-omics integration in enhancing prediction accuracy 

and robustness across different environments.  

These advancements underscore the importance of incorporating multi-omics approaches 

in plant breeding to develop cultivars that exhibit consistent and superior performance across a 

wide range of conditions. Such integration not only contributes to sustainable agriculture but also 

enhances food security by ensuring the resilience and productivity of crop varieties. 
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CHAPTER 2: MULTI-TRAIT MULTI-ENVIRONMENT GENOMIC PREDICTION OF 

PRELIMINARY YIELD TRIALS IN PULSE CROP1 

2.1. Introduction 

The challenges posed by a rapidly expanding global population and climate change 

underscore the imperative for sustainable food production (Tilman et al. 2011; van Dijk et al. 

2021; Kumar et al. 2022). Field pea (Pisum sativum) emerges as a desirable crop, not only 

meeting the criteria for sustainability but also standing out as an affordable and nutritious plant-

based protein source, placing field pea at the forefront of leguminous crops in the food industry 

(Punia & Kumar, 2022; Shanthakumar et al., 2022). However, the conventional process of 

developing a promising line for release to farmers involves rigorous phenotypic assessments 

across multiple seasons and environments, especially for polygenic traits with complex genetic 

architecture (Samantara et al., 2022).  Accelerating the development of crop varieties to meet the 

needs of a growing population stands out as a viable strategy to help feed the world (Ahmar et al. 

2020).  

Genomic selection for complex traits in early breeding cycles has the potential to 

significantly reduce the selection cycle time and expedite genetic gain (Ertiro et al., 2015; Crossa 

et al., 2017; Bernardo, 2020).  The advent of next-generation sequencing and various genotyping 

platforms has rendered genotyping more accessible and cost-effective than traditional 

phenotyping methods (Atanda et al., 2021). This transformative shift provides a unique 

                                                 

 

1 This chapter has been published in a preprint server as Saludares, R.A., S.A. Atanda, L. Piche, H. Worral, F. 

Dariva, K. McPhee & N. Bandillo. 2024. Multi-trait multi-environment genomic prediction of preliminary yield 

trials in pulse crops. doi: https://doi.org/10.1101/2024.02.18.580909. It was also previously submitted for 

publication to an open-access journal and is currently under review. Rica Amor Saludares generated and analyzed 

data, conducted the research and investigation process, visualized data, and prepared the manuscript. 

https://doi.org/10.1101/2024.02.18.580909
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opportunity to seamlessly integrate genomic selection (GS), leveraging DNA information to 

predict the genetic merit of new genotypes (Meuwissen et al., 2001; Atanda et al., 2021). Studies 

have shown the potential of GS in pulse breeding programs for genetic improvement of seed 

yield, seed protein content, and wider adaptability to ever-changing environmental conditions 

(Annicchiarico et al., 2019; Budhlakoti et al., 2022; Cazzola et al., 2021; Gosal & Wani, 2020; 

Haile et al., 2020; Li et al., 2022; Pratap et al., 2022). The North Dakota State University 

(NDSU) pulse breeding program is undergoing a fundamental shift from phenotypically-driven 

approaches to a more modern GS-based approach at the preliminary yield trial (PYT) stage. 

Specifically, GS has great potential in early generation selection or culling in PYT using 

information from advanced trials. Improving accuracy in the early yield testing stage for 

selection of top-performing lines is essential for efficient resource allocation, shortening the 

breeding cycle, and, ultimately, increasing genetic gain (Bassi et al., 2016; Atanda et al., 2021; 

Bandillo et al., 2022). 

Univariate or single-trait (UNI) models have been widely employed in GS, focusing on 

predicting individual traits independently while assuming no correlation between traits (Atanda 

et al., 2022; Sandhu et al., 2022; Montesinos-López et al., 2022a). Multi-trait GS (MT-GS) 

models integrate information from correlated traits and shared genetic information between lines 

to improve the accuracy (Jia and Jannink, 2012; Gill et al. 2021; Atanda et al., 2022; 

Montesinos-López et al., 2022b). As traits are genetically correlated, these MT-GS models have 

demonstrated their ability to enhance prediction accuracy, particularly for traits with inherently 

low heritability. Studies have also shown that the integration of genotype by environment (GxE) 

in the MT model further improves prediction accuracy.  
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In this chapter, we explored the merit of a multi-trait multi-environment enabled genomic 

prediction model (MTME-GP) in enhancing the prediction accuracy of two highly important, yet 

negatively correlated, traits: seed protein content and seed yield in field pea. Additionally, we 

further assessed the potential of MTME-GP models for predicting performance in single and 

cross-environment predictions using multiple years of data. 

2.2. Materials and methods 

2.2.1.   Germplasm and phenotyping 

The genetic materials consisted of 282 NDSU advanced elite breeding lines previously 

described in Bari et al. (2021). The lines were planted in 1.5- x 7.6-m plots at 0.30-m spacing 

between plots with 840 pure live seeds per plot, arranged in an augmented incomplete block 

design with five diagonal repeated checks for preliminary yield trials. Seed yield and agronomic 

data were collected in 3-year experiments from 2020 to 2022, including two environments at the 

NDSU North Central Research Extension Center (NCREC) near Minot, ND (MOT20 and 

MOT21) and one environment at the Carrington Research Extension Center near Carrington, ND 

(CAR22). Standard cultural practices were followed. Plots were harvested at physiological 

maturity (90-120 days after planting) and dried to 13% moisture content. A total of 0.11 kg clean 

and dried harvested seeds per line was used for protein analysis at the NCREC using near 

infrared (NIR) spectroscopy.  

2.2.2.   Genotyping 

Young leaves were harvested from seedlings of each pea line planted in a greenhouse 

environment. DNA extraction was carried out using the DNeasy® Plant Mini Kit (Qiagen, 

Germantown, MD, USA) following the manufacturer’s instructions, and elution was performed 

with 100µl. Subsequently, the DNA samples obtained were quantified using the Qubit dsDNA 
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BR Assay kit and Qubit 4.0 fluorometer (Life Technologies Corporation, Eugene, OR). As 

described by Bari et al. (2021), DNA samples were standardized to a final concentration of 25 

ng/µl for subsequent genotyping-by-sequencing (GBS) at a genomic center. The prepared dual-

indexed GBS libraries using the restriction enzyme ApeKI (Elshire et al. 2011) were combined 

into a single pool and sequenced across 1.5 lanes of NovaSeq S1x100-pb run, producing 

approximately 1,000 million pass filter reads with mean quality scores of > 30. The resulting 

quality reads were aligned to the established pea reference genome (Kreplak et al. 2019) yielding 

a total of 28,832 SNP markers. After removal of SNPs with minor allele frequency less than 1%, 

heterozygosity exceeding 20%, and those having over 90% missing values, the remaining 11,858 

SNPs were used for downstream analysis. SNPs with missing values were imputed using Beagle 

v.5.1 (Browning et al., 2018).  

2.2.3.   Phenotypic data analysis 

A mixed linear model was used to extract best linear unbiased estimates (BLUEs) for all 

traits evaluated using the following model: 

 𝐲 = f(𝐫, 𝐜) + 𝐗𝐛 + 𝐙r𝐮𝒓 + 𝐙c𝐮c + 𝛆      (2.1) 

where y is the response variable for n-th phenotype, b is the fixed effect of the genotype, 𝐮𝐫 and 

𝐮𝐜 are row and column random effects accounting for discontinuous field variation with 

multivariate normal distribution: 𝐮𝐫 ~ N(0, 𝐈σr
2) and 𝐮𝐜 ~ N(0, 𝐈σc

2) respectively, wherein, I is an 

identity matrix and  σr
2 and σc

2 are variances due to row and column effect. f(r, c) is a smooth 

bivariate function defined over the row and column positions, 𝛆 is the measurement error from 

each plot with distribution of 𝛆 ~ N(0, Iσε
2), wherein, I is the same as above and σε

2 is variance 

for the residual term or simply referred to as nugget. X and Z are incidence matrices for the fixed 



 

30 

and random terms, respectively. A total of 188 genotypes were found to overlap across three 

environments (Table A1). 

2.2.4.   Genomic selection models 

The univariate (UNI) single environment GS model was fitted using the Bayesian 

approach and implemented in the BGLR R package (Pérez & de los Campos, 2014): 

 𝐲 =  𝟏𝐤μ +  𝐙𝐮 +  𝛆 (2.2) 

where 𝐲 is the vector (n x 1) of adjusted means (BLUEs) for j-th pea lines for a targeted trait; μ 

is the overall mean; 𝟏k (k × 1)  is a vector of ones; 𝐮 is the genomic effect of the j-th pea line 

and assumed to follow the multivariate normal distribution expressed as 𝐮~N(0, 𝐆σg
2), where 𝐆 

is the genomic relationship matrix and σg
2 is the additive genetic variance; and 𝐙 is the incidence 

matrix for genomic effect of the lines. 

The UNI multi-environment GS model was fitted using a reaction norm model which 

accounts for genotype by environment interaction (GxE) described in Jarquin et al. (2013): 

 𝐲 = 𝟏nμ + 𝐙1𝐮1 + 𝐙2𝐮2 + 𝐙3𝐮3 + 𝛆    (2.3) 

where y (n×1) is the vector of phenotypes of the pea lines measured in the environments (1...k), 

μ is the overall mean and 𝟏n (nx1) is a of vector ones. 𝐮1is the random effect of the k-th 

environment and follows the multivariate normal distribution N(0, σk
2𝐙k𝐊𝐙𝐤

′ ) where σk
2 is the 

variance of the main effect of the environment, K is a relationship matrix between the 

environments which is an identity matrix, 𝐙kis an incidence matrix that relates the phenotypes to 

the mean of the environments, and 𝐙k𝐊𝐙𝐤
′  is a block diagonal matrix that uses a 1 for all pairs of 

observations in the same environment and a 0 for off-diagonal elements. 𝐮𝟐is the random effect 

of the pea lines and follows the multivariate normal distribution N(0, σg
2𝐙𝐠𝐆𝐙𝐠

′ ), where σg
2 is the 

variance of the main effect of the pea lines, 𝐙gis an incidence matrix that relates the phenotypes 

https://paperpile.com/c/E09PgG/pSHU
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with the genomic relationship between the pea lines (G). 𝐮3is the random effect of the GxE 

effect and follows the multivariate normal distribution N(0, σgk
2 𝐙𝐠𝐆𝐙𝐠

′#σk
2𝐙k𝐊𝐙𝐤

′ ), where σgk
2  is 

the variance component of GE, # denotes the Hadamard product, and 𝐙𝐠𝐆𝐙𝐠
′ and 𝐙k𝐊𝐙𝐤

′  are the 

same as previously described. 𝛆 is the random term of the residual and follows the multivariate 

normal distribution N(0, σε
2𝐈), where σε

2 is the homogenous residual variance. For the Bayesian 

Reproducing Kernel Hilbert Spaces Regressions (RHKS), the G matrix was replaced by kernel 

matrix (see Pérez & de los Campos, 2014 for details).  

The multi-trait (MT) single environment GS model was fitted by extending Eq. 2.2 as 

follows: 

 [

𝐲1

⋮
𝐲n

]   = [
𝟏1μ1

⋮
𝟏kμn

] + [
𝐙1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝐙n

]  [

𝐮1

⋮
𝐮n

]  +[

ε1

⋮
εn

]            (2.4) 

where 𝐲1…𝐲n are the vector of phenotypes, μ1 …μn are the overall mean for each n-th trait, 𝐙1 

…𝐙n is the incidence matrix for genomic effect of the lines for each n-th trait, 𝐮1 …. 𝐮n is the 

genomic effect of the lines for each n-th trait, and 𝛆1 … 𝛆n is the residual error for each n-th trait. 

The random term is assumed to follow the multivariate normal distribution [𝐮1 …. 

𝐮n]  ~ MN[0, (𝐆⨂𝐆o)], where G is the same as above and 𝐆o is an n x n unstructured variance-

covariance matrix of the genetic effect of the traits, this is represented as follows: 

 𝐆o⊗G = 

[
 
 
 
 
σg1

2 σg12
⋯ σg1n

σg21
σg2

2 ⋯ ⋯

σgn1

⋮
⋮

⋱
…

⋮
σgn

2
]
 
 
 
 

⨂ 𝐆          (2.5) 

The diagonal elements represent variance for each trait and covariances between traits are 

the off-diagonal elements.  
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Further, the residual term for each n-th trait is assumed to follow the multivariate normal 

distribution [𝛆1 … 𝛆n]  ~ MN[0, (𝐈⨂𝐑)], where 𝐈 is the same as above and R is a heterogeneous 

diagonal matrix of the residual variances for each n-th trait: 

 𝐑= 

[
 
 
 
 
σε1

2 0 ⋯ 0

0 σε2
2 ⋯ 0

⋮
0

⋮
0

⋱
…

⋮
σεn

2
]
 
 
 
 

 ⨂ 𝐈 (2.6) 

The diagonal elements represent the residual variance for each n-th trait and off-diagonal 

elements of the 𝐑 matrix equal zero. 

For the multi-trait (MT) multi-environment GS model, Eq. 2.3 was expanded as 

described by Montesinos et al. (2022): 

 𝐲 = 𝟏nKμ + 𝐙1.1𝐮1.1 + 𝐙2.1𝐮2.1 + 𝐙3.1𝐮3.1 + 𝛆    (2.7) 

where 𝐲 is of size i x n and i =j x k, n is the number of traits, j is the number of genotypes and k 

is the number of environments. 𝐙1.1 is the incidence matrix of environment of size i x k, 𝐮1.1 is 

the random effect of each environment of each trait with size k x n, 𝐙2.1 is the incidence matrix 

of genotypes of order i × j, 𝐮2.1 is the random effect of the genotypes i × n, and follows the 

multivariate normal distribution MN(0, σg
2𝐙𝐠𝐆𝐙𝐠

′ , 𝐔g), where 𝐙𝐠is an incidence matrix of the 

genotypes of order i x j. 𝐆, 𝐙𝐠𝐆𝐙𝐠
′and 𝐙k𝐊𝐙𝐤

′  are the same as above and 𝐔gis the unstructured 

variance-covariance matrix of traits of order n × n.  𝐙3.1 is the incidence matrix of GE of order i 

× kj, 𝐮3.1 is the random effect of the genotypes by environment by trait of order kj × n and 

follows the matrix multivariate normal distribution MN(0, σgk
2 𝐙𝐠𝐆𝐙𝐠

′#σk
2𝐙k𝐊𝐙𝐤

′ , 𝐔gk), where 

𝐔gk is the unstructured variance-covariance matrix of order k by k.  𝛆 is the random term of the 

residual and follows the multivariate normal distribution MN(0, 𝐈, Σt). 𝐈 is identity matrix of order 

i ×n, and Σt is the unstructured variance-covariance matrix. 
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2.2.5.   Cross validation scheme 

Evaluation of the predictive performance was assessed using various validation scenarios 

mean to mimic possible utilization scenarios of genomic selection in the NDSU field pea 

breeding program. Models were trained to predict seed yield and total seed protein content 

within and across different environments. Predictive ability (PA) was estimated as the Pearson 

correlation coefficient between predicted genomic estimated breeding value (GEBV) and BLUEs 

of each trait of the entire dataset. 

In whole-environment predictions, we trained models using the complete dataset for each 

environment (MOT20, MOT21, and CAR22) to predict another entire environment (whole 

single-environment prediction). Alternatively, we trained models using the entire datasets of two 

environments to predict the entire third environment (whole cross-environment prediction).  

For split-environment predictions, datasets for each environment were partitioned into 

different training set sizes (50%, 60%, 70%, and 80%). These subsets were used as training set, 

including the entire dataset of another environment, to predict the remaining datasets of the 

testing set (split single-environment prediction). This process was repeated 30 times. For split 

cross-environment predictions, datasets for each environment were divided into different training 

set sizes and used as the training set, including the whole datasets of the remaining 

environments, to predict the remaining dataset of the testing set. For example, 60% of the 

MOT20 datasets were used as a training set, including the entire MOT21 and CAR22 datasets to 

predict the remaining 40% of MOT20. 
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2.3. Results and discussion 

2.3.1.   Predictive ability of different genomic prediction models 

We assessed the potential of genomic selection (GS) to predict the genetic merit of two 

negatively-correlated complex traits across three environments with varying heritability (Fig. 

2.1). Notably, MOT21 exhibited extremely low heritability estimates for yield (1.56E-06) and  

 

Figure 2.1. Heritability estimates for yield and protein under three environments, MOT20 is 

Minot 2020, MOT21 is Minot 2021, CAR22 is Carrington 2022. 

protein (0.11), while CAR22 displayed the highest heritability for yield (0.80), and MOT20 had 

the highest for protein (0.53). The substantially lower heritability estimates observed under 

MOT21, a year characterized by drought, can be primarily attributed to significant environmental 

variation. This variation masked genetic effects, complicating the accurate estimation of the 

genetic component for these traits. Additionally, the presence of genotype-by-environment 

(GxE) interactions further challenged the precise estimation of genetic merit in this environment. 
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Here, we conducted whole single-environment prediction, considering either one trait at a 

time (univariate or UNI) or multiple traits simultaneously (multivariate or MT), and 

incorporating only the genetic factors (G) or also the interaction between the genotype and 

environment (GE). With the exception of UNI-GS, where G_BRR performed better than RKHS 

for both traits (Fig. 2.2 and 2.3), the RKHS model consistently outperformed other models across  

 

Figure 2.2. Predictive ability for seed yield using different genomic prediction models under 

single-environment prediction, BRR is Bayesian Ridge Regression model, RKHS is Reproducing 

Kernel Hilbert Spaces model, MT is multivariate, UNI is univariate, G is prediction model 

considering genotype, GE is prediction model integrating GxE interaction. (A) MOT21 dataset 

trained to predict MOT20, (B) CAR22 dataset trained to predict MOT20, (C) MOT20 dataset 

trained to predict MOT21, (D) CAR22 dataset trained to predict MOT21, (E) MOT20 dataset 

trained to predict CAR22, (F) MOT21 dataset trained to predict CAR22. 
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Figure 2.3. Predictive ability for seed protein content using different genomic prediction models 

under single-environment prediction, BRR is Bayesian Ridge Regression model, RKHS is 

Reproducing Kernel Hilbert Spaces model, MT is multivariate, UNI is univariate, G is prediction 

model considering genotype, GE is prediction model integrating GxE interaction. (A) MOT21 

dataset trained to predict MOT20, (B) CAR22 dataset trained to predict MOT20, (C) MOT20 

dataset trained to predict MOT21, (D) CAR22 dataset trained to predict MOT21, (E) MOT20 

dataset trained to predict CAR22, (F) MOT21 dataset trained to predict CAR22. 

scenarios. In the case of whole cross-environment prediction, similar trends were observed, with 

the RKHS model showing superior performance for both traits (Fig. 2.4 and 2.5). The superiority  

of the RKHS model in all other scenarios evaluated in this study suggests the robustness and 

reliability of the model in capturing not only additive effects but also non-linear effects and 

complex GxE interactions (Baertschi et al. 2021; Jiang and Reif 2015). These findings align with  
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Figure 2.4. Predictive ability for seed yield using different genomic prediction models under 

cross-environment prediction, BRR is Bayesian Ridge Regression, RKHS is Reproducing Kernel 

Hilbert Spaces model, MT is multivariate, UNI is univariates, G is prediction model considering 

genotype, GE is prediction model integrating GxE interaction. (A) MOT21 and CAR22 datasets 

trained to predict MOT20, (B) MOT20 and CAR22 datasets trained to predict MOT21, (C) 

MOT20 and MOT21 datasets trained to predict CAR22. 

 

 

Figure 2.5. Predictive ability for seed protein content using different genomic prediction models 

under cross-environment prediction, BRR is Bayesian Ridge Regression, RKHS is Reproducing 

Kernel Hilbert Spaces model, MT is multivariate, UNI is univariates, G is prediction model 

considering genotype, GE is prediction model integrating GxE interaction. (A) MOT21 and 

CAR22 datasets trained to predict MOT20, (B) MOT20 and CAR22 datasets trained to predict 

MOT21, (C) MOT20 and MOT21 datasets trained to predict CAR22. 
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those of Bari et al. (2021), which observed subtle but favorable advantages of the RKHS model 

for predicting seed yield in field peas. To compare UNI with MT, we focused on the RKHS  

model due to its superiority over the BRR model across all validation scenarios. 

Across all scenarios, including whole single and cross-environment predictions, MT 

consistently outperformed UNI under both G and GE_RKHS, with average predictive abilities 

improved by 1.9 to 2.4-fold for yield and 2-fold for protein. Okeke et al. (2017) also reported an 

improvement in predictive ability (average of 40%) with MT compared to UN for various traits 

in African cassava. Similarly, Arojju et al. (2020) reported improvements in prediction accuracy 

ranging from 24% to 59% for dry matter yield and 67% to 105% for nutritive quality traits in 

perennial ryegrass. Most recently, Winn et al. (2023) demonstrated substantial enhancement in 

prediction accuracy for various combinations of soft red winter wheat traits. The aforementioned 

highlight the potential of MT models to enhance prediction accuracy, especially for challenging 

and resource-intensive traits. 

While integrating GxE interactions in the model using the MT approach did not lead to a 

significant improvement, showing only a 3 to 9% increase in results, this outcome could be due 

to the inclusion of environments with low heritability. These findings align with Rogers and 

Holland (2022), indicating that GxE interactions might be more relevant in environments with 

moderate to high heritability. 

2.3.2.   Optimal training set size for improved predictive performance of RKHS model 

The training set size is one of the major factors influencing the prediction accuracy of un-

tested lines (Norman et al. 2018). In split-environment prediction, we employed various training 

set sizes for training the RKHS model. Figure 2.6 illustrates how different training set sizes  
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Figure 2.6. Average predictive ability with increasing training population size using RKHS 

models for seed yield, RKHS is Reproducing Kernel Hilbert Spaces, MT is multivariate, UNI is 

univariate, G is prediction model considering genotype, GE is prediction model integrating GxE 

interaction. (A) MOT21 dataset trained to predict MOT20, (B) CAR22 dataset trained to predict 

MOT20, (C) MOT20 dataset trained to predict MOT21, (D) CAR22 dataset trained to predict 

MOT21, (E) MOT20 dataset trained to predict CAR22, (F) MOT21 dataset trained to predict 

CAR22. 

affect the model’s predictive performance in split single-environment prediction for seed yield. 

In predicting seed yield, the majority of the highest predictive abilities were observed under 

G_RKHS (MT), reaching 34% when 80% of the CAR22 dataset was trained to test MOT20 (Fig. 

2.6B). On the other hand, the G_RKHS (MT) model consistently showed the highest predictive 

ability for seed protein (Fig. 2.7) reaching 30% when 60% and 80% of the MOT20 dataset were  
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Figure 2.7. Average predictive ability with increasing training population size using RKHS 

models for seed protein content, RKHS is Reproducing Kernel Hilbert Spaces, MT is 

multivariate, UNI is univariate, G is prediction model considering genotype, GE is prediction 

model integrating GxE interaction. (A) MOT21 dataset trained to predict MOT20, (B) CAR22 

dataset trained to predict MOT20, (C) MOT20 dataset trained to predict MOT21, (D) CAR22 

dataset trained to predict MOT21, (E) MOT20 dataset trained to predict CAR22, (F) MOT21 

dataset trained to predict CAR22. 

trained to predict CAR22 (Fig. 2.7E). Previous studies have emphasized a strong relationship 

between prediction accuracy, training set size, and trait heritability (Luan et al., 2009; Lorenz et  

al., 2011; Clark et al., 2012; Nyline et al., 2017; Kaler et al.,2022; Atanda et al., 2022). 

Considering the varying heritability of the traits across environments, ranging from 1.57E-06 to 

0.80 for grain yield and 0.12 to 0.53 for protein, and the negative correlation between traits, these 
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factors might contribute to the overall predictive ability across models in our study. Contrary to 

our results, Bari et al. (2021) reported an increase in prediction accuracy with increased training 

set size. Other studies (Budhlakoti et al. 2022; De Roos et al. 2009) have also reported the 

influence of training set size and heritability on prediction accuracy. This underscores the 

importance of careful consideration when selecting training set size for model training. 

2.3.3.   Efficacy of MTME-GP for predictions across different environments 

Generally, we found that the mean predictive abilities of the RKHS model were higher 

under the training set size of 80%, particularly under the integration of GxE interaction in the 

model (GE_RKHS). Thus, this aspect was a focal point of our discussion in this section, aimed at 

comparing the efficacy of MTME-GP for both split single and cross-environment predictions. 

Our analysis revealed a clear trend showing improved predictive ability under cross-environment 

prediction, as depicted in Figure 2.8. However, an exception was noted in predicting the MOT20 

yield (Fig. 2.8A). This discrepancy could be attributed to the significant influence of the very 

low heritability traits in other environments that were used to train the model for predicting 

MOT20 yield. 

This observation underscores the importance of carefully managing testing environments 

to reduce the influence of environmental nuisance on phenotyping. Ultimately, it underscores the 

significance of considering heritability in the environment when developing training datasets for 

multi-environment GS models, ensuring efficient capturing of the genetic relationship between 

environments and borrowing information effectively across environments (Xu, 2016; van 

Eeuwijk et al. 2019; Atanda et al., 2021). Similarly, Sapkota et al. (2020) reported varying 

prediction accuracy when environments with different heritability were included in the training 

model to predict new environments. Additionally, Gill et al. (2021) emphasized the potential of  



 

42 

 

Figure 2.8. Average predictive abilities under 80% training set size using GE_RKHS model for 

seed yield and protein content, (A) MOT20 prediction utilizing MOT21 (20_21), CAR22 

(20_22) and combination of MOT21 and CAR22 (20_21+22) as training sets; (B) MOT21 

prediction utilizing MOT20 (21_20), CAR22 (21_22) and combination of MOT20 and CAR22 

(21_20+22) as training sets; (C) CAR22 prediction utilizing MOT20 (22_20), MOT21 (22_21) 

and combination of MOT20 and MOT21 (22_20+21) as training sets. 

MTME-GP in practical scenarios, such as overcoming the challenges posed by the loss of 

complete or partial trials due to extreme weather. MTME-GP proved valuable in predicting the 

genetic merit of the lines under MOT21, which were affected by drought conditions for both 

traits. 

2.4. Conclusion 

Our research findings in this chapter highlight the intricate dynamics of genomic 

prediction for seed yield and seed protein content in the face of diverse environmental 

conditions. The consistent superiority of the RKHS model, particularly in capturing GxE 

interactions, highlights its robustness and as a choice model in GS. Furthermore, the adoption of 

MTME-GP has proven instrumental in addressing the complexities associated in predicting 

inherently low heritability estimates of traits such as seed yield and total protein content. To fully 

harness the potential of genomic prediction in plant breeding, composition of the training set in 

terms of the individuals as well as the heritability of the environments for MTME-enabled GS 
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should be carefully considered. More so, including a wider array of correlated traits in prediction 

models, integrating deep learning for a more profound understanding of genetic architecture, and 

incorporating multi-omics data for a comprehensive view of trait genetics and molecular 

foundations all hold promise. This research marks a significant stride towards unlocking the 

potential of genomics in public plant breeding programs and offers valuable insights into the 

challenges and opportunities entailed by complex traits and diverse environments. 
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CHAPTER  3: INTEGRATING MULTI-OMICS DATA INTO GENOMIC PREDICTION 

FRAMEWORK IN FIELD PEA 

3.1. Introduction 

The integration of gene expression data into the genomic prediction framework 

represents a promising avenue for enhancing accuracy of predicting complex traits (Azodi et al., 

2020; Li et al., 2019; Mahmood et al., 2022). In field pea (Pisum sativum L.) breeding, genomic 

prediction has emerged as a valuable tool for improving breeding efficiency and accelerating 

genetic gain (Annicchiarico et al., 2019; Atanda et al., 2022; Bari et al., 2021; Burstin et al., 

2015; Castro-Urrea et al., 2023; Zhao et al., 2022). Field pea, a significant pulse crop, esteemed 

for its high protein content and adaptability across diverse environments (Kindie et al., 2019; 

Powers & Thavarajah, 2019), faces the challenges in breeding for complex traits such as seed 

yield and protein content, owing to their polygenic nature and susceptibility to environmental 

influences (Campbell et al., 2019; Mondal et al., 2023; Riedelsheimer et al., 2012; Shi et al., 

2009). 

Traditional genomic prediction methods rely on genetic markers distributed throughout 

the genome to predict the genetic merit of individuals (Meuwissen et al., 2001). While effective 

for many crops, these methods may not fully capture all the genetic variation associated with 

complex traits (Li et al., 2019 Azodi et al., 2020). However, relying solely on mono-omics 

approach, may not provide sufficient insight into the complexity of plant responses under stress 

conditions or environment, as highlighted by (Roychowdhury et al., 2023).  

In response to these limitations, advancements in high-throughput technologies have 

facilitated the exploration of omics data, adding a multi-omics layer to achieve a more 

comprehensive understanding of the genetic architecture of complex traits (Chen et al., 2023; 
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Yang et al., 2021). Gene expression data, offering insights into gene activity under varying 

conditions, holds promise for unraveling the genetic underpinnings of complex traits (Mahmood 

et al., 2022). Recent years have witnessed the widespread adoption of RNA-sequencing (RNA-

Seq) as a means to study gene expression patterns, enabling the quantification of gene expression 

levels and identification of differentially expressed genes (Zhang et al., 2017; Roychowdhury et 

al., 2023). 

Integrating gene expression data into genomic prediction models offers the potential to 

enhance prediction accuracy and deepen insights into the genetic mechanisms governing 

complex traits. While numerous studies have highlighted the advantages of multi-omics 

prediction over traditional genomic prediction, limited research has been done in the context of 

field pea. 

In this chapter, we aimed to investigate the utility of integrating gene expression data into 

genomic prediction of complex traits in field pea. We hypothesize that integrating gene 

expression will enhance the accuracy of predicting complex traits and provide valuable insights 

into their genetic basis. To address this, we evaluated the performance of the integrated models 

in predicting complex traits such as seed yield and protein content, in comparison to traditional 

genomic prediction models. 

3.2. Materials and methods 

3.2.1.   Germplasm and phenotyping 

The genetic materials consisted of 300 USDA germplasm accessions previously 

described by Bari et al. (2021). The lines were planted following an augmented incomplete block 

design with four diagonal repeated checks and two replications. Seed yield and agronomic data 

were collected from the 2022 experiment, across two environments: North Dakota State 
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University (FAR22), and Washington State University (WSU22). Standard cultural practices 

were implemented, and plots were harvested at physiological maturity (90-120 days after 

planting) and dried to 13% moisture content. For protein analysis, 0.11 kg of clean and dried 

harvested seeds per line was used, employing near infrared (NIR) spectroscopy. 

3.2.2.   Genotyping 

Young leaves were harvested from seedlings of each pea line planted in a greenhouse 

under controlled conditions of 65 to 70°F temperature and a 16-hour light cycle. DNA extraction 

was conducted using the DNeasy® Plant Mini Kit (Qiagen, Germantown, MD, USA) according 

to the manufacturer’s protocol, and elution was performed with 100µl. Subsequently, the 

concentration of DNA samples was quantified using the Qubit dsDNA BR Assay kit and Qubit 

4.0 fluorometer (Life Technologies Corporation, Eugene, OR), standardized to a final 

concentration of 25 ng/µl. Whole genome resequencing (WGR) at a depth of 10x was carried out 

at HudsonAlpha Genome Sequencing Center (Huntsville, AL, USA) using Illumina sequencing 

technology. The sequencing generated 5.9 terabytes of raw data, comprising 103 billion paired-

end reads. Quality assessment of the reads was conducted using Fast QC, followed by trimming 

using Trimmomatic. The trimmed reads were aligned to the Pisum sativum Chinese reference 

genome (Yang et al., 2022) using bwa-mem2. PCR duplicates were identified and removed using 

Picard’s ‘MarkDuplicates’ function and Samtools-1.10, respectively. Variant calling was 

performed using BCFtools, and filtering was applied using VCFtools, with parameters set to a 

minimum depth of 5, maximum missingness of 5%, and a minor allele frequency of 5%, 

resulting in the retrieval of 6,720,968 SNPs. Further filtering was conducted using Plink v.19 to 

remove SNPs with less than 10% missing values, resulting in a final set of 870,224 SNPs for 

downstream analysis. 
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3.2.3.   Sample collection 

An initial field experiment with 12 accessions was conducted to optimize the timing of 

pod sampling. Timepoints were determined starting from the reproductive growth stage of pea, 

specifically when the first flat pod was observed at one of more nodes (R3 stage, T0). 

Subsequently, timepoints were added at 6-day intervals from the previous sampling until 

reaching 18 days (T1, T2, and T3). Pod samples were collected from each timepoint per line for 

RNA extraction (Fig. 3.1). Upon conducting the initial expression analysis, T1 (6 days after the 

first flat pod observed) was found to exhibit the highest number of expressed genes across all 

lines with varying maturity periods, thus identified as the optimal timepoint for pod sampling. 

During the actual 2022 field experiment, pods from three plants per plot of 300 accessions were 

tagged at T0. Three pods per plot, one from each tagged plant, were harvested at T1, which was 6 

days after tagging (Fig. 3.2A). The harvested pods were placed in a 50 ml tube and immediately 

stored in dry ice until they could be transferred to -80oC for subsequent RNA extraction (Fig. 

3.2B). 

3.2.4.   RNA extraction and sequencing 

RNA extraction was conducted using the Quick-RNATM Plant Miniprep (ZYMO 

Research, Orange, CA, USA) according to the manufacturer’s protocol including proteinase K 

treatment, with elution performed using 100µl. RNA sample concentrations were quantified and 

quality assessed using the Qubit RNA BR and RNA IQ Assay kits with Qubit 4.0 fluorometer 

(Life Technologies Corporation, Eugene, OR, USA), and standardized to a final concentration of 

100 ng/µl. 3’ RNA-Seq Library creation, multiplexing, and Illumina NextSeq500 single-end 

sequencing were carried out by the Cornell Institute of Biotechnology. 
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Figure 3.1. Longitudinal section of pods from four accessions with different maturity periods at 

different collection timepoints. (A) Agassiz, check variety, (B) PI 280617 PSP, early maturing, 

(C) PI 249645 PSP, mid maturing, (D) PI 340126, late maturing, (a) T0, (b) T1, (c) T2, (d) T3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Pod collection and storage. 
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For samples with at least 200,000 reads, the first 12 bases corresponding to the random 

priming sites and any Illumina adapters were removed using Trimmomatic v.0.36 (Bolger et al., 

2014). Subsequently, poly-A tails and poly-G stretches of at least 10 bases in length were 

removed using BBDuk program from the BBMap package (Bushnell, 2014), with reads kept at a 

minimum length of 18 bases after trimming. The trimmed reads were aligned to the Pea ZW6 

genome assembly using STAR aligner v.2.7.10b (Dobin et al., 2013). For the STAR indexing 

step, the gff3 annotation file was converted to gtf formal using the gffread program from 

Cufflinks (Trapnell et al., 2010). The resulting SAM files were converted to BAM format using 

SAMtools v.1.15.1 (Danecek et al., 2021), and the number of reads overlapping each gene in the 

gff3 file on the forward strand were counted using HTSeq-count v.0.6.1 (Anders et al., 2015). 

The R package DeSeq2 v.1.36.0 (Love et al., 2014) was employed to obtain normalized and 

variance-stabilized counts.  

3.2.5.   Phenotypic data analysis 

A mixed linear model was used to extract best linear unbiased estimates (BLUEs) for all 

traits evaluated using the following model: 

 𝐲 = f(𝐫, 𝐜) + 𝐗𝐛 + 𝐙r𝐮𝒓 + 𝐙c𝐮c + 𝛆      (3.1) 

where y is the response variable for n-th phenotype, b is the fixed effect of the genotype, 𝐮𝐫 and 

𝐮𝐜 are row and column random effects accounting for discontinuous field variation with 

multivariate normal distribution: 𝐮𝐫 ~ N(0, 𝐈σr
2) and 𝐮𝐜 ~ N(0, 𝐈σc

2) respectively, wherein, I is an 

identity matrix and  σr
2 and σc

2 are variances due to row and column effect. f(r, c) is a smooth 

bivariate function defined over the row and column positions, 𝛆 is the measurement error from 

each plot with distribution of 𝛆 ~ N(0, Iσε
2), wherein, I is the same as above and σε

2 is variance 

for the residual term or simply referred to as nugget. X and Z are incidence matrices for the fixed 
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and random terms, respectively. A total of 221 and 223 genotypes were included in FAR22 

(Table A2) and WSU22 (Table A3), respectively. 

3.2.6.   Statistical models 

We employed a Bayesian approach for predicting complex traits, specifically yield and 

protein content, in field pea using different sets of predictors. The BayesB model assumes that 

the phenotype 𝑦 is a linear combination of the predictors, with a normally distributed error term. 

This model can be expressed as follows: 

 𝑦𝑗𝑖 = 𝛽0 + ∑ 𝑋𝑔𝑗𝛽𝑗
𝑝
𝑗=1 + ∑ 𝑋𝑒𝑖𝛼𝑖

𝑛
𝑖=1 + 𝜖  (3.2) 

where: 𝑦𝑖𝑗 is the phenotype of 𝑖-th sample, 𝛽0 is the intercept treated as fixed effect, 𝑋𝑔𝑗 is the 

genotype indicator variable for SNP, 𝛽𝑗 is the effect size of SNP 𝑗, 𝑋𝑒𝑖 is the expression level of 

gene 𝑖, 𝛼𝑖 is the effect size of gene expression of gene 𝑖, 𝑛 is the number of genotypes, 𝑝 is the 

number of SNPs, and 𝜖  is the residual error term. 

For genotypic data only (DNA): 

 𝑦𝑗 = 𝛽0 + ∑ 𝑋𝑔𝑗𝛽𝑗
𝑝
𝑗=1 + 𝜖  (3.3) 

For expression data only (RNA): 

 𝑦𝑖 = 𝛽0 + ∑ 𝑋𝑒𝑖𝛼𝑖
𝑛
𝑖=1 + 𝜖  (3.4) 

 When combining genotypic and expression data as predictors (DNA+RNA), the full 

model (Eq. 3.2) is used. The combination of these predictors aims to capture both the genetic and 

transcriptomic information that contribute to the phenotype. 

The residual error term 𝜖  is assumed to be independent and identically distributed (iid) 

with normal distribution centered at zero with variance 𝜎𝜖
2. The conditional distribution of the 

data given effects and variance parameters is    

 𝑃(𝑦|𝜃) = ∏𝑛
𝑖=1 𝑁(𝜇𝑖, 𝜎𝜖

2),   (3.5) 
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where 𝑦 = {𝑦𝑖}, θ represents the collection of model parameters 𝜃 = {β0, 𝛽, 𝜎𝜖
2}, 𝑁(𝜇𝑖, 𝜎𝜖

2) is a 

normal distribution centered at 𝜇𝑖 = β0 + ∑ 𝑋𝑖𝑗𝛽𝑗
𝑝
𝑗=1  and with variance 𝜎𝜖

2, and β = {βj} is a 

vector containing the effects of the individual spectra-derived wavelengths (Perez and de los 

Campos, 2014). The prior density assigned to the effects in Bayes B, p(βj|Ω) is a mixture of a 

point of mass at zero and a scaled-t density, that is, (β𝑗|Ω)
𝑖𝑖𝑑

~𝜋 × 𝑡(β𝑗|𝑑𝑓β, 𝑆β) +

(1 − π) × 1(β𝑗 = 0); therefore, a priori, with probability π, βj is drawn from the t-density and 

with probability (1 − π) βj = 0 (Ferragina et al., 2015).  

We fitted the BayesB model using the BGLR R package (Pérez & de los Campos, 2014). 

The model was trained using 50% of the data in each environment and tested on the remaining 

50%. To ensure robustness, we repeated the cross-validation procedure 30 times. For each trait 

(yield and protein content) and environment (FAR22 and WSU22), we evaluated the predictive 

ability of the model using Pearson correlation coefficient between the observed (BLUE) and 

predicted values (GEBV). 

3.3. Results and discussion 

In this chapter, we transition from a multi-trait multi-environment genomic prediction 

approach to a univariate, single-trait, single environment prediction using BayesB model for 

yield and protein content due to the limited availability of expression data from only two 

environments. The heritability estimates for yield and protein content exhibited substantial 

variability across environments, with WSU22 showing the lowest estimate (yield: 0.07, protein: 

0.49) [Fig. 3.3]. This indicates a significant influence of environmental factors on yield 

performance in WSU22. 
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Figure 3.3. Heritability estimates for yield and protein under two environments, FAR22 is Fargo 

2022, WSU22 is Washington State University 2022. 

In terms of predictive ability, FAR22 demonstrated the highest mean predictive ability 

for yield across different data integration scenarios (Fig. 3.4). Interestingly, while the integration 

of multi-omics data (DNA+RNA) yielded the highest predictive ability for yield, the integration 

of expression data (RNA) alone in WSU22 resulted in the lowest mean predictive ability. These 

contrasting outcomes suggest a complex interplay between genetic architecture, environment, 

tissue specificity, influencing the predictive performance of the models.  

In contrast, a clear trend emerged with multi-omics prediction for protein under FAR22. 

The model achieved a predictive ability of 0.42 with genomic data (DNA) alone, 0.53 with RNA 
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Figure 3.4. Mean distribution of predictive ability for yield across environments, DNA is 

genomic data, RNA is expression data, DNA+RNA is both DNA and RNA data integrated in 

prediction model. 

alone, and 0.55 when both DNA and RNA were integrated (Fig. 3.5). The integration of 

expression data improved predictive ability by 26% compared to using genomic data alone.  

However, only a 3% improvement was observed when multi-omics were integrated 

compared to using RNA alone. Conversely, in WSU22, the integration of DNA alone had the 

lowest mean predictive ability of 0.23, but this improved by 74% when RNA was used instead. 

Black (2000) highlighted that predictive ability improvement when using transcriptomic data can 

be attributed to alternative splicing, a mechanism wherein a single gene can produce multiple 

distinct transcripts, leading to increased protein diversity and potentially more phenotypic 

variation. Surprisingly, no improvement was observed with multi-omics integration, and instead, 

predictive ability declined by 17%. This unexpected outcome suggests that the integration of  
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Figure 3.5. Mean distribution of predictive ability for protein content across environments, DNA 

is genomic data, RNA is expression data, DNA+RNA is both DNA and RNA data integrated in 

prediction model. 

RNA data in this particular environment did not contribute positively to the predictive model, 

highlighting the complex and content-dependent nature of multi-omics data integration in 

prediction models. 

The contrasting results observed between WSU22 and FAR22 can be partially explained 

by the heritability estimates for protein and yield in these environments. The moderate 

heritability estimated for protein in WSU22 likely contributed to the significant improvement in  

predictive ability when using RNA data alone. However, the very low heritability estimates for 

yield in WSU22 had a notable impact on the performance of multi-omics prediction, with no 

clear improvement over using genomic data alone. This observation aligns with findings by Wu 

et al. (2022), noting that regardless of the predictor, traits with higher heritabilities generally 

exhibit higher predictive abilities. Despite the limited improvement in protein prediction with  
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multi-omics data in FAR22, the modest 15% improvement suggests that the additional RNA data 

did contribute to the prediction models, albeit not as significant as expected.  The complex 

interplay between genetic architecture, environment, and tissue specificity likely influenced these 

outcomes. 

Hu et al. (2021) also found limited value in using transcripts alone to improve prediction 

accuracy, either by themselves or in combination with SNPs, particularly in single-environment 

prediction scenarios. This finding is consistent with other studies reporting either lower or 

comparable predictive abilities of transcripts compared to baseline GBLUP, with predictions 

being influenced by various factors (Guo et al., 2016; Westhues et al., 2017; Xu et al., 2017). 

Several factors identified by Guo et al. (2016) may contribute to the limited utility of 

transcripts in prediction models. For instance, the tissue sampled may be limited to a single 

developmental time point, failing to capture dynamic changes occurring later, unsampled 

developmental stages. Additionally, Wu et al. (2022) observed that predictive ability was notably 

higher for datasets from seedlings compared to leaf datasets on average across traits. This 

discrepancy might be explained by the fact that more diverse genes are expressed in certain 

tissue types than in others. They also emphasized the importance of using predictors that are 

biologically closer to the phenotype of interest, suggesting that this approach may enhance the 

predictive ability in genomic predictions. Furthermore, it is possible that transcripts and SNPs 

capture similar genetic signals for the predicted traits, resulting in redundancy in information 

captured by these markers (Guo et al., 2016). Further research is needed to explore these factors 

and to develop more effective strategies for integrating multi-omics data to enhance prediction 

accuracy in plant breeding. 
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3.4. Conclusion 

This chapter highlights the complexity and context-dependency of integrating gene 

expression data into genomic prediction models for complex traits in field pea. The contrasting 

results between WSU22 and FAR22 underscore the importance of considering the interplay 

between genetic architecture, environment, and tissue specificity when integrating multi-omics 

data. While the integration of gene expression data led to improvements in predictive ability for 

protein content in some environments, it did not always enhance predictive performance for 

yield. These findings suggest that the utility of transcriptomic data in prediction models may 

vary depending on the trait and environment under consideration. 

Further research directions should focus on elucidating the factors influencing the 

effectiveness of integrating multi-omics data, such as the timing and specificity of tissue 

sampling, and the genetic architecture of the traits. Additionally, developing more sophisticated 

models that can better capture the complex interactions between genetic and environmental 

factors may further improve prediction accuracy. Overall, integrating gene expression data holds 

great promise for enhancing genomic prediction in field pea breeding, but further research is 

needed to fully realize its potential. 
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CHAPTER 4: MULTI-TRAIT MULTI-ENVIRONMENT GENOMIC PREDICTION 

ACROSS DIVERSE PEA ACCESSIONS  

4.1. Introduction 

The field of genomics has undergone rapid expansion in recent years, driven by 

advancements in sequencing technologies and bioinformatics tools (Goodwin et al., 2016; Levy 

& Myers, 2016; Satam et al., 2023). This growth has led to a wealth of genomic data for 

numerous species, fundamentally altering our understanding of genetic diversity and makeup 

across the biological spectrum. Pea, as a model organism, has been extensively studied for its 

genetic diversity, often utilizing Simple Sequence Repeats (SSR) markers (Baranger et al., 2004; 

Kwon et al., 2012; Smýkal et al., 2008; Tar’an et al., 2005; Zong et al., 2009) or polymorphisms 

of insertion sites of PDR1 Ty1-copia group retrotransposons (RBIP) (Jing et al., 2010, 2012; 

Smýkal et al., 2008). However, the advent of next-generation sequencing, led to a rapid 

expansion of SNP discovery and genotyping array development (Deulvot et al., 2010; Duarte et 

al., 2014; Leonforte et al., 2013; Sindhu et al., 2014). SNP markers, with their abundance, wide 

distribution in genomes, and bi-allelic nature, have become the marker of choice for population 

genetics approaches, enabling genetic mapping and diversity assessment in various living 

organisms (Burstin et al., 2015). 

The increasing availability of high-throughput genetic markers has not only transformed 

our understanding of genetic diversity but has also revolutionized crop genetic improvement 

methodologies. Traditional approaches, reliant on the phenotypic evaluation of related 

individuals and the calculation of their breeding value, have been supplemented by genomic 

prediction (GP). GP is a transformative tool in plant breeding, allowing for the selection of 

superior individuals based on their genetic profiles (Meuwissen et al., 2001). This shift toward 
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genomic-based selection has the potential to greatly enhance the efficiency and effectiveness of 

crop breeding programs, ultimately leading to the development of improved and more resilient 

cultivars to meet the challenges of global food insecurity. 

The Reproducing Kernel Hilbert Spaces (RKHS) model has emerged as a prominent 

technique in GP, utilizing genetic marker information to predict the phenotypic performance and 

aiding in the selection of elite genotypes (Gianola et al., 2006; Gianola & van Kaam, 2008). 

While RKHS models exhibit significant potential in predicting complex traits in both animal 

(Long et al., 2010) and plant breeding (Crossa et al., 2010; Cuevas et al., 2016, 2018), their 

performance, like other GP models, can be significantly impacted by various factors. These 

factors include genetic relationships within the studied population, the heritability of the traits, 

and genotype by environment interactions (GxE). 

In breeding programs where individuals exhibit low genetic relatedness, predicting 

phenotypic outcomes becomes more challenging due to the complex traits, as accuracy of GEBV 

can result in a large part from genetic relationships captured by markers (Habier et al., 2007; 

Werner et al., 2020). This complexity necessitates robust prediction models capable of capturing 

intricate genetic relationships within the population. Additionally, the heritability of the traits 

plays a crucial role in prediction accuracy (Kaler et al., 2022). Several studies showed a strong 

relationship between prediction accuracy and trait heritability (Clark et al., 2012; Lorenz et al., 

2011; Luan et al., 2009; Nyine et al., 2017). Traits exhibiting high heritability are more 

predictable using genetic markers, while those with low heritability are more influenced by 

environmental factors, posing challenges for accurate prediction.  

Furthermore, the genotype and environment (GxE) interaction is a critical consideration 

in GP due to its significant impact on quantitative or complex traits. Accounting for GxE 
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interaction has been shown to enhance prediction accuracy, especially in environments where 

these interactions are significant (Mageto et al., 2020; Rogers & Holland, 2022). This 

phenomenon has been observed in studies across different species, highlighting its importance in 

GP (Burgueño et al., 2012; Jarquín et al., 2014; Monteverde et al., 2018; Pérez-Rodríguez et al., 

2015; Saint Pierre et al., 2016). 

This chapter explores the prediction accuracy of the RKHS model in diverse pea 

accessions, investigating the influence of genetic diversity, trait heritability, and GxE 

interactions. By examining these factors, we seek to improve the efficacy of RKHS models in 

GP and contribute to the advancement of breeding strategies in plant breeding programs. 

 

4.2. Materials and methods 

4.2.1.   Germplasm and phenotyping 

The study utilized 300 germplasm accessions sourced from the USDA Pea Core 

Collection, originating from diverse geographical regions worldwide, as detailed by Bari et al. 

(2021). The lines were planted following an augmented incomplete block design with four 

diagonal repeated checks. Seed yield and agronomic data were collected in a 2-year experiment, 

from 2021 to 2022, across six environments: two at North Dakota State University (FAR21 and 

FAR22), two at Washington State University (WSU21 and WSU22), and two at Montana State 

University (MON21 and MON22). Standard cultural practices were implemented, and plots were 

harvested at physiological maturity (90-120 days after planting) and dried to 13% moisture 

content. For protein analysis, 0.11 kg of clean and dried harvested seeds per line was used, 

employing near infrared (NIR) spectroscopy. 
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4.2.2.   Genotyping 

Young leaves were harvested from seedlings of each pea line planted in a greenhouse 

under controlled conditions of 65 to 70°F temperature and a 16-hour light cycle. DNA extraction 

was conducted using the DNeasy® Plant Mini Kit (Qiagen, Germantown, MD, USA) according 

to the manufacturer’s protocol, and elution was performed with 100µl. Subsequently, the 

concentration of DNA samples was quantified using the Qubit dsDNA BR Assay kit and Qubit 

4.0 fluorometer (Life Technologies Corporation, Eugene, OR) and standardized to a final 

concentration of 25 ng/µl. Whole genome resequencing (WGR) at a depth of 10x was carried out 

at HudsonAlpha Genome Sequencing Center (Huntsville, AL, USA) using Illumina sequencing 

technology. The sequencing generated 5.9 terabytes of raw data, comprising 103 billion paired-

end reads. Quality assessment of the reads was conducted using Fast QC, followed by trimming 

using Trimmomatic. The trimmed reads were aligned to the Pisum sativum Chinese reference 

genome (Yang et al., 2022) using bwa-mem2. PCR duplicates were identified and removed using 

Picard’s ‘MarkDuplicates’ function and Samtools-1.10, respectively. Variant calling was 

performed using BCFtools, and filtering was applied using VCFtools, with parameters set to a 

minimum depth of 5, maximum missingness of 5%, and a minor allele frequency of 5%, 

resulting in the retrieval of 6,720,968 SNPs. Further filtering was conducted using Plink v.19 to 

remove SNPs with less than 10% missing values, resulting in a final set of 870,224 SNPs for 

downstream analysis. 

4.2.3.   Phenotypic data analysis 

A mixed linear model was used to extract best linear unbiased estimates (BLUEs) for all 

traits evaluated using the following model: 

 𝐲 = f(𝐫, 𝐜) + 𝐗𝐛 + 𝐙r𝐮𝒓 + 𝐙c𝐮c + 𝛆      (4.1) 
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where y is the response variable for n-th phenotype, b is the fixed effect of the genotype, 𝐮𝐫 and 

𝐮𝐜 are row and column random effects accounting for discontinuous field variation with 

multivariate normal distribution: 𝐮𝐫 ~ N(0, 𝐈σr
2) and 𝐮𝐜 ~ N(0, 𝐈σc

2) respectively, wherein, I is an 

identity matrix and  σr
2 and σc

2 are variances due to row and column effect. f(r, c) is a smooth 

bivariate function defined over the row and column positions, 𝛆 is the measurement error from 

each plot with distribution of 𝛆 ~ N(0, Iσε
2), wherein, I is the same as above and σε

2 is variance 

for the residual term or simply referred to as nugget. X and Z are incidence matrices for the fixed 

and random terms, respectively. A total of 302 genotypes were found to overlap across six 

environments (Table A4). 

4.2.4.   Statistical models 

The multi-trait (MT) single environment GS model was fitted by extending univariate 

single environment GS model (see Chapter 2 Eq. 2.2) as follows: 

 [

𝐲1

⋮
𝐲n

]   = [
𝟏1μ1

⋮
𝟏kμn

] + [
𝐙1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝐙n

]  [

𝐮1

⋮
𝐮n

]  +[

ε1

⋮
εn

]            (4.2) 

where 𝐲1…𝐲n are the vector of phenotypes, μ1 …μn are the overall mean for each n-th trait, 𝐙1 

…𝐙n is the incidence matrix for genomic effect of the lines for each n-th trait, 𝐮1 …. 𝐮n is the 

genomic effect of the lines for each n-th trait, and 𝛆1 … 𝛆n is the residual error for each n-th trait. 

The random term is assumed to follow the multivariate normal distribution [𝐮1 …. 

𝐮n]  ~ MN[0, (𝐆⨂𝐆o)], where G is the same as above and 𝐆o is an n x n unstructured variance-

covariance matrix of the genetic effect of the traits, this is represented as follows: 

 𝐆o⊗G = 

[
 
 
 
 
σg1

2 σg12
⋯ σg1n

σg21
σg2

2 ⋯ ⋯

σgn1

⋮
⋮

⋱
…

⋮
σgn

2
]
 
 
 
 

⨂ 𝐆          (4.3) 
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The diagonal elements represent variance for each trait and covariances between traits are 

the off-diagonal elements.  Further, the residual term for each n-th trait is assumed to follow the 

multivariate normal distribution [𝛆1 … 𝛆n]  ~ MN[0, (𝐈⨂𝐑)], where 𝐈 is the same as above and 

R is a heterogeneous diagonal matrix of the residual variances for each n-th trait: 

 𝐑= 

[
 
 
 
 
σε1

2 0 ⋯ 0

0 σε2
2 ⋯ 0

⋮
0

⋮
0

⋱
…

⋮
σεn

2
]
 
 
 
 

 ⨂ 𝐈        (4.4) 

The diagonal elements represent the residual variance for each n-th trait and off-diagonal 

elements of the 𝐑 matrix equal zero. 

For the multi-trait (MT) multi-environment GS model, univariate multi-environment HS 

model (See Chapter 2 Eq. 2.3) was expanded as described by Montesinos et al. (2022): 

 𝐲 = 𝟏nKμ + 𝐙1.1𝐮1.1 + 𝐙2.1𝐮2.1 + 𝐙3.1𝐮3.1 + 𝛆    (4.5) 

where 𝐲 is of size i x n and i =j x k, n is the number of traits, j is the number of genotypes and k 

is the number of environments. 𝐙1.1 is the incidence matrix of environment of size i x k, 𝐮1.1 is 

the random effect of each environment of each trait with size k x n, 𝐙2.1 is the incidence matrix 

of genotypes of order i × j, 𝐮2.1 is the random effect of the genotypes i × n, and follows the 

multivariate normal distribution MN(0, σg
2𝐙𝐠𝐆𝐙𝐠

′ , 𝐔g), where 𝐙𝐠is an incidence matrix of the 

genotypes of order i x j. 𝐆, 𝐙𝐠𝐆𝐙𝐠
′and 𝐙k𝐊𝐙𝐤

′  are the same as above and 𝐔gis the unstructured 

variance-covariance matrix of traits of order n × n.  𝐙3.1 is the incidence matrix of GE of order i 

× kj, 𝐮3.1 is the random effect of the genotypes by environment by trait of order kj × n and 

follows the matrix multivariate normal distribution MN(0, σgk
2 𝐙𝐠𝐆𝐙𝐠

′#σk
2𝐙k𝐊𝐙𝐤

′ , 𝐔gk), where 

𝐔gk is the unstructured variance-covariance matrix of order k by k.  𝛆 is the random term of the 
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residual and follows the multivariate normal distribution MN(0, 𝐈, Σt). 𝐈 is identity matrix of order 

i ×n, and Σt is the unstructured variance-covariance matrix. 

4.2.5.  Cross validation scheme 

Predictive ability (PA) was estimated as the Pearson correlation coefficient between 

predicted genomic estimated breeding values (GEBVs) and best linear unbiased estimates 

(BLUEs) of each trait for the complete dataset. To evaluate the whole-environment prediction, 

we tested each environment using data from all the other environments combined. For example, 

to predict FAR21, we trained the model on all data from FAR22, MON21, MON22, WSU21, 

and WSU22. In split-environment prediction, we divided each environment into two halves. One 

half was used for testing, while the other half, along with the data from the remaining 

environments, was used for training. For instance, to predict the performance in FAR21, we 

combined 50% of the FAR21 data with all data from FAR22, MON21, MON22, WSU21, and 

WSU22 for training. Both cross-validation schemes were repeated 30 times to ensure the 

robustness and reliability of the results. 

4.3. Results and discussion 

4.3.1.   Predictive performance of RKHS model for whole-environment prediction 

In Chapter 2, we assessed the capability of GS models to predict the genetic potential of 

two negatively correlated traits in elite pea lines across three distinct environments. Building on 

the superior performance of the RKHS model observed in the previous chapter, our focus shifted 

to evaluating this model’s predictive capacity for the same traits in a highly diverse set of pea 

accessions (Cheng et al. 2015). 

Heritability estimates showed substantial variability across different traits and 

environments (Fig. 4.1). Protein content exhibited a wide range of heritability estimates, ranging  
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Figure 4.1. Heritability estimates for yield and protein under six environments, FAR21 is Fargo 

2021, FAR22 is Fargo 2022, MON21 is Montana 2021, MON22 is Montana 2022, WSU21 is 

Washington State University 2021, WSU22 is Washington State University 2022. 

from 0.34 to 0.92. Among the accessions, FAR21 displayed the lowest heritability, while 

MON21 exhibited the highest. On the other hand, yield heritability ranged from 0.07 to 0.70, 

with WSU22 demonstrating the lowest and FAR22 the highest heritability. The use of diverse 

accessions evaluated across a range of environments for complex traits appeared to enhance 

heritability estimates, likely due to the improved estimation of genetic effects. This suggests that 

the inclusion of diverse genetic backgrounds and environmental conditions can provide a more 

comprehensive assessment of the genetic basis of traits, leading to more accurate heritability 

estimates (Becker and Andreotti 2010). 

Figure 4.2 illustrates the predictive performance of the RKHS model for yield under 

whole-environment prediction, where each environment was tested using data from  
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Figure 4.2. Predictive ability for yield using the RKHS model across multi-environments with 

whole-environment prediction, RKHS is Reproducing Kernel Hilbert Spaces, G is prediction 

model considering genotypic factor, GE is prediction model integrating GxE interaction. 

the remaining environments. A comparison with the same RKHS model in Chapter 2, which 

focused on advanced breeding lines across three environments, revealed a 25% decrease in the 

mean predictive ability for yield (from 0.28 to 0.21). This decline in predictive ability, despite 

the trait’s higher heritability, may be attributed to the strong influence of environmental factors 

on yield (Stewart-Brown et al. 2019). Interestingly, similar observations were made by de 

Oliveira et al. (2018) in their study of complex traits like plant height and days to flower, which 

exhibited low predictive abilities despite high heritability estimates. Their findings suggest that 

the genetic variability of the training population can significantly impact predictive ability, 

indicating a complex interplay of factors influencing trait heritability and prediction 

accuracy (Asoro et al., 2011; Daetwyler et al., 2008; de Los Campos et al., 2013; de Oliveira et 

al., 2018; Grattapaglia & Resende, 2011; Nakaya & Isobe, 2012). 
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Despite including an environment with the lowest heritability (WSU22), only FAR22, 

when tested, negatively affected the predictive ability (-0.08). This observation highlights the 

potential challenge of integrating environments with distinct genetic and environmental factors 

into a unified prediction model. Generally, multi-trait models can enhance the prediction 

accuracy of low heritability traits if they exhibit at least a moderate correlation with the highly 

predictive ability (Jia and Jannink 2012; Montesinos-López et al. 2016). However, the high 

negative correlation between seed yield and protein content in this study may have limited the 

improvement in predictive abilities even for traits with moderate to high heritability (Bhatta et al. 

2020; Uhlarik et al. 2022).  

The persistent issue of poor predictive ability poses a significant challenge in the 

widespread adoption of genomic selection (Crossa et al. 2014). Despite this, numerous studies 

have highlighted the potential benefits of genomic selection or complex traits (Crossa et al. 2014; 

Burgueño et al. 2012), such as grain yield in wheat (Belamkar et al. 2018; Juliana et al. 2018; 

Lado et al. 2018; Michel et al. 2018). 

In contrast, the model’s performance in predicting protein content (Fig. 4.3) showed a 

significant improvement when using diverse accessions across six environments. The mean 

predictive ability for protein content increased 129% (from 0.27 to 0.62) compared to Chapter 2 

which utilized modern advanced breeding lines. This enhancement can be attributed to the higher 

heritability of protein content. It is well-documented that traits with higher heritability tend to 

exhibit higher prediction accuracies (Kaler et al. 2022; Lorenz et al. 2011; Luan et al. 2009; 

Nyine et al. 2017). 

The superior predictive performance of the RKHS model for protein could be attributed 

to the higher heritability estimates of the trait across environments, indicating that the genetic 
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Figure 4.3. Predictive ability for seed protein content using the RKHS model across multi-

environments with whole-environment prediction, RKHS is Reproducing Kernel Hilbert Spaces, 

G is prediction model considering genotypic factor, GE is prediction model integrating GxE 

interaction. 

effects influencing protein content are consistent and stable regardless of the varying conditions 

 (Sallam et al. 2015). Moreover, the inclusion of diverse accessions allowed the model to capture 

a wide spectrum of genetic effects influencing the trait. Furthermore, Persa et al. (2023) noted 

that higher genetic diversity in the soybean population training set resulted in less pronounced 

decay in predictive ability when using complex models that accounts for GxE interactions. This 

indicates that diverse alleles associated with stress resilience may contribute to higher stability in 

trait performance across environments. 

The comparable performance of the RKHS model when considering only the genotype 

factor (G) compared to integrating the genotype by environment (GxE) interaction could be 

related to a strong population structure. Population structure can lead to inflamed genomic 

prediction accuracies obtained from random cross-validation (Werner et al. 2020). Breeding 
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populations often exhibit strong population structure due to their diverse genetic backgrounds. 

Several other studies have also indicated that predictive ability is primarily influenced by 

differences in the mean performance of breeding populations, a factor that can be highly affected 

in structured populations (Windhausen et al. 2012; Hickey et al. 2014; Massman et al. 2013; 

Lehermeier et al. 2014; Würschum et al. 2017). 

4.3.2.   Predictive performance of RKHS model for split-environment prediction 

For split-environment prediction, we divided each environment into two halves. One half 

was used for testing, while the other half, along with the data from the remaining environments, 

was used for training. In predicting yield, we observed improved predictive abilities of the model 

per environment, with an average improvement of 57% (Fig. 4.4) compared to whole-

environment prediction (Section 4.3.1). Notably, testing 50% of FAR21 showed the lowest 

improvement (-0.081 to -0.085), while testing 50% of WSU22 showed the highest improvement 

(0.06 to 0.31). The mean distribution of predictive ability for yield across environments is 

illustrated in Figure A1. 

Regarding protein prediction, a significant improvement in the mean predictive ability of 

the RKHS model was also observed, with an average improvement of 19% (Fig. 4.5). Here, 

MON21 exhibited the lowest mean predictive ability improvement (0.74 to 0.75), while FAR21 

showed the highest mean predictive ability improvement (0.44 to 0.75). The mean distribution of 

predictive ability for seed protein content across environments is illustrated in Figure A2. This 

improvement in predictive ability can be attributed to the variability in environments. By 

including a subset of the population in the training set, the model can better adapt to the specific 

environmental conditions present in the environment being tested. This aligns with the findings 

of Atanda et al. (2022), who observed that when 50% of the genotypes overlapped across the 
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Figure 4.4. Mean predictive ability for yield using the RKHS model across multi-environments 

with split-environment prediction, RKHS is Reproducing Kernel Hilbert Spaces, G is prediction 

model considering genotypic factor, GE is prediction model integrating GxE interaction. 

environments used for training, predictive ability improved compared to non-overlapping  

genotypes across environments. This adaptability leads to more accurate predictions for 

environments similar to those in the training set, compared to using a model trained on different 

sets of environments. 

Utilizing a subset of lines that overlap across environments allows for borrowing of 

information across environments and serves as connectivity across environments. This approach 

enables the model to leverage information from closely related individuals within and across 

environments using multi-environment models, as noted by Atanda et al. (2021), Burgueño et al. 

(2012), Jarquín et al. (2020) and Atanda et al. (2022). These studies highlight that genetic 

correlation between environments influences predictive ability in multi-environment genomic 

prediction, further supporting the benefits of using a subset of the population in the training set 
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Figure 4.5. Mean predictive ability for seed protein content using the RKHS model across multi-

environments with split-environment prediction, RKHS is Reproducing Kernel Hilbert Spaces, G 

is prediction model considering genotypic factor, GE is prediction model integrating GxE 

interaction. 

for the improved predictive performance across environments. 

4.4. Conclusion 

This chapter highlights the intricate interplay between genetic diversity, trait heritability, 

and genotype-by-environment interactions in the predictive performance of the Multi-trait Multi-

Environment RKHS model for complex traits in pea accessions. The study reveals a nuanced 

dynamic wherein while predictive abilities for yield may decline under strong environmental 

influences, the model’s performance for protein content significantly improves, particularly 

when diverse accessions are included. This improvement underscores the importance of 

integrating considerations of genetic diversity and environmental variability in genomic 

prediction models. 
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Nonetheless, our findings also highlight the challenges in seamlessly integrating 

environments with distinct genetic backgrounds into unified prediction models, emphasizing the 

need for robust multi-trait models capable of capturing complex genetic relationships. Future 

research should focus on refining models to adapt to specific environmental conditions, thereby 

enhancing the development of resilient crop cultivars to address global food security challenges. 

It is imperative to explore strategies to mitigate the impact of population structure and 

genotype-by-environment interactions in the training set. Strategies such as incorporating 

structured populations into the training sets, utilizing advanced statistical methods to account for 

population structure, and integrating environmental covariates in the model are all promising 

avenues for improving the accuracy and robustness of genomic prediction models. Furthermore, 

investigating the genetic basis of GxE interactions and developing models that can effectively 

capture and predict these interactions will be crucial for advancing the predictive performance of 

genomic selection in plant breeding programs. 
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APPENDIX  

Table A1. List of overlapping NDSU pea accessions across three environments. 

GENOTYPE PEDIGREE 

NDP080169 BIG-DADDY//STO_4031_AM2_160_8321/PS310150 

NDP080175 PS01101184/SUPRA 

NDP080176 PS01101184/SUPRA 

NDP101185 SUPRA/PS01102929 

NDP101186 SUPRA/PS01102929 

NDP120018 CDC MEADOW/PS05ND310 

NDP120080 THUNDERBIRD/PS05ND325 

NDP120150 PS05ND327/CDC MEADOW 

NDP120180 PS05ND330/THUNDERBIRD 

NDP121556 PS02100151/STIRLING 

NDP121608 DS ADMIRAL/PS03100278 

NDP121638 PS03100278/DS ADMIRAL 

NDP121688 UNIVERSAL/PS01102958 

NDP130001 DS ADMIRAL/PS05ND218 

NDP130002 DS ADMIRAL/PS05ND218 

NDP130010 DS ADMIRAL/PS05ND310 

NDP130013 DS ADMIRAL/PS05ND310 

NDP130046 MEDORA/PS05ND327 

NDP130059 LIFTER/PS05ND310 

NDP130079 STIRLING/PS05ND330 

NDP130085 CDC MOZART/PS05ND218 

NDP130110 CDC GOLDEN/PS05ND310 

NDP130134 CDC MEADOW/PS05ND310 

NDP130152 COOPER/PS05ND227 

NDP130158 COOPER/PS05ND310 

NDP130167 COOPER/PS05ND430 

NDP130302 STIRLING/PS03100546 

NDP130337 DS ADMIRAL/PS01102958 

NDP130340 DS ADMIRAL/PS01102958 

NDP140005 DS ADMIRAL/PS05ND218 

NDP140006 DS ADMIRAL/PS05ND218 

NDP140366 PS05ND327/CDC GOLDEN 

NDP140390 PS05ND327/THUNDERBIRD 
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Table A1. List of overlapping NDSU pea accessions across three environments (continued). 

GENOTYPE PEDIGREE 

NDP150001 GSP-Ae-D9904-17/MEDORA 

NDP150013 DS ADMIRAL/PS05ND218 

NDP150037 DS ADMIRAL/PS05ND310 

NDP150038 DS ADMIRAL/PS05ND310 

NDP150042 DS ADMIRAL/PS05ND310 

NDP150045 MEDORA/PS05ND218 

NDP150046 MEDORA/PS05ND218 

NDP150047 MEDORA/PS05ND218 

NDP150051 MEDORA/PS05ND218 

NDP150052 MEDORA/PS05ND218 

NDP150053 MEDORA/PS05ND218 

NDP150054 MEDORA/PS05ND218 

NDP150055 MEDORA/PS05ND218 

NDP150058 MEDORA/PS05ND218 

NDP150059 MEDORA/PS05ND218 

NDP150060 MEDORA/PS05ND218 

NDP150062 MEDORA/PS05ND218 

NDP150063 MEDORA/PS05ND218 

NDP150066 MEDORA/PS05ND227 

NDP150068 MEDORA/PS05ND227 

NDP150069 MEDORA/PS05ND227 

NDP150070G MEDORA/PS05ND227 

NDP150073 MEDORA/PS05ND227 

NDP150075 MEDORA/PS05ND227 

NDP150076 MEDORA/PS05ND227 

NDP150077 MEDORA/PS05ND227 

NDP150079 MEDORA/PS05ND227 

NDP150080 MEDORA/PS05ND227 

NDP150081 MEDORA/PS05ND227 

NDP150082 MEDORA/PS05ND227 

NDP150084 MEDORA/PS05ND227 

NDP150085 MEDORA/PS05ND310 

NDP150087 MEDORA/PS05ND310 

NDP150089 MEDORA/PS05ND310 
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Table A1. List of overlapping NDSU pea accessions across three environments (continued). 

GENOTYPE PEDIGREE 

NDP150091 MEDORA/PS05ND310 

NDP150094 MEDORA/PS05ND310 

NDP150099 MEDORA/PS05ND310 

NDP150100 MEDORA/PS05ND310 

NDP150105 STIRLING/PS05ND430 

NDP150106 STIRLING/PS05ND430 

NDP150108 STIRLING/PS05ND430 

NDP150109 STIRLING/PS05ND430 

NDP150110 STIRLING/PS05ND430 

NDP150112 STIRLING/PS05ND430 

NDP150113 STIRLING/PS05ND430 

NDP150114 STIRLING/PS05ND430 

NDP150117 STIRLING/PS05ND430 

NDP150119 STIRLING/PS05ND430 

NDP150121 CDC GOLDEN/PS05ND227 

NDP150125 CDC GOLDEN/PS05ND227 

NDP150127 CDC GOLDEN/PS05ND227 

NDP150128 CDC GOLDEN/PS05ND227 

NDP150129 CDC GOLDEN/PS05ND227 

NDP150130 CDC GOLDEN/PS05ND227 

NDP150131 CDC GOLDEN/PS05ND227 

NDP150140 CDC GOLDEN/PS05ND310 

NDP150142 CDC GOLDEN/PS05ND310 

NDP150151 CDC GOLDEN/PS05ND310 

NDP150162 CDC MEADOW/PS05ND227 

NDP150168 CDC MEADOW/PS05ND227 

NDP150169 CDC MEADOW/PS05ND227 

NDP150176 CDC MEADOW/PS05ND227 

NDP150178 CDC MEADOW/PS05ND310 

NDP150179 CDC MEADOW/PS05ND310 

NDP150184 CDC MEADOW/PS05ND310 

NDP150191 CDC MEADOW/PS05ND310 

NDP150192 CDC MEADOW/PS05ND310 

NDP150197 THUNDERBIRD/PS05ND310 
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Table A1. List of overlapping NDSU pea accessions across three environments (continued). 

GENOTYPE PEDIGREE 

NDP150198G THUNDERBIRD/PS05ND310 

NDP150199 THUNDERBIRD/PS05ND310 

NDP150200 THUNDERBIRD/PS05ND310 

NDP150201 THUNDERBIRD/PS05ND310 

NDP150203 THUNDERBIRD/PS05ND310 

NDP150206 THUNDERBIRD/PS05ND310 

NDP150210 THUNDERBIRD/PS05ND310 

NDP150213 THUNDERBIRD/PS05ND430 

NDP150214 THUNDERBIRD/PS05ND430 

NDP150215 THUNDERBIRD/PS05ND430 

NDP150216 THUNDERBIRD/PS05ND430 

NDP150217 THUNDERBIRD/PS05ND430 

NDP150218 THUNDERBIRD/PS05ND430 

NDP150220 THUNDERBIRD/PS05ND430 

NDP150222 THUNDERBIRD/PS05ND430 

NDP150224 THUNDERBIRD/PS05ND430 

NDP150225 THUNDERBIRD/PS05ND430 

NDP150227 THUNDERBIRD/PS05ND430 

NDP150228 THUNDERBIRD/PS05ND430 

NDP150230 THUNDERBIRD/PS05ND430 

NDP150232 PS05ND218/STIRLING 

NDP150235 PS05ND218/STIRLING 

NDP150237 PS05ND218/STIRLING 

NDP150258 PS05ND227/DS ADMIRAL 

NDP150269 PS05ND325/DS ADMIRAL 

NDP150288 MEDORA/PS05ND327 

NDP150289 MEDORA/PS05ND327 

NDP150317 CDC MOZART/PS05ND430 

NDP150318 CDC MOZART/PS05ND430 

NDP150321 CDC MEADOW/PS05ND327 

NDP150326 CDC MEADOW/PS05ND327 

NDP150338 PS05ND218/THUNDERBIRD 

NDP150378 PS05ND430/DS ADMIRAL 

NDP150380 PS05ND430/DS ADMIRAL 
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Table A1. List of overlapping NDSU pea accessions across three environments (continued). 

GENOTYPE PEDIGREE 

NDP150382 PS05ND430/DS ADMIRAL 

NDP150386 PS05ND430/DS ADMIRAL 

NDP150387 PS05ND430/DS ADMIRAL 

NDP150392 PS05ND430/MEDORA 

NDP150401 PS05ND430/CDC GOLDEN 

NDP150407 PS05ND430/CDC MEADOW 

NDP150416 PS05ND430/CDC MEADOW 

NDP150419 PS05ND430/CDC MEADOW 

NDP150456 NDP080174/NDP080169 

NDP150459 NDP080174/NDP080169 

NDP150476 CDC GOLDEN/PS05ND310 

NDP150495 CDC MEADOW/PS05ND227 

NDP150501 CDC MEADOW/PS05ND227 

NDP150513 CDC MEADOW/PS05ND310 

NDP150528 PS05ND325/DS ADMIRAL 

NDP160010 CDC GOLDEN/PS05ND227 

NDP160022 CDC MEADOW/PS05ND227 

NDP160034 CDC MEADOW/PS05ND310 

NDP160049 THUNDERBIRD/PS05ND430 

NDP160051 THUNDERBIRD/PS05ND430 

NDP160055 THUNDERBIRD/PS05ND430 

NDP160062 PS05ND218/STIRLING 

NDP160066 PS05ND218/STIRLING 

NDP160071 PS05ND227/DS ADMIRAL 

NDP160075 PS05ND227/DS ADMIRAL 

NDP160169 PS05ND325/DS ADMIRAL 

NDP160176 PS05ND325/MEDORA 

NDP160180 PS05ND325/MEDORA 

NDP160183 PS05ND325/MEDORA 

NDP160188 PS05ND330/CDC MEADOW 

NDP160193 PS05ND330/CDC MEADOW 

NDP160195 PS05ND430/DS ADMIRAL 

NDP160196 PS05ND430/DS ADMIRAL 

NDP160197 PS05ND430/DS ADMIRAL 
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Table A1. List of overlapping NDSU pea accessions across three environments (continued). 

GENOTYPE PEDIGREE 

NDP160201 PS05ND430/DS ADMIRAL 

NDP160204 PS05ND430/DS ADMIRAL 

NDP160216 PS05ND430/MEDORA 

NDP160218 PS05ND430/MEDORA 

NDP160226 PS05ND430/CDC MEADOW 

NDP160231 PS05ND430/CDC MEADOW 

NDP160274 PS05ND0232/STIRLING 

NDP160278 PS07ND0102/STIRLING 

NDP160279 PS07ND0102/STIRLING 

NDP160281 NDP080138/STIRLING 

NDP160305 NDP080142/LIFTER 

NDP170004G N16P097/PS07ND0190 

NDP170028G N16P097/PS07ND0190 

NDP170039G PS07ND0190/N16P097 

NDP170089G N16P106/NDP121166 

NDP170111G N16P106/NDP121166 

PS07100972 BIG-DADDY//MARO/PS310148 

PS07100995 PS01101184/SUPRA 

PS07101014 MARROWFAT/WV135C*6af/2/PS210713/3/CEB_1221/4/MARO/PS310148 
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Table A2. List of USDA pea accessions under Fargo 2022 (FAR22) experiment. 

GENOTYPE DESCRIPTION 

PI 102887 Inbred line 

PI 102888 PSP Inbred line 

PI 116056 PSP Inbred line 

PI 116944 PSP Inbred line 

PI 117998 PSP Inbred line 

PI 121352 PSP Inbred line 

PI 123246 Inbred line 

PI 125839 PSP Inbred line 

PI 125840 PSP Inbred line 

PI 137118 Inbred line 

PI 137119 PSP Inbred line 

PI 137120 Inbred line 

PI 138945 Inbred line 

PI 140295 Inbred line 

PI 140296 Inbred line 

PI 140298 PSP Inbred line 

PI 142774 Inbred line 

PI 142777 Inbred line 

PI 143485 PSP Inbred line 

PI 155109 PSP Inbred line 

PI 156720 PSP Inbred line 

PI 162909 PSP Inbred line 

PI 163125 Inbred line 

PI 163126 PSP Inbred line 

PI 164285 Inbred line 

PI 164346 Inbred line 

PI 164417 Inbred line 

PI 164612 PSP Inbred line 

PI 164614 Inbred line 

PI 164669 Inbred line 

PI 164779 PSP Inbred line 

PI 164836 Inbred line 

PI 164838 Inbred line 

PI 164971 PSP Inbred line 
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Table A2. List of USDA pea accessions under Fargo 2022 (FAR22) experiment (continued). 

GENOTYPE DESCRIPTION 

PI 164972 PSP Inbred line 

PI 165949 PSP Inbred line 

PI 166084 PSP Inbred line 

PI 166142 Inbred line 

PI 166159 PSP Inbred line 

PI 166187 Inbred line 

PI 167250 Inbred line 

PI 167253 Inbred line 

PI 171810 PSP Inbred line 

PI 171814 Inbred line 

PI 174321 Inbred line 

PI 174921 PSP Inbred line 

PI 174922 Inbred line 

PI 174925 Inbred line 

PI 175228 Inbred line 

PI 175231 PSP Inbred line 

PI 175232 Inbred line 

PI 179019 Inbred line 

PI 179449 Inbred line 

PI 179451 PSP Inbred line 

PI 179722 PSP Inbred line 

PI 180693 PSP Inbred line 

PI 180702 PSP Inbred line 

PI 181800 Inbred line 

PI 183467 PSP Inbred line 

PI 184130 PSP Inbred line 

PI 184784 PSP Inbred line 

PI 189171 Inbred line 

PI 193578 PSP Inbred line 

PI 193586 Inbred line 

PI 193588 Inbred line 

PI 193590 PSP Inbred line 

PI 193836 Inbred line 

PI 193837 Inbred line 
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Table A2. List of USDA pea accessions under Fargo 2022 (FAR22) experiment (continued). 

GENOTYPE DESCRIPTION 

PI 193838 Inbred line 

PI 194340 Inbred line 

PI 195020 PSP Inbred line 

PI 195404 PSP Inbred line 

PI 195631 PSP Inbred line 

PI 196017 Inbred line 

PI 196026 Inbred line 

PI 196027 Inbred line 

PI 197990 PSP Inbred line 

PI 198072 PSP Inbred line 

PI 198735 PSP Inbred line 

PI 204306 PSP Inbred line 

PI 206006 PSP Inbred line 

PI 207508 PSP Inbred line 

PI 210571 PSP Inbred line 

PI 212031 PSP Inbred line 

PI 212112 Inbred line 

PI 220174 PSP Inbred line 

PI 220189 PSP Inbred line 

PI 222117 PSP Inbred line 

PI 223527 PSP Inbred line 

PI 226561 Inbred line 

PI 226562 Inbred line 

PI 227258 PSP Inbred line 

PI 227457 Inbred line 

PI 236492 PSP Inbred line 

PI 240516 PSP Inbred line 

PI 241593 PSP Inbred line 

PI 242027 PSP Inbred line 

PI 244093 PSP Inbred line 

PI 244121 PSP Inbred line 

PI 244129 Inbred line 

PI 244191 PSP Inbred line 

PI 244262 Inbred line 
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Table A2. List of USDA pea accessions under Fargo 2022 (FAR22) experiment (continued). 

GENOTYPE DESCRIPTION 

PI 249645 PSP Inbred line 

PI 249646 Inbred line 

PI 250438 PSP Inbred line 

PI 250440 PSP Inbred line 

PI 250448 PSP Inbred line 

PI 253968 PSP Inbred line 

PI 257244 PSP Inbred line 

PI 257592 PSP Inbred line 

PI 261623 PSP Inbred line 

PI 261677 PSP Inbred line 

PI 263011 Inbred line 

PI 263030 PSP Inbred line 

PI 266070 PSP Inbred line 

PI 269761 PSP Inbred line 

PI 269762 PSP Inbred line 

PI 269763 Inbred line 

PI 269771 Inbred line 

PI 269774 Inbred line 

PI 269776 Inbred line 

PI 269777 PSP Inbred line 

PI 269802 PSP Inbred line 

PI 269804 PSP Inbred line 

PI 269818 PSP Inbred line 

PI 270536 PSP Inbred line 

PI 271035 PSP Inbred line 

PI 271116 PSP Inbred line 

PI 272148 PSP Inbred line 

PI 272161 Inbred line 

PI 272171 PSP Inbred line 

PI 272184 PSP Inbred line 

PI 272194 PSP Inbred line 

PI 272204 PSP Inbred line 

PI 272215 PSP Inbred line 

PI 272216 PSP Inbred line 
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Table A2. List of USDA pea accessions under Fargo 2022 (FAR22) experiment (continued). 

GENOTYPE DESCRIPTION 

PI 272218 PSP Inbred line 

PI 273605 PSP Inbred line 

PI 273676 Inbred line 

PI 274307 PSP Inbred line 

PI 274308 PSP Inbred line 

PI 274584 PSP Inbred line 

PI 280252 PSP Inbred line 

PI 280607 Inbred line 

PI 280613 PSP Inbred line 

PI 280617 PSP Inbred line 

PI 280619 PSP Inbred line 

PI 280621 Inbred line 

PI 285710 PSP Inbred line 

PI 285727 PSP Inbred line 

PI 286430 PSP Inbred line 

PI 286607 PSP Inbred line 

PI 299023 Inbred line 

PI 306590 Inbred line 

PI 306591 PSP Inbred line 

PI 307666 PSP Inbred line 

PI 308796 PSP Inbred line 

PI 314794 PSP Inbred line 

PI 314800 Inbred line 

PI 314803 Inbred line 

PI 324695 PSP Inbred line 

PI 324699 Inbred line 

PI 324702 PSP Inbred line 

PI 324703 PSP Inbred line 

PI 324706 PSP Inbred line 

PI 331413 PSP Inbred line 

PI 331414 PSP Inbred line 

PI 340126 Inbred line 

PI 343263 Inbred line 

PI 343267 Inbred line 
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Table A2. List of USDA pea accessions under Fargo 2022 (FAR22) experiment (continued). 

GENOTYPE DESCRIPTION 

PI 343268 Inbred line 

PI 343278 Inbred line 

PI 343284 Inbred line 

PI 343286 Inbred line 

PI 343292 PSP Inbred line 

PI 343296 Inbred line 

PI 343298 Inbred line 

PI 343312 Inbred line 

PI 343321 PSP Inbred line 

PI 343331 PSP Inbred line 

PI 343936 Inbred line 

PI 344003 PSP Inbred line 

PI 347295 PSP Inbred line 

PI 347457 PSP Inbred line 

PI 347477 PSP Inbred line 

PI 347496 PSP Inbred line 

PI 356980 PSP Inbred line 

PI 356984 PSP Inbred line 

PI 356986 PSP Inbred line 

PI 356991 PSP Inbred line 

PI 356992 PSP Inbred line 

PI 358300 PSP Inbred line 

PI 358620 PSP Inbred line 

PI 358633 PSP Inbred line 

PI 378157 PSP Inbred line 

PI 381334 PSP Inbred line 

PI 393490 PSP Inbred line 

PI 404225 PSP Inbred line 

PI 409031 PSP Inbred line 

PI 413678 PSP Inbred line 

PI 429839 PSP Inbred line 

PI 429845 PSP Inbred line 

PI 476413 PSP Inbred line 

PI 477371 PSP Inbred line 
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Table A2. List of USDA pea accessions under Fargo 2022 (FAR22) experiment (continued). 

GENOTYPE DESCRIPTION 

PI 486131 PSP Inbred line 

PI 499982 PSP Inbred line 

PI 505108 PSP Inbred line 

PI 505127 PSP Inbred line 

PI 594358 PSP Inbred line 

PI 638516 PSP Inbred line 

PI 639976 PSP Inbred line 

PI 639977 PSP Inbred line 

PI 639978 PSP Inbred line 

PI 639979 PSP Inbred line 

PI 639980 PSP Inbred line 

PI 639981 PSP Inbred line 

W6 12723 PSP Advanced breeding line 

W6 12739 PSP Advanced breeding line 

W6 17293 PSP Advanced breeding line 

W6 26157 PSP Advanced breeding line 

W6 26160 PSP Advanced breeding line 
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Table A3. List of USDA pea accessions under Washington State University 2022 (WSU22) 

experiment. 

GENOTYPE DESCRIPTION 

PI 102888 PSP Inbred line 

PI 116056 PSP Inbred line 

PI 116844 Inbred line 

PI 116944 PSP Inbred line 

PI 117998 PSP Inbred line 

PI 118501 PSP Inbred line 

PI 121352 PSP Inbred line 

PI 124478 PSP Inbred line 

PI 125839 PSP Inbred line 

PI 125840 PSP Inbred line 

PI 134271 PSP Inbred line 

PI 137118 Inbred line 

PI 137119 PSP Inbred line 

PI 137120 Inbred line 

PI 138945 Inbred line 

PI 140295 Inbred line 

PI 140296 Inbred line 

PI 140298 PSP Inbred line 

PI 142774 Inbred line 

PI 142777 Inbred line 

PI 143485 PSP Inbred line 

PI 155109 PSP Inbred line 

PI 156720 PSP Inbred line 

PI 162909 PSP Inbred line 

PI 163125 Inbred line 

PI 163126 PSP Inbred line 

PI 163127 Inbred line 

PI 163129 PSP Inbred line 

PI 164346 Inbred line 

PI 164417 Inbred line 

PI 164548 PSP Inbred line 

PI 164612 PSP Inbred line 

PI 164614 Inbred line 

PI 164669 Inbred line 
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Table A3. List of USDA pea accessions under Washington State University 2022 (WSU22) 

experiment (continued). 

GENOTYPE DESCRIPTION 

PI 164779 PSP Inbred line 

PI 164836 Inbred line 

PI 164838 Inbred line 

PI 164971 PSP Inbred line 

PI 166142 Inbred line 

PI 166159 PSP Inbred line 

PI 167250 Inbred line 

PI 167253 Inbred line 

PI 169603 PSP Inbred line 

PI 171810 PSP Inbred line 

PI 171814 Inbred line 

PI 173930 Inbred line 

PI 174321 Inbred line 

PI 174921 PSP Inbred line 

PI 175231 PSP Inbred line 

PI 179019 Inbred line 

PI 179449 Inbred line 

PI 179450 PSP Inbred line 

PI 179451 PSP Inbred line 

PI 179459 PSP Inbred line 

PI 179722 PSP Inbred line 

PI 180329 PSP Inbred line 

PI 180702 PSP Inbred line 

PI 181800 Inbred line 

PI 183467 PSP Inbred line 

PI 184130 PSP Inbred line 

PI 184784 PSP Inbred line 

PI 189171 Inbred line 

PI 193590 PSP Inbred line 

PI 193836 Inbred line 

PI 193837 Inbred line 

PI 193838 Inbred line 

PI 194339 Inbred line 

PI 194340 Inbred line 
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Table A3. List of USDA pea accessions under Washington State University 2022 (WSU22) 

experiment (continued). 

GENOTYPE DESCRIPTION 

PI 194349 Inbred line 

PI 195631 PSP Inbred line 

PI 196017 Inbred line 

PI 196026 Inbred line 

PI 196027 Inbred line 

PI 196031 Inbred line 

PI 197044 PSP Inbred line 

PI 198074 PSP Inbred line 

PI 198735 PSP Inbred line 

PI 201390 PSP Inbred line 

PI 203067 PSP Inbred line 

PI 207508 PSP Inbred line 

PI 209507 PSP Inbred line 

PI 210558 PSP Inbred line 

PI 210569 PSP Inbred line 

PI 210571 PSP Inbred line 

PI 212031 PSP Inbred line 

PI 212112 Inbred line 

PI 220174 PSP Inbred line 

PI 220175 Inbred line 

PI 220189 PSP Inbred line 

PI 221697 PSP Inbred line 

PI 222071 PSP Inbred line 

PI 222117 PSP Inbred line 

PI 226561 Inbred line 

PI 226562 Inbred line 

PI 227258 PSP Inbred line 

PI 236492 PSP Inbred line 

PI 240516 PSP Inbred line 

PI 241593 PSP Inbred line 

PI 242027 PSP Inbred line 

PI 244093 PSP Inbred line 

PI 244129 Inbred line 

PI 244150 PSP Inbred line 

PI 194349 Inbred line 
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Table A3. List of USDA pea accessions under Washington State University 2022 (WSU22) 

experiment (continued). 

GENOTYPE DESCRIPTION 

PI 244191 PSP Inbred line 

PI 244262 Inbred line 

PI 249644 Inbred line 

PI 249645 PSP Inbred line 

PI 250438 PSP Inbred line 

PI 250440 PSP Inbred line 

PI 250447 PSP Inbred line 

PI 250448 PSP Inbred line 

PI 253968 PSP Inbred line 

PI 257244 PSP Inbred line 

PI 257592 PSP Inbred line 

PI 261623 PSP Inbred line 

PI 261666 Inbred line 

PI 263011 Inbred line 

PI 263030 PSP Inbred line 

PI 263032 PSP Inbred line 

PI 266070 PSP Inbred line 

PI 269543 PSP Inbred line 

PI 269761 PSP Inbred line 

PI 269762 PSP Inbred line 

PI 269774 Inbred line 

PI 269775 Inbred line 

PI 269777 PSP Inbred line 

PI 269802 PSP Inbred line 

PI 269804 PSP Inbred line 

PI 269818 PSP Inbred line 

PI 271035 PSP Inbred line 

PI 271511 PSP Inbred line 

PI 272148 PSP Inbred line 

PI 272161 Inbred line 

PI 272184 PSP Inbred line 

PI 272194 PSP Inbred line 

PI 272204 PSP Inbred line 

PI 272215 PSP Inbred line 
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Table A3. List of USDA pea accessions under Washington State University 2022 (WSU22) 

experiment (continued). 

GENOTYPE DESCRIPTION 

PI 272216 PSP Inbred line 

PI 273676 Inbred line 

PI 274307 PSP Inbred line 

PI 274308 PSP Inbred line 

PI 274584 PSP Inbred line 

PI 275821 PSP Inbred line 

PI 277851 Inbred line 

PI 277852 PSP Inbred line 

PI 279823 PSP Inbred line 

PI 280607 Inbred line 

PI 280611 PSP Inbred line 

PI 280617 PSP Inbred line 

PI 280621 Inbred line 

PI 285710 PSP Inbred line 

PI 285727 PSP Inbred line 

PI 285739 Inbred line 

PI 286607 PSP Inbred line 

PI 299023 Inbred line 

PI 306590 Inbred line 

PI 307666 PSP Inbred line 

PI 308796 PSP Inbred line 

PI 314794 PSP Inbred line 

PI 314803 Inbred line 

PI 320972 PSP Inbred line 

PI 324697 PSP Inbred line 

PI 324702 PSP Inbred line 

PI 324703 PSP Inbred line 

PI 331413 PSP Inbred line 

PI 331414 PSP Inbred line 

PI 340126 Inbred line 

PI 340128 PSP Inbred line 

PI 343263 Inbred line 

PI 343267 Inbred line 

PI 343268 Inbred line 
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Table A3. List of USDA pea accessions under Washington State University 2022 (WSU22) 

experiment (continued). 

GENOTYPE DESCRIPTION 

PI 343277 Inbred line 

PI 343278 Inbred line 

PI 343286 Inbred line 

PI 343292 PSP Inbred line 

PI 343295 Inbred line 

PI 343298 Inbred line 

PI 343312 Inbred line 

PI 343331 PSP Inbred line 

PI 343824 PSP Inbred line 

PI 343936 Inbred line 

PI 343987 PSP Inbred line 

PI 347281 PSP Inbred line 

PI 347295 PSP Inbred line 

PI 347329 PSP Inbred line 

PI 347337 Inbred line 

PI 347477 PSP Inbred line 

PI 347496 PSP Inbred line 

PI 356980 PSP Inbred line 

PI 356984 PSP Inbred line 

PI 356986 PSP Inbred line 

PI 356991 PSP Inbred line 

PI 356992 PSP Inbred line 

PI 358300 PSP Inbred line 

PI 358620 PSP Inbred line 

PI 358633 PSP Inbred line 

PI 371796 PSP Inbred line 

PI 378157 PSP Inbred line 

PI 381334 PSP Inbred line 

PI 393488 PSP Inbred line 

PI 393489 PSP Inbred line 

PI 393490 PSP Inbred line 

PI 404225 PSP Inbred line 

PI 409031 PSP Inbred line 

PI 429839 PSP Inbred line 
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Table A3. List of USDA pea accessions under Washington State University 2022 (WSU22) 

experiment (continued). 

GENOTYPE DESCRIPTION 

PI 429843 PSP Inbred line 

PI 429849 PSP Inbred line 

PI 476409 PSP Inbred line 

PI 476413 PSP Inbred line 

PI 477371 PSP Inbred line 

PI 486131 PSP Inbred line 

PI 499982 PSP Inbred line 

PI 505062 PSP Inbred line 

PI 505080 PSP Inbred line 

PI 505108 PSP Inbred line 

PI 505127 PSP Inbred line 

PI 619079 PSP Inbred line 

PI 639978 PSP Inbred line 

PI 639981 PSP Inbred line 

W6 12723 PSP Advanced breeding line 

W6 17293 PSP Advanced breeding line 

W6 26157 PSP Advanced breeding line 

W6 26160 PSP Advanced breeding line 

W6 39762 PSP Advanced breeding line 
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Table A4. List of overlapping USDA pea accessions across six environments. 

GENOTYPE DESCRIPTION 

DS Admiral Check variety 

Hampton Check variety 

PI 102887 Inbred line 

PI 102888 PSP Inbred line 

PI 116056 PSP Inbred line 

PI 116844 Inbred line 

PI 116944 PSP Inbred line 

PI 117264 PSP Inbred line 

PI 117998 PSP Inbred line 

PI 118501 PSP Inbred line 

PI 121352 PSP Inbred line 

PI 123246 Inbred line 

PI 124478 PSP Inbred line 

PI 125839 PSP Inbred line 

PI 125840 PSP Inbred line 

PI 134271 PSP Inbred line 

PI 137118 Inbred line 

PI 137119 PSP Inbred line 

PI 137120 Inbred line 

PI 138945 Inbred line 

PI 140295 Inbred line 

PI 140296 Inbred line 

PI 140298 PSP Inbred line 

PI 142774 Inbred line 

PI 142775 PSP Inbred line 

PI 142777 Inbred line 

PI 143485 PSP Inbred line 

PI 155109 PSP Inbred line 

PI 156720 PSP Inbred line 

PI 162909 PSP Inbred line 

PI 163125 Inbred line 

PI 163126 PSP Inbred line 

PI 163127 Inbred line 
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Table A4. Overlapping genotypes across six environments (continued). 

GENOTYPE DESCRIPTION 

PI 163129 PSP Inbred line 

PI 164285 Inbred line 

PI 164346 Inbred line 

PI 164396 Inbred line 

PI 164417 Inbred line 

PI 164548 PSP Inbred line 

PI 164612 PSP Inbred line 

PI 164614 Inbred line 

PI 164669 Inbred line 

PI 164779 PSP Inbred line 

PI 164836 Inbred line 

PI 164838 Inbred line 

PI 164971 PSP Inbred line 

PI 164972 PSP Inbred line 

PI 165949 PSP Inbred line 

PI 166084 PSP Inbred line 

PI 166142 Inbred line 

PI 166159 PSP Inbred line 

PI 166187 Inbred line 

PI 167250 Inbred line 

PI 167253 Inbred line 

PI 169603 PSP Inbred line 

PI 171810 PSP Inbred line 

PI 171814 Inbred line 

PI 173930 Inbred line 

PI 174321 Inbred line 

PI 174921 PSP Inbred lines 

PI 174922 Inbred line 

PI 174925 Inbred line 

PI 175228 Inbred line 

PI 175231 PSP Inbred line 

PI 175232 Inbred line 

PI 179019 Inbred line 

PI 179449 Inbred line 
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Table A4. Overlapping genotypes across six environments (continued). 

GENOTYPE DESCRIPTION 

PI 179450 PSP Inbred line 

PI 179451 PSP Inbred line 

PI 179459 PSP Inbred line 

PI 179722 PSP Inbred line 

PI 180329 PSP Inbred line 

PI 180693 PSP Inbred line 

PI 180702 PSP Inbred line 

PI 181800 Inbred line 

PI 183467 PSP Inbred line 

PI 184130 PSP Inbred line 

PI 184784 PSP Inbred line 

PI 189171 Inbred line 

PI 193578 PSP Inbred line 

PI 193586 Inbred line 

PI 193588 Inbred line 

PI 193590 PSP Inbred line 

PI 193836 Inbred line 

PI 193837 Inbred line 

PI 193838 Inbred line 

PI 194339 Inbred line 

PI 194340 Inbred line 

PI 194349 Inbred line 

PI 195020 PSP Inbred line 

PI 195404 PSP Inbred line 

PI 195631 PSP Inbred line 

PI 196017 Inbred line 

PI 196026 Inbred line 

PI 196027 Inbred line 

PI 196031 Inbred line 

PI 197044 PSP Inbred line 

PI 197990 PSP Inbred line 

PI 198072 PSP Inbred line 

PI 198074 PSP Inbred line 

PI 198735 PSP Inbred line 
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Table A4. Overlapping genotypes across six environments (continued). 

GENOTYPE DESCRIPTION 

PI 201390 PSP Inbred line 

PI 203067 PSP Inbred line 

PI 203069 PSP Inbred line 

PI 204306 PSP Inbred line 

PI 206006 PSP Inbred line 

PI 207508 PSP Inbred line 

PI 209507 PSP Inbred line 

PI 210558 PSP Inbred line 

PI 210569 PSP Inbred line 

PI 210571 PSP Inbred line 

PI 212031 PSP Inbred line 

PI 212112 Inbred line 

PI 220174 PSP Inbred line 

PI 220175 Inbred line 

PI 220189 PSP Inbred line 

PI 221697 PSP Inbred line 

PI 222071 PSP Inbred line 

PI 222117 PSP Inbred line 

PI 223527 PSP Inbred line 

PI 226561 Inbred line 

PI 226562 Inbred line 

PI 227258 PSP Inbred line 

PI 227457 Inbred line 

PI 236492 PSP Inbred line 

PI 240516 PSP Inbred line 

PI 241593 PSP Inbred line 

PI 242027 PSP Inbred line 

PI 244093 PSP Inbred line 

PI 244121 PSP Inbred line 

PI 244129 Inbred line 

PI 244150 PSP Inbred line 

PI 244191 PSP Inbred line 

PI 244262 Inbred line 

PI 248181 PSP Inbred line 
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Table A4. Overlapping genotypes across six environments (continued). 

GENOTYPE DESCRIPTION 

PI 249644 Inbred line 

PI 249645 PSP Inbred line 

PI 249646 Inbred line 

PI 250438 PSP Inbred line 

PI 250440 PSP Inbred line 

PI 250447 PSP Inbred line 

PI 250448 PSP Inbred line 

PI 253968 PSP Inbred line 

PI 257244 PSP Inbred line 

PI 257592 PSP Inbred line 

PI 261623 PSP Inbred line 

PI 261666 Inbred line 

PI 261677 PSP Inbred line 

PI 263011 Inbred line 

PI 263014 PSP Inbred line 

PI 263027 PSP Inbred line 

PI 263030 PSP Inbred line 

PI 263031 PSP Inbred line 

PI 263032 PSP Inbred line 

PI 266070 PSP Inbred line 

PI 269543 PSP Inbred line 

PI 269761 PSP Inbred line 

PI 269762 PSP Inbred line 

PI 269763 Inbred line 

PI 269771 Inbred line 

PI 269774 Inbred line 

PI 269775 Inbred line 

PI 269776 Inbred line 

PI 269777 PSP Inbred line 

PI 269802 PSP Inbred line 

PI 269804 PSP Inbred line 

PI 269818 PSP Inbred line 

PI 269825 PSP Inbred line 

PI 270536 PSP Inbred line 
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Table A4. Overlapping genotypes across six environments (continued). 

GENOTYPE DESCRIPTION 

PI 271035 PSP Inbred line 

PI 271116 PSP Inbred line 

PI 271511 PSP Inbred line 

PI 272148 PSP Inbred line 

PI 272161 Inbred line 

PI 272171 PSP Inbred line 

PI 272184 PSP Inbred line 

PI 272194 PSP Inbred line 

PI 272204 PSP Inbred line 

PI 272215 PSP Inbred line 

PI 272216 PSP Inbred line 

PI 272218 PSP Inbred line 

PI 273605 PSP Inbred line 

PI 273676 Inbred line 

PI 274307 PSP Inbred line 

PI 274308 PSP Inbred line 

PI 274584 PSP Inbred line 

PI 275821 PSP Inbred line 

PI 277851 Inbred line 

PI 277852 PSP Inbred line 

PI 279823 PSP Inbred line 

PI 280252 PSP Inbred line 

PI 280607 Inbred line 

PI 280609 PSP Inbred line 

PI 280611 PSP Inbred line 

PI 280613 PSP Inbred line 

PI 280617 PSP Inbred line 

PI 280619 PSP Inbred line 

PI 280621 Inbred line 

PI 285708 Inbred line 

PI 285710 PSP Inbred line 

PI 285718 PSP Inbred line 

PI 285727 PSP Inbred line 

PI 285739 Inbred line 
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Table A4. Overlapping genotypes across six environments (continued). 

GENOTYPE DESCRIPTION 

PI 286430 PSP Inbred line 

PI 286607 PSP Inbred line 

PI 299023 Inbred line 

PI 306590 Inbred line 

PI 306591 PSP Inbred line 

PI 307666 PSP Inbred line 

PI 308796 PSP Inbred line 

PI 311112 Inbred line 

PI 314794 PSP Inbred line 

PI 314800 Inbred line 

PI 314803 Inbred line 

PI 319374 PSP Inbred line 

PI 320972 PSP Inbred line 

PI 324695 PSP Inbred line 

PI 324697 PSP Inbred line 

PI 324699 Inbred line 

PI 324702 PSP Inbred line 

PI 324703 PSP Inbred line 

PI 324706 PSP Inbred line 

PI 331413 PSP Inbred line 

PI 331414 PSP Inbred line 

PI 340126 Inbred line 

PI 340128 PSP Inbred line 

PI 340130 PSP Inbred line 

PI 343263 Inbred line 

PI 343267 Inbred line 

PI 343268 Inbred line 

PI 343277 Inbred line 

PI 343278 Inbred line 

PI 343284 Inbred line 

PI 343286 Inbred line 

PI 343292 PSP Inbred line 

PI 343295 Inbred line 

PI 343296 Inbred line 
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Table A4. Overlapping genotypes across six environments (continued). 

GENOTYPE DESCRIPTION 

PI 343298 Inbred line 

PI 343312 Inbred line 

PI 343321 PSP Inbred line 

PI 343331 PSP Inbred line 

PI 343824 PSP Inbred line 

PI 343936 Inbred line 

PI 343958 PSP Inbred line 

PI 343987 PSP Inbred line 

PI 344003 PSP Inbred line 

PI 347281 PSP Inbred line 

PI 347290 Inbred line 

PI 347295 PSP Inbred line 

PI 347329 PSP Inbred line 

PI 347337 Inbred line 

PI 347457 PSP Inbred line 

PI 347477 PSP Inbred line 

PI 347496 PSP Inbred line 

PI 356980 PSP Inbred line 

PI 356984 PSP Inbred line 

PI 356986 PSP Inbred line 

PI 356991 PSP Inbred line 

PI 356992 PSP Inbred line 

PI 358300 PSP Inbred line 

PI 358620 PSP Inbred line 

PI 358633 PSP Inbred line 

PI 371796 PSP Inbred line 

PI 378157 PSP Inbred line 

PI 381334 PSP Inbred line 

PI 393488 PSP Inbred line 

PI 393489 PSP Inbred line 

PI 393490 PSP Inbred line 

PI 404225 PSP Inbred line 

PI 409031 PSP Inbred line 

PI 413678 PSP Inbred line 
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Table A4. Overlapping genotypes across six environments (continued). 

GENOTYPE DESCRIPTION 

PI 413688 PSP Inbred line 

PI 429839 PSP Inbred line 

PI 429843 PSP Inbred line 

PI 429845 PSP Inbred line 

PI 429849 PSP Inbred line 

PI 476409 PSP Inbred line 

PI 476413 PSP Inbred line 

PI 477371 PSP Inbred line 

PI 486131 PSP Inbred line 

PI 494077 PSP Inbred line 

PI 499982 PSP Inbred line 

PI 505062 PSP Inbred line 

PI 505080 PSP Inbred line 

PI 505108 PSP Inbred line 

PI 505122 PSP Inbred line 

PI 505127 PSP Inbred line 

PI 594358 PSP Inbred line 

PI 619079 PSP Inbred line 

PI 638516 PSP Inbred line 

PI 639976 PSP Inbred line 

PI 639977 PSP Inbred line 

PI 639978 PSP Inbred line 

PI 639979 PSP Inbred line 

PI 639980 PSP Inbred line 

PI 639981 PSP Inbred line 

W6 12723 PSP Advanced breeding line 

W6 12739 PSP Advanced breeding line 

W6 17293 PSP Advanced breeding line 

W6 26157 PSP Advanced breeding line 

W6 26160 PSP Advanced breeding line 

W6 39762 PSP Advanced breeding line 
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Figure A1. Mean distribution of predictive ability for yield across environments with split-

environment prediction, RKHS is Reproducing Kernel Hilbert Spaces, G is prediction model 

considering genotypic factor, GE is prediction model integrating GxE interaction. 
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Figure A2. Mean distribution of predictive ability for seed protein content across environments 

with split-environment prediction, RKHS is Reproducing Kernel Hilbert Spaces, G is prediction 

model considering genotypic factor, GE is prediction model integrating GxE interaction. 

 


