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ABSTRACT 

Over the past two decades, there has been a significant increase in the utilization of DNA 

marker-based mapping studies to genetically map and further improve complex quantitative 

traits. A major caveat of this approach is that genetic mapping of the underlying genes conferring 

target phenotypes is challenging often due to the extent of long-range linkage disequilibrium 

(LD) in the genome, particularly in self-pollinated crops. Recent technologies allow us to 

examine expression-phenotype associations using transcriptome-wide association studies 

(TWAS) which is independently affected by LD, unlike in the case of genetic markers. This is of 

greatest utility in species where linkage disequilibrium is extensive such as dry pea, where genes 

can be prioritized for association with a trait because their expression patterns are independent. 

The goal of this study is to use gene expression collected from the developing pods of pea and 

the TWAS approach for mapping and prioritizing likely causal genes underlying seed protein 

content and yield. As the effective population size (Ne) of the USDA (United States Department 

of Agriculture) diversity panel provided substantial genetic variation, we utilized 300 USDA pea 

lines from within the collection and performed a comprehensive single-tissue, multi-environment 

TWAS across six diverse environments (2 years * 2 locations) in the major pea growing regions 

in the USA. As we compared the results of TWAS with genome-wide association studies 

(GWAS), we detected more common and unique set of strongly associated genes. In all TWAS 

models, the significant genes exhibited clear differentiation, unlike in the case of GWAS. A joint 

analysis of GWAS and TWAS results using the fisher’s combined test (FCT) increased the 

power of detecting more trait-associated genes including RGB. Using GWAS, TWAS and FCT 

models, we detected 45 genes for protein, 60 genes for yield, and 20 genes that were common to 

both traits. These results highlight the complex interaction between genetic factors and 
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environmental influences in shaping the genetic architecture of seed yield and protein. Our study 

proved that multi-omics strategy increases the gene mapping resolution by surpassing the GWAS 

and/or TWAS approach, and highlights the potential phenotypic consequences of regulatory 

variation in dry pea. 
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CHAPTER 1. LITERATURE REVIEW  

Introduction to Pisum Sativum (L.) 

Pisum sativum (L.)  is a diploid, cool-season legume and a member of the 

Fabaceae/Leguminosae plant family, the third largest flowering plant family with approximately 

18,000 species and 800 genera (Lewis 2005). Based on archaeological evidence, the existence of 

peas goes back to 10,000 BC in Near East (Zohary and Hopf 2000) and Central Asia (Riehl et 

al., 2013). They have been cultivated throughout the Stone and Bronze Ages in Europe, and 

since 200 BC in India (Warkentin et al., 2015). Peas were domesticated in the Near East around 

9000 BC and are one of the world’s oldest domesticated crops, originating in the primary center 

of origin in the Near and Middle east. The crown Leguminosae divergence is associated with the 

whole genome duplication event in the pea genome (55 MYA). Since the pea's divergence from 

other tribes, the pea genome has experienced more nucleotide mutations, gene duplications, and 

deletions than other sequenced legume genomes (Kreplak et al., 2019). According to homology 

and synteny computation, there is a synteny relationship identified between pea (P. sativum), 

peanut diploid ancestor (Arachis duranensis), lotus (Lotus japonicus), barrel medic (Medicago 

truncatula), chickpea (Cicer arietinum), pigeon pea (Cajanus cajan), soybean (Glycine max), 

common bean (Phaseolus vulgaris), mung bean (Vigna radiata) and adzuki bean (Vigna 

angularis) (Kreplak et al., 2019). Peas are among the most important pulse crops grown in over 

100 countries, with 7,043,605 hectares of dry peas planted worldwide and a total production of 

12,403,522 tonnes (FAOSTAT 2021). In the USA alone, the pea production reached one million 

tonnes in 2019 (USDA 2020). Pea seeds are renowned as a dietary goldmine, containing 

approximately 32% protein, as well as vitamins, folate, fibers, potassium, and minerals, all of 

which contribute to human health and aid in the prevention of cardiovascular and certain cancer 

https://paperpile.com/c/zO5tpO/tUmn
https://paperpile.com/c/zO5tpO/VV3g
https://paperpile.com/c/zO5tpO/ENbI
https://paperpile.com/c/zO5tpO/ENbI
https://www.biorxiv.org/content/10.1101/2024.02.19.581041v1.full#ref-56
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diseases (Bari et al., 2021; Tayeh et al., 2015). The genetic diversity of dry peas has been 

collected from various regions, including Europe, Africa, Asia, America, and Oceania, where 

they have adapted to diverse environments (Kreplak et al., 2019). Research on the pea genome 

has lagged behind due to its large genome size compared to other small legume genomes. 

However, it was the model genome studied by Gregor Mendel in the 18th century as he 

uncovered the laws of genetics (Ellis et al., 2011). Genes controlling Mendel’s seven pea 

characteristics are known to be located on four chromosomes: chromosome 1 for seed and 

blossom color, chromosome 4 for height, inflorescence, and pod shape, chromosome 5 for pod 

color, and chromosome 7 for seed form (Yang et al., 2022; SMÝKAL 2014). 

Pisum sativum L. has seven chromosomes (2n=14) with a genome size of 4.45 GB. In 

recent years, the Caméor pea reference genome has been successfully utilized in genetic mapping 

studies to detect the variants such as single nucleotide polymorphisms (SNP) and 

insertion/deletion (Indel) (Kreplak et al., 2019). According to the USDA Agricultural Research 

Service and Northern Pulse Growers Association databases, 76 genetic maps were generated 

until 2022. Based on Kreplak et al., (2019), the pea genome has a high occurrence of repetitive 

sequence and is one of the legume species used as a model for having the most repetitive 

sequence in its genome. According to the pea reference paper, the annotation step detected 

2,225,175 repetitive elements clustered into 2,940 consensuses representing ~83% of the 

genome. The majority of them are transposable elements (TE), such as the long-terminal repeat 

(LTR) retrotransposon accounting for 72.7% of the genome. Transposons (class II) make up 

5.4% of the genome, with terminal-inverted-repeat (TIR) transposons accounting for 84%. The 

majority of the gap between the genome and the reference assembly are explained by collapsed 

sequences of repetitive elements (Kreplak et al., 2019). A total of 57,835 transcripts and 44,756 

https://paperpile.com/c/zO5tpO/CrXw
https://paperpile.com/c/zO5tpO/uOLG
https://paperpile.com/c/zO5tpO/ONJk
https://paperpile.com/c/zO5tpO/FHBS
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genes are present in the genome. In chr 1, there are 5,142 genes and 6,599 transcripts; chr 2 

(4,365 genes) – 5,775 transcripts; chr 3 (4,751 genes) – 6,115 transcripts; chr 4 (5,276 genes) – 

6,924 transcripts; chr 5 (7,098 genes) – 9,208 transcripts; chr 6 (5,593 genes) – 7,586 transcripts 

and chr 7 (6,087 genes) – 7,943 transcripts. In 2022, a new improved reference genome, 

CAAS_Psat_ZW6_1.0 was developed from the cultivar Zhongwar6 (ZW6), with a genome size 

of 3.8 GB and 65,672 genes (Yang et al., 2022a), surpassing the Caméor genome, which has a 

size of 3.9 GB and 44,756 genes (Kreplak et al., 2019).  The latest genome analysis presents a 

newly generated assembly and annotation of the ZW6 cultivar's genome. The N-50 contig length 

is 8.98 Mb, representing a 243-fold improvement compared to the Caméor reference genome 

(Yang et al., 2022a). Since the number of gene counts between the genomes differs, some genes 

were successfully validated and compared with the Caméor genome, but the functions of the 

remaining genes are still unknown. Our study will be the first to utilize this new improved 

genome in the association mapping to determine the trait-associated genes. During the gene 

validation stages, we will utilize annotations from both genomes, genomic locus, and model 

information from NCBI (National Center for Biotechnology Information; 

https://www.ncbi.nlm.nih.gov/gene/?term=pisum+sativum) and the pea genome database 

developed by the Chinese Academy of Agricultural Sciences (Yang et al., 2022b) to verify the 

gene's function. 

Genetic Diversity and Effective Population Size (Ne)  

Genetic diversity is an important factor in a population for gene mapping studies and it 

also impacts the strength of the population (Frankham 1996). The number of genotypes in the 

population determines the inbreeding rate and genetic drift, as well as the likelihood of 

deleterious alleles becoming fixed, leading to a decrease in genetic variation (Hare et al., 2011; 

https://paperpile.com/c/zO5tpO/yeZB
https://www.ncbi.nlm.nih.gov/gene/?term=pisum+sativum
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Lonsinger et al., 2018). Effective population size (Ne) is an important parameter in evolution and 

conservation biology (Waples 2006). Ne refers to the census population size which will be lower 

than the N number of population (Lonsinger et al., 2018) and represents the strength in the 

genetic variation. Based on the Wright-Fisher model, this is the number of individuals in an 

idealized population that would exhibit a comparable genetic response to stochastic processes, 

similar to those observed in real-world populations (Wang et al., 2016; Wright 1931; Fisher 

1930). It is used by the breeders to determine the health of the genotypes and the long-term risk 

(Frankham, 2005; Hare et al., 2011). The genetic variations will be lost and the population will 

be at risk, when there is smaller Ne and limited gene flow (Fagan & Holmes 2006; Palstra & 

Ruzzante 2008). To avoid short-term inbreeding, Ne should be at least greater than or equal to 50, 

with the population size of minimum 500 (Franklin 1980). Ne can assist in preserving genetic 

diversity within the breeding population by evaluating the magnitude of genetic variation. This 

information enables breeders to determine whether adjustments to their strategy, such as 

introducing new lines, are necessary in order to prevent a reduction in genetic diversity (Morais 

Júnior et al., 2017). 

Commonly used extensions for effective population size theory are variance effective 

size and inbreeding effective size (Wang et al., 2016). Variance effective size reflects the rate of 

change in gene frequency variance, while inbreeding effective size corresponds to the observed 

rate of inbreeding in a population (Crow and Kimura 1970). These measures enable the 

quantification of the consequences of genetic drift in real populations, based on the 

characteristics and dynamics of the idealized Wright-Fisher population (Wang et al., 2016).  

There are multiple predictive equations available to estimate effective population size 

(Ne). The equations differ based on the subpopulation division with varying sizes and pedigrees 
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(Wang et al., 2016; Wang 1997a, b). Wright (1938) derived an initial equation that accounts for 

how the variance from a parent in a population contributes to the progeny. This equation 

assumed the population contains equal number of males and females. The predictive equation of 

animals and X-linked genes were derived by (Wang et al., 2016; Nomura 2002, 2005). We can 

also estimate Ne using linkage disequilibrium (LD) between the molecular markers, where the 

equation is derived based on r2 (LD) and the genetic distance (c) in Morgans. This formula 

assumes that there is no selective process occurring within the population and that selfing is 

permitted (Sved 1971). This equation suits well with our populations being studied. We have a 

genetic dataset which can be used to estimate Ne. From the recent advancements in high-

throughput sequencing and the availability of high-density markers such as single nucleotide 

polymorphisms (SNPs) have increased over the past decade, contributing to the LD-based Ne 

estimation being acknowledged as more reliable, robust (Novo et al., 2022), cost-effective, and 

time-effective compared to the temporal approach (Gargiulo et al., 2023).  

Peas are one of the highly consumed alternate sources of protein in the recent years, 

maintaining its variability and stability is the top priority for the breeders in their populations. 

Since there is no Ne information available, estimation of Ne in peas would be a valuable resource 

for all the pea breeding programs around the world. Studies such as Juma et al., (2021) estimated 

the effective population size (Ne) in rice to be 22 using the SNP markers dataset from an elite 

core panel composed of 72 lines. However, Ne may have been underestimated due to limited 

marker information used in the analysis and some of the markers were specifically designed to 

indigo lines. Similar studies in rice also yielded Ne values within the same range, with calculated 

values ranging from 23-57 and 40-60; these estimates were based on breeding populations from 

recurrent selection programs (Grenier et al., 2015) and pedigree data (Morais Júnior et al., 2017). 
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In soybean, Xavier et al., (2018) estimated Ne for the USDA (United States Department of 

Agriculture) soybean germplasm collection, composed of 19,652 accessions from Bandillo et al., 

(2015), reporting it to be 106 individuals. Recent studies have revealed several genetic 

bottlenecks in soybean (Guo et al., 2010), leading to a reduction in its genetic diversity (Li et al., 

2013; Min et al., 2010). Zhao et al., (2013) estimated Ne in wild rice using 11 Chinese Oryza 

rufipogon populations, including 32 landraces, with reported values between 96 and 158. Other 

ways such as detecting the ratio of effective population size and the census size (Ne / N) which 

ranges from 0 to 1 to determine the genetic diversity of the population. For grass germplasm 

collection species, Johnson et al., (2002) estimated 0.69 for L. perenne which was lower than 

0.86 P. spicata species.  

Linkage Disequilibrium (LD) 

Linkage Disequilibrium (LD) is a non-random correlation of alleles at various loci (Hill 

and Robertson 1968). This concept has become popular in estimating effective population size 

(Ne) (Antao et al., 2011) and in mapping studies. Correlations between alleles are usually 

generated by genetic drift, which is inversely proportional to Ne (Gargiulo et al., 2023), leading 

to changes in allele frequencies in a population over time. The advantage of LD over the 

temporal method (Pollak 1983) lies in the strength of associations between markers, allowing for 

accurate Ne calculations at any given time (generations) from a single population, without relying 

on longitudinal data. This makes LD a valuable tool for studying populations where temporal 

information may be limited or unavailable. Recombination and mutation rates are the main 

factors that shape the genetic landscape (Ardlie et al., 2002), and by analyzing LD, we can gain a 

better understanding of their history and apply this knowledge to plant breeding and population 

genetics (Sved and Hill 2018). 
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LD findings in previous studies were observed in peas, where both wild and spring peas 

exhibited a decay distance of approximately 200 kb, whereas wild/landrace peas showed a 

distance around 100 kb (Siol et al., 2017). In the Beji et al., (2020) study using 365 accessions 

from a diversity panel, the LD decayed to 0.22 with the distance of 0.9 cM. Based on each 

chromosome, the decay rate ranges from 0.3 to 1.4 cM. Comparing the LD of peas to other 

selfing crops such as rice, soybeans, and barley, the physical distances found were more or less 

similar depending on the type of populations. Huang et al., (2010) estimated LD using O. indica 

and O. japonica landraces of rice at 123 and 167 kb, respectively, with r2 declining to 0.25 and 

0.28. Additionally, soybean landraces extended from 90 to 500 kb (Hyten et al., 2007), while 

improved cultivars hit 133 kb (Zhou et al., 2015). A recent LD analysis from soybean USDA 

germplasm revealed that the r2 dropped intragenically within a few kilobases (Xavier et al., 

2018), and in barley’s landraces, it reached 90 kb (Caldwell et al., 2006). The LD-decay of elite 

varieties in barley extends up to 212 kb (Caldwell et al., 2006) and in O. japonica elite lines at 

∼318 kb (Li et al. 2020), but it declined faster in O. indica elite lines, around ∼124 kb (Li et al., 

2020).  

Genome-Wide Association Studies (GWAS) 

Genome-wide association studies (GWAS) is one of the popular mapping studies for the 

past two decades. GWAS detects the correlation among the molecular markers and the 

phenotypic variations by utilizing historical recombination events (Hirschhorn and Daly, 2005) 

and genetic diversity (Korte and Farlow, 2013; Gali et al., 2019) in many crops including pulses 

(Sun et al., 2017). GWAS has higher resolution compared to traditional linkage mapping which 

uses biparental population to detect the causal trait-associated marker (Korte and Farlow, 2013; 

Gali et al., 2019). Due to the cost-effective genotyping technologies and developments of 

https://paperpile.com/c/zO5tpO/GcEG
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statistical methods, GWAS is widely used to understand the genetic complexity in most species. 

In most GWAS studies, researchers prefer to use single nucleotide polymorphisms (SNPs), as 

they are easy to genotype and abundant in the respective genome. As the higher number of 

markers in the analysis will help tag the causal gene for the respective traits.  

In Gali et al., (2019), the authors conducted a GWAS study across multiple trials for 

different traits. They found highly significant SNPs such as Chr1LG6_57305683 and 

Chr1LG6_366513463 for seed yield while Chr3LG5_194530376 for protein concentration was 

found commonly in all of their trials. For Aphanomyces root rot in peas, Desgroux et al., (2016) 

determined 52 significant markers using a 13.2k SNP array. Tafesse et al., (2020) detected 32 

markers associated with heat stress responsive traits using 16,877 SNPs. Beji et al., (2020) 

identified 62 highly significant SNPs associated with frost tolerance in winter pea crop. In the 

soybean genome, Priyanatha et al., (2022) determined Glyma.19 g171000 as a significant gene 

associated with seed oil concentration. Zhang et al., (2023) detected two significant SNPs such 

as Gm09_39012959 and Gm20_24678362 for protein concentration whereas for fat content, they 

identified four SNPs such as Gm09_39012959, Gm12_35492373, Gm16_9297124, and 

Gm20_24678362. Researchers also identified 55 significant genes linked to seven root traits in 

soybean (Kim et al., 2023). In the study conducted by Zeng et al., (2022) on the maize genome, 

they identified 59 SNPs that were highly significant for yield-related traits. Through the analysis 

of the LD rate, they discovered that these SNPs were associated with 58 annotated genes. Zhang 

et al., (2021) detected 22 significant SNPs associated to yield-related phenotypes in japonica 

rice. Multi-Locus Mixed Model (MLMM) approach evaluated by Segura et al., (2012) also 

increased the statistical power of GWAS in mapping the genes but the accuracy and gene 

validation still remains unpredictable. 

https://paperpile.com/c/zO5tpO/O5hn
https://paperpile.com/c/zO5tpO/lGgX
https://paperpile.com/c/zO5tpO/OLkb
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Tools to Perform GWAS 

There are more resources and tools developed to conduct GWAS analysis. Statistical 

models such as naïve, population structure (Q), kinship (K) and Q+K models were used to 

perform GWAS (Sharma et al., 2018). Since GWAS is being conducted using germplasms 

collected all over the world, the population structure and the genetic relatedness should be 

accounted for in the analysis to prevent false positive SNPs (Yu et al., 2005). Still, the 

performance of GWAS is not sufficient due to its low statistical power and high false positive 

signals. More advanced tools have been developed to perform GWAS including GAPIT (Tang et 

al., 2016), ECMLM (Li et al., 2014), EMMA (Kang et al., 2008), GEMMA (Zhou and Stephens, 

2012), FaST-LMM (Lippert et al., 2011), SUPER (Wang et al., 2014) and GenABEL 

(Svishcheva et al., 2012) among others. The power of GWAS is influenced by factors such as 

phenotypic variation, population structure, number of genotypes, allele frequency, and LD. 

Quality control, data preparation, and the use of best linear unbiased predictor (BLUP) and best 

linear unbiased estimator (BLUE) are necessary steps to adjust for phenotypic variation in 

GWAS. Additionally, it is crucial to carefully consider the decay of linkage disequilibrium (LD) 

when conducting GWAS (Alqudah et al., 2020). 

Transcriptome-Wide Association Studies (TWAS) 

Majority of research focusing on detecting the genetic complexity underlying the 

phenotypic variation are based on association mapping studies. For the past two decades, 

researchers have been using molecular markers such as SNPs in GWAS to tag the causal gene 

associated with the trait-of-interest. But in some species, due to linkage disequilibrium, they 

might end up retrieving multiple genes linked to the causal variant (highly significant marker). It 

is impossible to narrow it down which one of those genes are actually our targeted gene of 

https://paperpile.com/c/zO5tpO/FM3SM
https://paperpile.com/c/zO5tpO/Jf1E
https://paperpile.com/c/zO5tpO/tAm8f
https://paperpile.com/c/zO5tpO/tAm8f
https://paperpile.com/c/zO5tpO/BumSR
https://paperpile.com/c/zO5tpO/j6ySs
https://paperpile.com/c/zO5tpO/Ewg2K
https://paperpile.com/c/zO5tpO/Ewg2K
https://paperpile.com/c/zO5tpO/wwh18
https://paperpile.com/c/zO5tpO/nNyaU
https://paperpile.com/c/zO5tpO/daHfO
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interest. Long-range of LD decay increases the probability of detecting false positive genes. 

Having a high LD in a GWAS population means, we need to have a smaller number of SNP 

markers to reduce false positives. The mapping resolution in GWAS studies is based on the 

number of markers and LD decay rate (Alqudah et al., 2020).  Among previous studies in plants, 

researchers have tried to incorporate the expression data into the mapping studies and performed 

transcriptome-wide association studies. Transcriptome-wide association study (TWAS) examines 

the expression-phenotype associations which are independently affected by LD, unlike in the 

case of genetic markers (Li et al., 2021). In simpler terms, even if multiple genes are closely 

connected and cannot be observed separately in different individuals, they can still be given 

priority for association with a trait because their patterns of expression are independent. Other 

studies conducted by Lin et al., (2017) and Zheng et al., (2020) have already demonstrated that 

TWAS can achieve single gene resolution and found partially overlapping gene sets in cross-

pollinated species. Additionally, Li et al., (2021) found that TWAS is also effective in self-

pollinated species. These studies have shown that TWAS overcomes issues related to Linkage 

Disequilibrium (LD) and have stated that TWAS is a valuable complement to GWAS.  

As discussed before, there are so many options to conduct GWAS analysis but for 

TWAS, the choices were limited. Different TWAS approaches that were published have different 

results. For example, results from Hirsch et al., (2014) and Lin et al., (2017) only had one or few 

genes that passed the false discovery rate threshold (FDR) while in Kremling et al., (2019) and 

Wu et al., (2022) they used top 0.5-1% hits based on p-values and ended up getting more 

significant genes which included false positive discoveries as well. Reasons behind these varying 

results are due to the dataset format used in their respective analysis. Li et al., (2021) converted 

the expression data to categorical format (0,1,2) to utilize it in the GAPIT R package and 
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compared it with the GWAS results using the same tool whereas (Kremling et al., 2019; Wu et 

al., 2022) directly used the normalized gene expression data into the mixed linear model. Since 

the datasets utilized in GWAS and TWAS analysis were different, the authors used the outlier 

approach to study the genes to avoid direct comparison of p-values resulted from different 

datasets rather than using the multiple corrections approach (Kremling et al., 2019; Wu et al., 

2022).  There is also another method called expression read depth GWAS (eRD-GWAS) was 

developed by (Lin et al., 2017) in maize which is a TWAS-based Bayesian statistical method. 

The authors found 13 trait-associated genes and observed that the functions of these genes align 

with the characteristics of those traits and also one of those genes underwent functional 

characterization (Lin et al., 2017). In contrast to certain human TWAS methods, which predicted 

gene expression levels, eRD-GWAS utilized explanatory variables that were explicitly used to 

measure gene expression levels (Li et al., 2021).  

Combining GWAS and TWAS 

In 2019, there was a new approach introduced within mapping studies where genomics 

and transcriptomics were combined to increase the power of gene mapping. Kremling et al., 

(2019), used Fisher’s combined statistical test for the top 10% GWAS highly significant SNPs 

and TWAS results which led to detect more numbers of known significant genes than running 

GWAS or TWAS alone in 30 grain carotenoid abundance, 22 agronomic and 20 tocochromanol 

abundance traits. Following their study, this approach has been successfully applied in sorghum 

to identify targeted genes correlated with variations of water use efficiency-related traits 

(Ferguson et al., 2021; Pignon et al., 2021) and in tocochromanol levels in maize grain (Wu et 

al., 2022). The Fisher’s combined test has also been successfully employed to retrieve the 

candidate genes associated with the maize leaf cuticular conductance (gc) trait (Lin et al., 2022). 
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CHAPTER 2. EFFECTIVE POPULATION SIZE IN DRY PEA1 

Introduction 

Dry pea (Pisum sativum L.), is a diploid, cool-season legume and a member of the 

Leguminosae family (Abbo et al., 2017). Pea is one of the most important pulse crops grown in 

more than 100 countries, where 7,043,605 hectares of dry pea were planted around the world 

with a total production of 12,403,522 tons (FAOSTAT 2021). In the USA alone, the pea 

production reached one million tons in 2019 (USDA  2020). In recent years, pea protein has 

become more popular in the market for plant-based diets e.g., Beyond® Meat Burger (Bari et al. 

2021). Pea seeds have earned a reputation as a dietary goldmine with around 15 – 32% protein 

content, vitamins, folate, fibers, potassium and minerals, which is good for human health and 

helps prevent cardiovascular and specific cancer diseases (Bari et al., 2021; Tayeh et al., 2015). 

The increasing popularity of plant-based proteins in the market has further propelled the demand 

for peas. Therefore, the study of genetic diversity should expand to accelerate the genetic gain of 

pea varieties to meet future demands, maintaining the diversity in peas is the top priority for 

plant breeders (Bari et al., 2021; Gali et al., 2019).  

Estimation of effective population size (Ne) determines the rate of inbreeding 

(Rahimmadar et al., 2021; Tenesa et al., 2007) and genetic changes due to genetic drift (Gargiulo 

et al., 2023). Ne is an important parameter in population genetics and breeding introduced by 

Sewall Wright in 1931, which helps breeders to maintain and monitor the level of genetic 

 

 

1 This chapter has been published in a preprint server as Johnson, J.P., Piche, L., Worral, H., Atanda, S.A., Coyne, 

C. J., McGee, R., McPhee, K., & N. Bandillo. 2024. Effective Population Size in Field Pea. doi: 

https://doi.org/10.1101/2024.02.19.581041. It was also previously submitted for publication to an open-access 

journal and is currently under review. Josephine Princy Johnson developed the pipeline and conducted the formal 

analysis, prepared the original draft and edited the manuscript. 
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diversity in their species (Cobb et al., 2019). The estimated Ne is expected to be smaller than the 

census size (N), as it influences the rate at which genetic diversity decreases within a population 

(Lonsinger et al., 2018; Hare et al., 2011). Relatively smaller Ne indicates limited population 

diversity, which, in turn, can restrict genetic advancement within a breeding program (Hayes et 

al., 2003). Moreover, Ne parameter retrieves the population dynamics of the genes (Nei and 

Tajima 1981).  

The effective size of a population refers to the hypothetical number of individuals in an 

idealized population that would exhibit a comparable genetic response to stochastic processes, 

similar to that observed in a real-world population which is based on the Wright-Fisher model 

(Wang et al., 2016; Wright 1931; Fisher 1930). This model shows genetic drift as the main 

operating factor, and that changes in allelic and genotypic frequencies over generations are solely 

influenced by the population size (N) (Wang et al., 2016). In real-world breeding populations, 

factors such as mutation, migration, natural selection, and non-random mating come into play 

(Wang et al., 2016) These factors affect the actual rates of inbreeding and changes in gene 

frequency variance observed in a population (Charlesworth 2009). This will indeed impact Ne 

and therefore, reduce the genetic variation and diversity. The most commonly used extensions 

for effective population size theory are variance effective size and inbreeding effective size 

(Wang et al., 2016). The variance effective size reflects the rate of change in gene frequency 

variance, while inbreeding effective size corresponds to the rate of inbreeding observed in a 

population (Crow and Kimura 1970). These measures allow us to quantify the consequences of 

genetic drift in a real population, based on the characteristics and dynamics of the idealized 

Wright-Fisher population (Wang et al., 2016).  
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While Ne of a population can be estimated either from demographic data or genetic 

markers, the latter is preferred (Gilbert and Whitlock 2015; Luikart et al., 2010; Fernández et al., 

2005). Demographic data involves using census size and variance of reproductive success 

whereas genetic markers reveal changes in allele frequencies over time and are based on linkage 

disequilibrium (LD). When the pedigree or demographic data is not available, Ne can be 

estimated using genetic markers (Wang 2005). The most popular and widely-employed genetic 

approach has been the temporal method, which relies on temporal fluctuations in allele 

frequencies observed on multiple samples collected from the same population (Nei and Tajima 

1981). Ne, however, can also be directly estimated using LD between loci at various distances 

along the genome (Hayes et al., 2003; Sved 1971). Recent advancements in high-throughput 

sequencing and the availability of high-density markers such as single nucleotide polymorphisms 

(SNPs) have increased over the past decade, contributing to the LD-based approach now being 

acknowledged as more reliable, robust (Novo et al., 2022), cost and time effective than the 

temporal approach (Gargiulo et al., 2023).  

Linkage disequilibrium (represented as r2) is a phenomenon characterized by the non-

random association of alleles at various loci (Hill and Robertson 1968) which became popular in 

recent years for predicting Ne (Antao et al., 2011). Correlations between alleles are generated by 

genetic drift when it is inversely proportional to Ne (Gargiulo et al., 2023), which changes the 

allele frequencies in a population over time. The biggest advantage of LD over the temporal 

method (Pollak 1983), is the strength of associations between markers that can be used to 

calculate Ne at any time (generations) from a single population accurately without relying on 

longitudinal data. This makes LD a valuable tool for studying populations where temporal 

information may be limited or unavailable. Recombination and mutation rates are fundamental 
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processes that shape the genetic landscape (Ardlie et al., 2002), and by analyzing LD, we can 

better understand their history and apply it to plant breeding and population genetics (Sved and 

Hill 2018). 

In this study, we estimated the extent of LD decay in the dry pea genome and utilized the 

relationship between LD and recombination frequency, as initially described by Sved (1971), to 

estimate Ne which is convenient as it only requires one sampling time (García-Cortés et al. 2019; 

Hill 1981). We used two sets of populations: 1) NDSU modern breeding lines, hereafter referred 

to as NDSU set, and 2) USDA diversity panel, hereafter referred to as USDA set. Our objectives 

were two-fold: (i) to estimate Ne for these two germplasms set in dry pea and (ii) to compare the 

genetic variation between these germplasms. To achieve these goals, we developed a 

comprehensive R package that implements the Sved (1971) formula for Ne prediction. This 

package not only caters to the specific needs of dry pea research but can also be adapted for use 

in other crop species. Since there has been no information on Ne for peas, our findings serve as a 

valuable reference for researchers seeking to determine the minimum number of lines required 

for designing experiments. Furthermore, comparing the genetic variation between NDSU modern 

breeding lines and USDA multi-environmental lines provides valuable information about the 

diversity and potential of these germplasm collections. This knowledge can guide breeding 

programs and conservation efforts, ensuring the maintenance and enhancement of genetic 

resources in dry pea cultivation. 

Materials and Methods 

Plant Materials 

In this study, we used plant materials from two distinct germplasms. The first population 

comes from the NDSU Pulse Breeding Program (NDSU set) where 300 advanced elite lines were 
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generated from multiple bi-parental populations. These lines were created specifically with a 

focus on phenotypes including high yield, grain quality, resistance to disease and some other 

desirable agronomic traits. The breeding lines used in this experiment were carefully chosen and 

contain both contemporary and past elite germplasm. (Bari et al. 2023; Atanda et al. 2022). 

The second population is from a USDA diversity panel (USDA set), and contained 482 

accessions, of which 292 samples were from the Pea Single Plant Plus Collection (Pea PSP) 

(Bari et al., 2021; Holdsworth et al., 2017; Cheng et al., 2015). The USDA set was composed of 

accessions that represent most of available diversity within the USDA pea germplasm collection 

based on the knowledge of geography, taxonomy, morphology and genotyping-by-sequencing 

data generated previously (Holdsworth et al., 2017).  

DNA Extraction, Sequencing and Variant Calling 

Leaf tissues from the greenhouse were collected at different stages for all NDSU elite 

lines and USDA accessions. The DNA from the lyophilized tissues were extracted using the 

DNeasy Plant Mini Kit (Qiagen). Detailed information regarding the tissue collections and 

extractions are provided in Bari et al., (2023) and Bari et al., (2021). Both NDSU set and USDA 

set were sequenced using genotyping-by-sequencing (GBS). Using the restriction enzyme ApeKI, 

dual-indexed GBS libraries for both populations were prepared (Elshire et al., 2011). Samples 

were sequenced using NovaSeq S1 × 100 Illumina sequencing technologies. The NDSU set 

sequenced libraries were retrieved with a quality score ≥ 30. For the USDA set, FASTQC 

(Andrews 2010) was utilized to perform a quality check and removed reads with lengths < 50 

bases. All reads that passed the quality check were aligned with the reference genome (Kreplak 

et al., 2019) (https://www.pulsedb.org). Finally, the aligned reads were analyzed using SAMtools 

(v1.10) and generated the variant files (VCF) using FreeBayes (V1.3.2).  

https://www.pulsedb.org/
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The amount of single nucleotide polymorphisms (SNPs) identified for the NDSU set was 

28,832, while 380,527 SNP markers were identified in the USDA set (Bari et al., 2021, 2023; 

Atanda et al., 2022). For these marker datasets, we filtered minor allele frequency (MAF), since 

alleles with < 5% could produce bias to the LD and Ne calculations (Toosi et al. 2010, Lee et al., 

2014). We also removed markers with more than 20% missing values using Plink v1.9 (Purcell 

et al., 2007) and heterozygosity > 20% using Tassel v5.0 (Bradbury et al., 2007). The resulting 

marker sets consisted of 7,157 (NDSU set) and 19,826 (USDA set) SNP markers that were used 

for downstream analysis. 

Calculation of Linkage Disequilibrium (r2) 

LD was calculated using Plink v1.9 (Purcell et al., 2007) with a maximum distance of 

750 kb. Using “ggplot2” R package, the genome-wide and chromosome-wide LD-decay (r²) 

were visualized against the physical distance (kb) to show the recombination history (see Fig. 2.1 

& 2.2).  

LD scores were also estimated using Genome-wide Complex Trait Analysis (GCTA) 

software for a window size of 1000 kb and r2 cutoff of 0 (Yang et al., 2011). This approach was 

employed to visualize the distribution of mean LD throughout the genome. 

Calculation of Effective Population Size 

Effective population size (Ne) for both the NDSU set and the USDA set were estimated 

based on LD using the Sved (1971) equation 1.1. The recombination rate (cM) was calculated 

using cM/Mb conversion ratio from a recent pea genetic linkage map (Sawada et. al., 2022) and 

then transformed to Morgan’s (c). 

 𝑁𝑒 =
1

4𝑐
(

1

𝐸(𝑟2)
 −  1)  (1.1)                                                                                                                                                                                      

Where, 𝑁𝑒 = effective population size 



 

28 

𝑐 = genetic distance in Morgan’s 

𝐸(𝑟2) = expected 𝑟2 

The expected r2 was predicted by linear regression model using least square estimation (LSE), 

Prediction of 𝑟2: 

 μ̂ = Xβ̂  (1.2) 

                                                    β̂ = (X′X)−1 𝑋′Y               (1.3) 
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The mean r2 from the Y parameter was calculated by LD (r2) for the genetic distance ‘c’ 

using ‘group by’ mean function in R Environment (R Core Team 2023). Now with the 

availability of all required parameters, we finally estimated Ne from Eq. 1.1 using LSE. 

According to the formula (Eq. 1.1), we assigned the variables as predictor (X) and 

response (Y) and calculated the coefficient 𝛃1 without the intercept term 𝛃0, following Juma et 

al., (2021). 
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Again, we used equation 1.3 to calculate the coefficient 𝛃1 which represents Ne. 
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Results and Discussion 

Linkage Disequilibrium Decay Rate and Scores 

The decay of linkage disequilibrium (r2) was examined in both the NDSU set and USDA 

set by utilizing 7,157 and 19,826 SNP markers, respectively. This analysis allowed for the 

identification of the physical distance at which the decay rate occurred. Appendix Figure A.1 

depicts the distribution of SNPs within and across chromosomes for both populations, illustrating 

the marker density. The NDSU set’s genome-wide LD-decay plot (Figure 2.1) demonstrates that 

the r2 reached its peak value of 0.57 within the initial kilobases and subsequently exhibited a 

gradual decline. The r2 showed a decrease from 0.3 to 0.25 when the genomic distance increased 

from 150 kb to 250 kb. Following that, the LD within each chromosome was observed visually 

in Figure 2.2 in order to improve comprehension of the decay pattern. Chromosomes 1 and 6 

exhibited a rapid decay at approximately 175 kb, while chromosomes 2 and 5 demonstrated a 

comparatively slower decay rate of around 350 kb. Furthermore, it is worth noting that 

chromosome 5 had a higher r2 value of 0.61 compared to other chromosomes. Whereas, the 

genome-wide LD of USDA set showed that r2 started at a lower value of 0.34 and dropped 

rapidly and reached 0.2 and 0.1 at 100 kb and 200 kb (Figure 2.1). From the chromosome-wide 

LD-decay (Figure 2.2), we observed that chromosome 3 dropped faster around ~150 kb, but the 

r2 decreased below 0.1 for chromosomes 4 and 7. Also, chromosomes 1, 5 and 6 decayed slowly 

(~250 kb) and reached r2 0.1. We also observed that chromosome 1 exhibited a higher r2 of 0.37. 

LD-decay figures show the trend of the r2 decaying from LD to linkage equilibrium (LE). 

Additionally, we performed calculations of LD scores as an alternative metric for 

inferring LD. The analysis of local LD in the NDSU set indicates a notable rise in the average r2 

of 0.6 across all chromosomes. The average r2 of chromosomes 5 and 6 was the highest with 0.8. 
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The genomic interval encompassing the centromeric region of chromosome 2 was missing. In 

contrast, the USDA set exhibited low average r2, with chromosome 2 hardly reaching 0.4, and 

chromosomes 1, 4, and 7 having few sets that reached 0.3. It is worth noting that the LD density 

of the NDSU set is comparatively lower than the USDA set (Figure 2.3). 

 

 

Figure 2.1. Genome-wide linkage disequilibrium - decay of NDSU set and USDA set 

 

 

Figure 2.2. Chromosome-wide linkage disequilibrium - decay of NDSU set and USDA set 

NDSU USDA
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With respect to recombination rate (centimorgans - cM), the genome-wide r2 on average 

decayed from 0.54 to 0.27 at 0.7 cM for the NDSU set, indicating a moderate level of correlation 

within this specific genetic distance across the genome. In contrast, the USDA set had a lower 

average r2 (0.28) which dropped within a shorter genetic distance (0.5 cM). This implies that as 

the distance between the markers increases to 0.5 cM, they tend to be less correlated with each 

other (Appendix Figure A.2) 

 

Figure 2.3. The mean LD scores estimated in 1000kb windows. There is a significant increase in 

LD of NDSU set compared to USDA set 

The level of LD exhibited significant variation across distinct genomic regions and 

populations of dry peas. The impracticality of conducting whole-genome scanning can be 

attributed to the excessive number of markers required for such studies, particularly in cases 

where there is a low level of linkage disequilibrium (Kruglyak 1999). The USDA set reported a 

low LD value, indicating a higher occurrence of recombination events. In contrast, the NDSU set 
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showed a higher LD score, suggesting a greater frequency of linked markers presumably due to 

limited recent recombination to date (Siol et al., 2017). 

Effective Population Size (Ne) 

Based on LD, the estimated effective population size (Ne) for both the populations are 

shown in Figure 2.4. The smaller Ne and high LD in NDSU set indicates that it has undergone 

selective pressures leading to reduced diversity and increased correlation between the markers.  

 

Figure 2.4. Estimated effective population size (Ne) for NDSU set is 64 and USDA set is 174. 

Given NDSU set’s population history and marker density, it is acceptable to state that despite 

lower Ne, it holds a reasonable level of diversity that may help maintain its genetic variability 

which is essential for long-term viability and adaptability. The USDA set resulted in lower LD 

and higher Ne, meaning it has more diversity and has encountered relatively fewer instances of 

selective pressures or genetic bottlenecks. It is important to note that the low LD can also be 

observed in a population with high Ne. Thus, it was expected to see NDSU set with lower Ne 
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compared to USDA set. These estimates explain how genetic drift and selections have shaped 

these populations over time. 

The Ne estimate for the NDSU set was within the same range as those reported in other 

self-pollinating crops such as rice (Oryza sativa) and soybean (Glycine max), with calculated Ne 

ranging from 20 to 60. Juma et. al. (2021) estimated the Ne in rice to be 22 using an elite core 

panel comprised of 72 lines, but Ne may have been underestimated due to limited marker 

information used in the analysis. Similar studies in rice also had the same range of Ne, with 

calculated values ranging from 23-57 and 40-60; these were estimated based on breeding 

populations from recurrent selection programs (Grenier et al., 2015) and pedigree data (Morais 

Júnior et al., 2017). The estimated Ne of USDA set was within the range of Ne values reported in 

studies conducted on other crops. In soybean, Xavier et al., (2018) estimated Ne for the USDA 

soybean germplasm collection comprised of 19,652 accessions from Bandillo et al., (2015) and 

reported it to be 106 individuals. Recent studies have shown that soybean possess several genetic 

bottlenecks (Guo et al., 2010) and its genetic diversity has been reduced (Li et al., 2013, Min et 

al., 2010). The Ne estimate of USDA set is relatively higher than soybean, implying greater 

diversity. Zhao et al., (2013) estimated Ne in wild rice using 11 Chinese Oryza rufipogon 

populations including 32 landraces and reported it between 96-158, which is in a similar range to 

the USDA set. Thus, the Ne of USDA set offers greater potential for adaptation, maintaining rare 

alleles, population stability, and reduced risk for inbreeding.  

 The results of our study also suggest that the use of GBS holds good potential for 

making inferences of Ne regardless of the germplasm type. Using GBS-based markers, we 

approximated the LD pattern within and across chromosomes of both germplasms and then used 

the LD information for estimation of Ne. Genome-wide LD (r2) of the USDA set decayed from 
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lower LD at 200 kb, while the NDSU set had the highest LD declined at a longer distance of 

around 250 kb. These results provided consistency of higher genetic variations of the former 

over the latter. Similar LD findings have been observed in previous studies conducted on peas, 

wherein both wild and spring peas exhibited a decay distance of approximately 200 kb, whereas 

wild/landrace peas were around 100 kb (Siol et al., 2017) which is a bit lower than the USDA 

set. Comparing the LD of USDA set and the NDSU set to other selfing crops such as rice, 

soybeans, and barley, the physical distances found were more or less similar depending on the 

populations. For instance, Huang et al. (2010) estimated LD using O. indica and O. japonica 

landraces of rice at 123 and 167 kb, respectively, with r2 declining to 0.25 and 0.28. 

Additionally, soybean landraces extended from 90 to 500 kb (Hyten et al., 2007) while improved 

cultivars hit 133 kb (Zhou et al., 2015) which is similar to the USDA set. Alternatively, a recent 

LD analysis from soybean USDA germplasm revealed that the r2 dropped intragenically within a 

few kilobases (Xavier et al., 2018) and the one in barley’s landraces hit 90 kb (Caldwell et al., 

2006), both shorter than the USDA set. The LD-decay of the NDSU set was also found to be in a 

similar range with elite varieties of barley which extended to at least 212 kb (Caldwell et al., 

2006) and O. japonica elite lines at ~318 kb (Li et al., 2020), but had a higher distance compared 

to O. indica elite lines (~124 kb) (Li et al., 2020). The LD-decay rate of a crop does depend on 

the genetic background of the populations being studied, and it can be affected due to mutations, 

genetic drift, non-random mating, and a small Ne (Flint-Garcia et al., 2003). 

Since public plant breeding programs are moving toward more quantitative methods, the 

importance of the dynamic exchange of genetic material and the maintenance of diversity within 

the population has increased. Effective population size helps breeders preserve and remodel their 

selection strategies to enhance the stability and variability in their breeding populations (Cobb et 
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al., 2019). Breeders can also implement marker-based mating experiments known as optimum 

contribution selection (OCS) (Juma et al., 2021) to maintain diversity in selection candidates for 

long-term gain. As pulse crop breeders navigate through challenges in their breeding programs, 

the information from this study provides valuable insights by demonstrating the strength of 

contemporary populations and possibly contributing to the long-term goal of increasing genetic 

gain while maintaining diversity in breeding programs. 

Conclusion 

These research findings shed light on the range of genetic diversity in both the NDSU set 

and the USDA set. The evaluation of Ne can be a bit more challenging and there is a possibility 

of potential biases if certain crucial factors including sample size, marker density, population 

history and LD are not accounted for appropriately (Waples and Yokota 2007; Waples and Do 

2010; Gilbert and Whitlock 2015; Marandel et al., 2020). Even though genetic markers have 

become a more widely utilized approach for estimating Ne in recent years, there are still more 

obstacles to overcome in its Ne accuracy. Future estimation of Ne could be complemented with 

gene expression along with DNA markers and demographic history, which would increase the 

understanding of breeders regarding the population dynamics and potential for adaptation in 

different environments. 

References 

Abbo S, Gopher A, Lev-Yadun S (2017). The Domestication of Crop Plants. In: Thomas B, 

Murray BG, Murphy DJ (eds) Encyclopedia of Applied Plant Sciences (Second Edition), 

Academic Press: Oxford, pp 50–54. 

Andrews S. (2010). FastQC: A Quality Control Tool for High Throughput Sequence Data. 

http://Www.bioinformatics.babraham.ac.uk/Projects/Fastqc/    

http://www.bioinformatics.babraham.ac.uk/Projects/Fastqc/


 

36 

Antao T, Pérez-Figueroa A, Luikart G (2011). Early detection of population declines: high power 

of genetic monitoring using effective population size estimators. Evol Appl 4: 144–154.  

Ardlie KG, Kruglyak L, Seielstad M (2002). Patterns of linkage disequilibrium in the human 

genome. Nat Rev Genet 3: 299–309.  

Atanda SA, Steffes J, Lan Y, Al Bari MA, Kim J-H, Morales M, et al. (2022). Multi-trait 

genomic prediction improves selection accuracy for enhancing seed mineral 

concentrations in pea. Plant Genome 15: e20260. 

Bandillo N, Jarquin D, Song Q, Nelson R, Cregan P, Specht J et al. (2015). A Population 

Structure and Genome-Wide Association Analysis on the USDA Soybean Germplasm 

Collection. Plant Genome 8: eplantgenome2015.04.0024. 

Bari MAA, Fonseka D, Stenger J, Zitnick‐Anderson K, Atanda SA, Morales M et al. (2023). A 

greenhouse‐based high‐throughput phenotyping platform for identification and genetic 

dissection of resistance to Aphanomyces root rot in field pea. Plant Phenome 6: e20063. 

Bari MAA, Zheng P, Viera I, Worral H, Szwiec S, Ma Y et al. (2021). Harnessing Genetic 

Diversity in the USDA Pea Germplasm Collection Through Genomic Prediction. Front 

Genet 12: 707754. 

Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007). TASSEL: 

software for association mapping of complex traits in diverse samples. Bioinformatics 23: 

2633 - 5. 

Caldwell KS, Russell J, Langridge P, Powell W (2006). Extreme Population-Dependent Linkage 

Disequilibrium Detected in an Inbreeding Plant Species, Hordeum vulgare. Genetics 172: 

557–567. 

http://paperpile.com/b/iwgxuS/FaGV
http://paperpile.com/b/iwgxuS/FaGV


 

37 

Charlesworth B (2009). Fundamental concepts in genetics: effective population size and patterns 

of molecular evolution and variation. Nat Rev Genet 10: 195–205. 

Cheng P, Holdsworth W, Ma Y, Coyne CJ, Mazourek M, Grusak MA et al. (2015). Association 

mapping of agronomic and quality traits in USDA pea single-plant collection. Mol Breed 

35: 75. 

Cobb JN, Juma RU, Biswas PS, Arbelaez JD, Rutkoski J, Atlin G et al. (2019). Enhancing the 

rate of genetic gain in public-sector plant breeding programs: lessons from the breeder’s 

equation. Theor Appl Genet 132: 627–645.  

Crow JF, Kimura M. (1970). An Introduction to Population Genetics Theory. Harper & Row: 

New York, USA. 

Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. (2011). A robust, 

simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 

6: e19379. 

FAOSTAT (2021). Food and Agricultural Organization of the United Nations. Available at: 

https://www.fao.org/faostat/ 

Fernández J, Villanueva B, Pong-Wong R, Toro MA (2005). Efficiency of the use of pedigree 

and molecular marker information in conservation programs. Genetics 170: 1313–1321. 

Fisher RA (1930). The genetical theory of natural selection. Oxford University Press. Oxford 

Flint-Garcia SA, Thornsberry JM, Buckler ES 4th (2003). Structure of linkage disequilibrium in 

plants. Annu Rev Plant Biol 54: 357–374. 

Gali KK, Sackville A, Tafesse EG, Lachagari VBR, McPhee K, Hybl M, et al. (2019). Genome-

Wide Association Mapping for Agronomic and Seed Quality Traits of Field Pea (Pisum 

sativum L.). Front Plant Sci 10: 1538. 

https://www.fao.org/faostat/


 

38 

García-Cortés LA, Austerlitz F, de Cara MAR (2019). An evaluation of the methods to estimate 

effective population size from measures of linkage disequilibrium. J Evol Biol 32: 267–

277. 

Gargiulo R, Decroocq V, González-Martínez SC, Paz-Vinas I, Aury J-M, Kupin IL, et al. (2023). 

Estimation of contemporary effective population size in plant populations: limitations of 

genomic datasets. bioRxiv: 2023.07.18.549323. 

Gilbert KJ, Whitlock MC (2015). Evaluating methods for estimating local effective population 

size with and without migration. Evolution 69: 2154–2166. 

Grenier C, Cao T-V, Ospina Y, Quintero C, Châtel MH, Tohme J, et al. (2015). Accuracy of 

Genomic Selection in a Rice Synthetic Population Developed for Recurrent Selection 

Breeding. PLoS One 10: e0136594. 

Guo J, Wang Y, Song C, Zhou J, Qiu L, Huang H, et al. (2010). A single origin and moderate 

bottleneck during domestication of soybean (Glycine max): implications from 

microsatellites and nucleotide sequences. Ann Bot 106: 505–514. 

Hare MP, Nunney L, Schwartz MK, Ruzzante DE, Burford M, Waples RS, et al. (2011). 

Understanding and estimating effective population size for practical application in marine 

species management. Conserv Biol 25: 438–449. 

Hayes BJ, Visscher PM, McPartlan HC, Goddard ME (2003). Novel multilocus measure of 

linkage disequilibrium to estimate past effective population size. Genome Res 13: 635–

643. 

Hill WG (1981). Estimation of effective population size from data on linkage disequilibrium. 

Genet Res 38: 209–216. 



 

39 

Hill WG, Robertson A (1968). Linkage disequilibrium in finite populations. Theor Appl Genet 

38: 226–231. 

Holdsworth WL, Gazave E, Cheng P, Myers JR, Gore MA, Coyne CJ, et al. (2017). A 

community resource for exploring and utilizing genetic diversity in the USDA pea single 

plant plus collection. Hortic Res 4: 17017. 

Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, et al. (2010). Genome-wide association 

studies of 14 agronomic traits in rice landraces. Nat Genet 42: 961–967. 

Hyten DL, Choi I-Y, Song Q, Shoemaker RC, Nelson RL, Costa JM, et al. (2007). Highly 

variable patterns of linkage disequilibrium in multiple soybean populations. Genetics 

175: 1937–1944. 

Juma RU, Bartholomé J, Thathapalli Prakash P, Hussain W, Platten JD, Lopena V, et al. (2021). 

Identification of an Elite Core Panel as a Key Breeding Resource to Accelerate the Rate 

of Genetic Improvement for Irrigated Rice. Rice 14: 92. 

Kreplak J, Madoui M-A, Cápal P, Novák P, Labadie K, Aubert G, et al. (2019). A reference 

genome for pea provides insight into legume genome evolution. Nat Genet 51: 1411–

1422. 

Kruglyak L (1999). Prospects for whole-genome linkage disequilibrium mapping of common 

disease genes. Nat Genet 22: 139–144. 

Lee Y-S, Woo Lee J, Kim H (2014). Estimating effective population size of thoroughbred horses 

using linkage disequilibrium and theta (4Nμ) value. Livest Sci 168: 32–37. 

Li YH, Zhao S-C, Ma J-X, Li D, Yan L, Li J, et al. (2013). Molecular footprints of domestication 

and improvement in soybean revealed by whole genome re-sequencing. BMC Genomics 

14: 579. 



 

40 

Li X, Chen Z, Zhang G, Lu H, Qin P, Qi M, et al. (2020). Analysis of genetic architecture and 

favorable allele usage of agronomic traits in a large collection of Chinese rice accessions. 

Sci China Life Sci 63: 1688–1702. 

Lonsinger RC, Adams JR, Waits LP (2018). Evaluating effective population size and genetic 

diversity of a declining kit fox population using contemporary and historical specimens. 

Ecol Evol 8: 12011–12021. 

Luikart G, Ryman N, Tallmon DA, Schwartz MK, Allendorf FW (2010). Estimation of census 

and effective population sizes: the increasing usefulness of DNA-based approaches. 

Conserv Genet 11: 355–373. 

Marandel F, Charrier G, Lamy J-B, Le Cam S, Lorance P, Trenkel VM (2020). Estimating 

effective population size using RADseq: Effects of SNP selection and sample size. Ecol 

Evol 10: 1929–1937. 

Min W, Run-zhi L, Wan-ming Y, Wei-jun D (2010). Assessing the genetic diversity of cultivars 

and wild soybeans using SSR markers. African Journal of Biotechnology 9: 4857–4866. 

Morais Júnior OP, Breseghello F, Duarte JB, Morais OP, Rangel PHN, Coelho ASG (2017). 

Effectiveness of recurrent selection in irrigated rice breeding. Crop Sci 57: 3043–3058. 

Nei M, Tajima F (1981). Genetic drift and estimation of effective population size. Genetics 98: 

625–640. 

Novo I, Santiago E, Caballero A (2022). The estimates of effective population size based on 

linkage disequilibrium are virtually unaffected by natural selection. PLoS Genet 18: 

e1009764. 

Pollak E (1983). A new method for estimating the effective population size from allele frequency 

changes. Genetics 104: 531–548. 



 

41 

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. (2007). PLINK: 

A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am 

J Hum Genet 81: 559. 

R Core Team. (2023). R: A Language and Environment for Statistical Computing. 

https://www.r-project.org/ 

Rahimmadar S, Ghaffari M, Mokhber M, Williams JL (2021). Linkage Disequilibrium and 

Effective Population Size of Buffalo Populations of Iran, Turkey, Pakistan, and Egypt 

Using a Medium Density SNP Array. Front Genet 12: 608186. 

Sawada C, Moreau C, Robinson GHJ, Steuernagel B, Wingen LU, Cheema J, et al. (2022). An 

Integrated Linkage Map of Three Recombinant Inbred Populations of Pea (Pisum 

sativum L.). Genes 13: 196 

Siol M, Jacquin F, Chabert-Martinello M, Smýkal P, Le Paslier M-C, Aubert G, et al. (2017). 

Patterns of Genetic Structure and Linkage Disequilibrium in a Large Collection of Pea 

Germplasm. G3 7: 2461–2471. 

Sved JA (1971). Linkage disequilibrium and homozygosity of chromosome segments in finite 

populations. Theor Popul Biol 2: 125–141. 

Sved JA, Hill WG (2018). One Hundred Years of Linkage Disequilibrium. Genetics 209: 629–

636. 

Tayeh N, Klein A, Le Paslier M-C, Jacquin F, Houtin H, Rond C, et al. (2015). Genomic 

Prediction in Pea: Effect of Marker Density and Training Population Size and 

Composition on Prediction Accuracy. Front Plant Sci 6: 941. 

http://paperpile.com/b/iwgxuS/Rdkr
http://paperpile.com/b/iwgxuS/Rdkr
http://paperpile.com/b/iwgxuS/Rdkr
https://www.r-project.org/


 

42 

Tenesa A, Navarro P, Hayes BJ, Duffy DL, Clarke GM, Goddard ME, et al. (2007). Recent 

human effective population size estimated from linkage disequilibrium. Genome Res 17: 

520–526. 

Toosi A, Fernando RL, Dekkers JCM (2010). Genomic selection in admixed and crossbred 

populations. J Anim Sci 88: 32–46. 

USDA (2020). United States Acreage. National Agricultural Statistics Service. 

https://www.nass.usda.gov/Publications/Todays_Reports/reports/acrg0620.pdf. Accessed 

15 August 2023 

Wang J (2005). Estimation of effective population sizes from data on genetic markers. Philos 

Trans R Soc Lond B Biol Sci 360: 1395–1409. 

Wang J, Santiago E, Caballero A (2016). Prediction and estimation of effective population size. 

Heredity 117: 193–206. 

Waples RS, Do C (2010). Linkage disequilibrium estimates of contemporary Ne using highly 

variable genetic markers: a largely untapped resource for applied conservation and 

evolution. Evol Appl 3: 244–262. 

Waples RS, Yokota M (2007). Temporal estimates of effective population size in species with 

overlapping generations. Genetics 175: 219–233. 

Wright S (1931). Evolution in Mendelian Populations. Genetics 16: 97–159. 

Xavier A, Thapa R, Muir WM, Rainey KM (2018). Population and quantitative genomic 

properties of the USDA soybean germplasm collection. Plant Genet Resour 16: 513–523. 

Yang J, Lee SH, Goddard ME, Visscher PM (2011). GCTA: a tool for genome-wide complex 

trait analysis. Am J Hum Genet 88: 76–82. 

https://www.nass.usda.gov/Publications/Todays_Reports/reports/acrg0620.pdf.%20Accessed%2015%20August%202023
https://www.nass.usda.gov/Publications/Todays_Reports/reports/acrg0620.pdf.%20Accessed%2015%20August%202023


 

43 

Zhao Y, Vrieling K, Liao H, Xiao M, Zhu Y, Rong J, et al. (2013). Are habitat fragmentation, 

local adaptation and isolation-by-distance driving population divergence in wild rice 

Oryza rufipogon? Mol Ecol 22: 5531–5547. 

Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, et al. (2015). Resequencing 302 wild and 

cultivated accessions identifies genes related to domestication and improvement in 

soybean. Nat Biotechnol 33: 408–414. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

44 

CHAPTER 3. REGULATORY LANDSCAPE OF DEVELOPING PODS IN DRY PEA 

Introduction 

The aim of plant breeders is to better understand and improve the phenotypes in their 

species. To achieve this, researchers prioritize detecting genes underlying the phenotypic 

variations and eventually leading to crop improvement (Li et al., 2021). Recent advancements in 

high-throughput sequencing made it easier for us to access the molecular markers across the 

genome, which is a key dataset required to map the genes. The most popular method used over 

the past two decades to genetically map and identify trait-associated genes is genome-wide 

association studies (GWAS). GWAS identifies the association between genetic variants and 

phenotypic variation (red arrow, Figure 3.1) by utilizing historical recombination events 

(Hirschhorn and Daly 2005) and genetic diversity (Korte and Farlow 2013; Gali et al., 2019). 

GWAS has a higher resolution compared to traditional linkage mapping which uses a bi-parental 

population to detect the causal trait-associated marker (Korte and Farlow, 2013; Gali et al., 

2019). Due to the cost-effective genotyping technologies and statistical methods, GWAS is 

widely used to understand the genetic complexity in most species. In most GWAS studies, 

researchers prefer to use single nucleotide polymorphisms (SNPs), as they are easy to genotype 

and abundant in the respective genome. SNPs can distinguish between closely related individuals 

and have been used in many genetic mapping studies in pea (Korte and Farlow, 2013; Gali et al., 

2019; Sindhu et al., 2014; Tayeh et al., 2015), soybean (Priyanatha et al., 2022), maize (Zeng et 

al., 2022), and rice (Ashfaq et al., 2023); allowing the plant research community to detect a 

plethora of causal markers associated with hundreds of phenotypes (Tian et al., 2020).  
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Figure 3.1. The ultimate central dogma of life which links DNA markers to the phenotypes for 

detecting the trait-associated genes through GWAS, whereas mRNA is linked directly to 

phenotype through methods like TWAS for identifying the genes. 

The major caveat of GWAS is that, due to long-range linkage disequilibrium (LD), it is 

often not possible to verify which of those multiple genes linked to the genetic marker is, in fact, 

the causal gene, particularly in self-pollinated crops (Wallace et al., 2014; Li et al., 2021). A 

transcriptome-wide association study (TWAS) examines the expression-phenotype associations 

(blue arrow, Fig. 3.1), which are independently affected by LD, unlike in the case of genetic 

markers. In simpler terms, even if multiple genes are closely connected and cannot be observed 

separately in different individuals, they can still be given priority for association with a trait 

because their patterns of expression are independent. This is particularly useful in species where 

there is a significant amount of linkage disequilibrium or in cases where it is not possible to 

create high-resolution mapping populations (Kremling et al., 2019).  TWAS has been proven to 

be an assuring development for gene mapping studies in plants and is also equivalent to GWAS. 

This gene-level approach has been compared against GWAS in a qualitative trait of the soybean 

genome, which has slow rates of LD-decay, whereas the authors were able to prove that TWAS 
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can provide single-gene resolution for candidate genes and overcome the limitations of LD (Li et 

al., 2021).  

There are plenty of approaches to conduct GWAS analysis but for TWAS, the choices 

were limited. A TWAS-based Bayesian statistical method called expression read depth GWAS 

(eRD-GWAS) was developed by Lin et al., (2017) in maize. The authors found 13 trait-

associated genes and observed that the functions of those genes aligned with the characteristics 

of the traits and furthermore, one of those genes underwent functional characterization (Lin et 

al., 2017). In contrast to certain human TWAS methods, which predicted gene expression levels, 

eRD-GWAS utilized explanatory variables that explicitly measured gene expression levels (Li et 

al., 2021). Kremling et al., (2019) used a different approach employing multiple regression-based 

TWAS with seven tissues and overlapping results from GWAS and TWAS to find the causal 

genes. Both these Bayesian-based and regression-based TWAS studies resulted in hundreds of 

genes but have not yet been evaluated quantitatively after publication. In Li et al., (2021), the 

authors performed TWAS using a simple approach by transforming the normalized expression 

matrix to a numerical range (0 to 2) for use in GAPIT (R package). Different TWAS approaches 

that were published gave differing results. For example, results from Hirsch et al., (2014) and 

Lin et al., (2017) only had one or few genes that passed the false discovery rate threshold (FDR), 

while in Kremling et al., (2019) and Wu et al., (2022) they had used the top 0.5-1% hits based on 

p-values and ended up getting more significant genes which also included false positive 

discoveries as well. Reasons behind these varying results are due to the dataset format used in 

their respective analyses. Li et al., (2021) converted the expression data to a categorical format 

(0,1,2) to utilize in the GAPIT R package and compared it with the GWAS results using the 

same tool, whereas Kremling et al., (2019) directly used the normalized gene expression data in 
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the mixed linear model. Since the datasets utilized in GWAS and TWAS analysis were different, 

the authors used the outlier approach to study the genes in order to avoid direct comparison of p-

values resulting from different datasets rather than using the multiple corrections approach 

(Kremling et al., 2019). 

 TIn this study, a gene expression resource was created specifically for pea pod 

development in two environments (North Dakota (ND) and Washington (WA)) for evaluating 

their expression levels and the complex interactions between the genotype and environment 

using TWAS. In addition, we have also identified SNP-based molecular markers to perform 

GWAS and conducted a comparative study with TWAS analysis. The efficacy of the TWAS 

approach was evaluated in this self-pollinated crop for quantitative traits such as protein content 

and yield. Given the recent rise in popularity of peas as an alternative protein source, it is crucial 

to prioritize the identification of causal genes correlated to protein content as well as yield. Our 

objectives were threefold: (i) identify genetic markers and develop a gene expression resource 

targeting pod development, (ii) quantify regulatory variations in gene expression profiles and 

assess the abundance of identified genetic markers and (iii) map trait-associated genes through 

genome-wide and transcriptome-wide association studies. Our results established that even in 

quantitative traits of a self-pollinating crop, TWAS can be an additional resource to validate 

GWAS results and is less affected by LD-decay rate. 

Materials and Methods 

Plant Materials 

This study utilized 300 diverse Pisum sativum accessions which represent most of the 

available diversity in the USDA (United States Department of Agriculture) pea germplasm 

collection. The population size was determined using the available germplasm, statistical power 
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for making inferences, and the phenotyping capability of researchers involved in North Dakota 

(ND) and Washington (WA) environment testing sites (2 locations * 2 years). Through the 

utilization of effective population size (Ne) estimation (see Chapter 2), it has been demonstrated 

that USDA accessions exhibit substantial genetic variations, which are essential for mapping 

studies. This germplasm offered ample genetic diversity and a significant number of historical 

recombination events, leading to successful downstream analysis. The total 300 accessions 

consisted of 72 lines of early-maturity (< 55 days to 50% flowering), 120 lines of mid-maturity 

(56-63 days to 50% flowering) and 108 late-maturity (> 64 days to 50% flowering). 

DNA Extraction, Whole Genome Sequencing, SNP Calling 

After two rounds of single seed descent performed in the greenhouse, young leaves were 

collected from each accession to extract DNA using the DNeasy Plant Mini Kit (Qiagen). The 

extracted DNA was sent to HudsonAlpha following their guidelines for whole-genome 

resequencing (10x depth) using Illumina sequencing technology. A total of 5.9 terabytes of WGS 

raw data was produced, consisting of 103 billion paired-end reads. The quality of these reads was 

assessed using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and trimmed 

by Trimmomatic (version 0.36; Bolger et al., 2014). The trimmed reads were aligned to the 

Pisum sativum Chinese reference genome (Yang et al., 2022) by bwa-mem2 (Vasimuddin et al., 

2019). PCR duplicates were marked by Picard’s function ‘MarkDuplicates’ 

(http://broadinstitute.github.io/picard/) and removed using Samtools-1.10 (Li et al., 2009). The 

variant (SNP) file was called using Bcftools and filtered by vcftools (Danecek et al., 2011). The 

filtering parameters were min-meanDP 5, min-alleles 2 --max-alleles 2 (for bi-allelic), max-

missing 0.05 and maf 0.05. The initial number of SNPs retrieved was 6,720,968. We further 

narrowed down the SNPs by removing any with more than 20% missingness using Plink v1.9 
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(Purcell et al., 2007), heterozygosity > 15% and imputed the missing SNPs using k-nearest 

neighbor genotype imputation method (Money et al., 2017) in Tassel v5.0 (Bradbury et al., 

2007). The final number of SNPs used for downstream analysis was 137,725.  

Field Experimental Design for RNA Expression Analysis 

All accessions were planted following diagonal check augmented incomplete block 

design with two replications. Pseudo blocks were assigned to approximate maturity groups and 

randomization of accessions was made within each maturity groups such as early, mid and late. 

We also included four check varieties per location: ND used AC Agassiz, Arcadia, DS Admiral, 

and Hampton while WA used ND Dawn, Columbian, DS Admiral, and Hampton. The 

expression analysis was conducted at the NDSU Prosper, ND, site and at Pullman, WA, during 

the 2022 growing season. 

Determination of Optimal Tissue Sampling Stage 

To capture the highest amount of differentially expressed genes (DEG) within the 

developing pods across all three maturity groupings represented within the USDA population, a 

pilot field experiment was conducted to optimize the tissue sampling timepoint. The timepoints 

were defined by utilizing the reproductive growth stage 3 (R3) corresponding to the early 

presence of a flat pod at one or more nodes immediately after flowering (timepoint T0), with 

each successive timepoint having an additional 6 days added, establishing the specific timeframe 

for tagging and collecting samples (Table 3.1). 

RNA was isolated from a single seed within the pod across all timepoints with expression 

analysis conducted to determine the timepoint having the highest number of expressed genes. 

Figure 3.3 displays the number of genes expressed at each timepoint and across the maturity 

groupings, unambiguously demonstrating that T1 exhibits the greatest number of genes expressed  
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Table 3.1. Detailed description of the sampling timepoints. 

 

 

Figure 3.2. A) Optimization of the sampling timepoints displaying the growth stages of the 

developing pods and seeds for representative lines of each maturity group (the check variety 

along with early, mid, and late maturity) and B) Shows tagging, collection of desired pods from 

T1 and storing the sample tubes in the -80° freezer prior to RNA extraction. 

Timepoints Description 

T0 Equivalent to R3 growth stage (at first sight of pod after flower) 

T1 T0 + 6 days 

T2 T0 + 12 days 

T3 T0 + 18 days 
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Figure 3.3. Graphs depicting the number of genes expressed at each timepoint (A) and across the 

maturity lines (B). T1 clearly displays the optimal timepoint having the highest number of gene 

expressed. 

across all maturity groups. With that evidence, we used T1 as the optimal time point for tissue 

sampling. 

During the 2022 field experiment that contained all 300 accessions, pods from three 

plants within the plot were tagged at the T0 stage. Tissue samples were then collected six days 

later (1 pod from 3 plants) representing the T1 stage, placed in a 50ml tube and immediately 

stored on dry ice until they were transported back to the lab where they could be kept in a -80°C 

freezer until RNA could be extracted. 

RNA Extraction, 3’ RNA-Seq Library Preparation and Sequencing and Quantitative 

Expression Analysis 

 

The developing pods at timepoint T1 were sampled at each environment: WA = 

replication 1 and ND = replication 2. RNA was isolated from a single seed within each pods at 

T1 using the Quick-RNATM Plant Miniprep (ZYMO Research, Orange, CA, USA) according to 

A B 
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the manufacturer’s protocol including proteinase K treatment, with elution performed using 

100µl. RNA sample concentrations were quantified and quality assessed using the Qubit RNA 

BR and RNA IQ Assay kits with the Qubit 4.0 fluorometer (Life Technologies Corporation, 

Eugene, OR, USA), and standardized to a final concentration of 100 ng/µl. 3’ RNA-Seq libraries 

were prepared from the total RNA per sample using the Lexogen QuantSeq 3’ mRNA-Seq 

Library Prep Kit FWD for Illumina (https://www.lexogen.com/quantseq-3mrna-sequencing/). 

The libraries were quantified on a Molecular Devices Spectra Max M2 plate reader and pooled 

them to achieve optimal uniformity. Later, the pool was quantified by digital PCR and sequenced 

on 1 lane of Illumina NextSeq500 sequencer, single-end 1x86bp, and then six base i7 indices 

were utilized to de-multiplex the samples using Illumina bcl2fastq software (version 2.20; 

Illumina, Inc., San Diego, CA) which was performed at the Cornell Institute of Biotechnology. 

In quality control stage, the first 12 bases and adapters were removed from the sequences for 

samples with minimum 200K reads using Trimmomatic (version 0.36; Bolger et al., 2014). Poly-

A tails and poly-G stretches of at least 10 bases in length were also removed using the BBDuk 

program from the package BBMap (https://sourceforge.net/projects/bbmap/; version 37.50), 

keeping reads at least 18 bases in length after trimming. Poly-G stretches result from sequencing 

past the ends of short fragments (G = no signal). The trimmed reads were aligned to the Pea 

ZW6 genome assembly (Yang et al., 2022a, b) using the STAR aligner (version 2.7.10b; Dobin 

et al., 2012). For the STAR indexing step, the gff3 annotation file 

(https://www.peagdb.com/static/data/download/genes.gff3.zip) was converted to gtf format with 

the gffread program (version 0.10.4) from cufflinks (Trapnell et al., 2012). Key parameters used 

in the STAR indexing step (--runMode genomeGenerate) were: --genomeChrBinNbits 18 and --

sjdbOverhang 73. The output SAM files were converted to BAM using SAMtools (version 
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1.15.1; Li et al., 2009), and the number of reads overlapping each gene in the gff3 file on the 

forward strand were counted using HTSeq-count (version 0.6.1; Anders et al., 2014). 

The R package DESeq2 (version 1.36.0; Love et al., 2014) was used to obtain both 

normalized and variance stabilized counts, to conduct a principal components analysis of the 500 

most variably expressed genes after count normalization and variance stabilizing transformation. 

For the variance stabilized counts, genes with fewer than two counts per sample on average were 

excluded. Tests to detect genes differentially expressed between the WA versus ND samples 

were performed both with and without Bayesian shrinkage of the log fold change (LFC) 

estimates via the “apeglm” method (Zhu et al., 2018).  

Phenotyping 

The 300 USDA accessions were cultivated and had complete agronomic datasets 

gathered over a span of two years at the NDSU Minot (2021)/Prosper (2022) sites and at the 

WSU Pullman site for both 2021 and 2022. The designated planting dates for the Minot and 

Prosper site were May 1, 20221 and May 28, 2022, while the Pullman site was on May 4th and 

May 11th for each respective year. The following traits included in the dataset are: protein 

concentration from the harvested seeds which was analyzed using near infrared (NIR) 

spectrometry and the seed yield (lb/A) calculated based on the following formula,  

 Yield =
 Harvest wt (lbs)

Plot size (acres)
 x 

 0.865

1−
moisture (%)

100

 x 
1

60
   (2.1) 

Phenotypic Data Analysis 

The best linear unbiased prediction (BLUPs) was used to perform a mixed linear model 

to analyze the unbalanced dataset and retrieve the genetic merit of each genotype using ASReml-

R package (Version 4.1; Butler et al., 2022). We conducted the phenotypic analysis for two 
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environments x years such as 2021_North Dakota, 2021_Washington, 2022_North Dakota and 

2022_Washington. Each environment was assessed individually to determine the heritability in 

order to measure the precision of single field trials. Since our dataset is unbalanced with spatial 

trends and complex experimental factors, we calculated heritability using the method proposed 

by Cullis et al., (2006) based on BLUP (Eq. 2.2) rather than using the basic formula to calculate 

the entry mean based heritability (Hussain et al., 2022; https://github.com/whussain2/Analysis-

pipeline).   

 𝐻𝐶 = 1 −
�̅�𝐵𝐿𝑈𝑃

2𝜎𝑔
2   (2.2) 

Where �̅�𝐵𝐿𝑈𝑃 is a mean variance difference between two genotypes based on BLUPs and 

the 𝜎𝑔
2 is the genotype variance. In order to calculate BLUPs for multi-environment (MEB) to 

conduct GWAS, we used stage-wise analysis based on the pipeline generated by Hussain et al., 

(2022) comprised of two stages. In the first stage, we calculated adjusted means as Best Linear 

Unbiased Estimators (BLUEs) and residuals for each environment by treating genotypes as a 

fixed effect (Eq. 2.3). We adjusted the means of genotypes for their blocks and replications. 

 𝑌𝑛𝑚𝑖 = µ + 𝐺𝑛 + 𝑅𝑚 + 𝐵𝑛𝑚𝑖 + 𝜖𝑛𝑚𝑖  (2.3) 

𝑌𝑛𝑚𝑖 = is the effect of nth genotype in mth replications and ith block within m replication 

μ = overall mean 

Gn = random effect of the nth genotype 

Rm = fixed effect of the m replication 

Bnmi= random effect of ith block nested with m replication 

ϵnmi = residual error 

In the second stage, a mixed linear model was fitted across all environments using the 

BLUEs obtained from the previous step (Eq. 2.4). Here, the assumption of this model is the error 
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was obtained from the first stage. The weights fitted in this model were estimated by the 

reciprocal of the squared standard error of BLUEs. These weighted BLUEs were utilized to 

address the varying error variance.  

 𝑌𝑛𝑚 = 𝜇 + 𝐺𝑛 + 𝐸𝑚 + (𝐺 × 𝐸)𝑛𝑚 + 𝜖𝑛𝑚  (2.4) 

𝑌𝑛𝑚 = n is the BLUE observation in m environment 

μ = overall mean 

Gn = random effect of the nth genotype 

Em = random effect of the m environment 

(𝐺 × 𝐸)𝑛𝑚 = genotype by environment interaction term 

ϵnm = residual error 

Finally, the BLUPs were extracted from this model for GWAS (MEB). For TWAS 

within-environment (WEB), we used a similar method to extract BLUPs by using data from 

North Dakota (2021 & 2022) and Washington (2021 & 2022) separately in the analysis and 

combined the results to perform the multi-environment TWAS (Hussain et al., 2022). 

Genome-Wide and Transcriptome-Wide Association Studies (GWAS & TWAS) 

The GWAS and TWAS was conducted using the linear mixed model (LMM) in R (R 

Core Team, 2023). Covariates and kinship were calculated using SNP and gene expression 

datasets to address population structure and relatedness among the genotypes. The principle 

components (PCs) and kinship (Ks) were derived using prcomp() and VanRaden() (Van Raden, 

2008) functions in R. The number of PCs and Ks required in each of these models was detected 

by Bayesian Information Criterion (BIC) (Schwarz 1978).  SNPs or genes from the top 1% hits 

based on the p-value were counted and considered as the gene-of-interest. We used the LD-
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window size ~250kb that was estimated in Chapter 2 to identify the genes in the GWAS study 

from the top 1% SNPs.  

 Phenotypes =  SNPs or Gene expression +  PCs + Ks + Error  (2.5) 

Statistical Analyses 

The difference between the average expression levels of the KIW84_010029 and 

KIW84_065350 genes in the two protein groups (high vs low) was analyzed using the Welch 

two-sample t-test (Welch 1947).  

Results and Discussion 

The gene expression of developing pods in peas was evaluated based on the optimized 

timepoint of T1 (see Materials and Methods).  Using the ND and WA field trials, the differences 

in expression patterns in pods between these environments and the genes associated with the 

quantitative traits such as seed protein and yield were evaluated. In this study, we performed 

single-tissue within and multi-environment TWAS and a comparative analysis with GWAS.  

Phenotypic Analysis 

The quantitative variations of seed protein and yield were assessed in each environment 

to evaluate the effectiveness and differences of the trials. In the 2021 trials, the heritability of 

ND's protein and yield were lower than that of WA. However, in the 2022 trials, ND's 

heritability increased and surpassed that of WA. This difference suggests that the genetic factors 

improved its contribution to the seed protein and yield between the years 2021 and 2022 in ND 

(Figure 3.4). This could be due to the changing weather conditions, genetic adaptations or 

changes in the trial practices. Multi-environment and within-environment BLUPs (MEB & 

WEB) (Materials and Methods) were calculated to perform the regression-based association  
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Figure 3.4. Heritability estimates of two environments x two years for protein and yield traits. 

The 2022_North Dakota environment yielded much higher as compared to the 2021_North 

Dakota environment. 

studies. The protein range in MEB was around 27.38 to 32.44 whereas for WEB-ND the range 

was 27.48 to 36.07 (Figure 3.6A) and for WEB-WA it was 25.44 to 31.95 (Figure 3.7A). 

Expression Analysis 

Including the check varieties, 700 tissues were collected from both environments but only 

620 samples surpassed the RNA quality for sequencing. After further quality control, we 

retrieved 505 samples and 15,358 genes from both environments. ND had 247, and WA had 258 

samples with same set of 15,358 genes. The principal component analysis (PCA) of the top 500 

genes and the sample distribution revealed similarities due to the common genetic backgrounds 

and some differences among the genotypes and locations explaining the complex interaction of 

genotype by environment (GXE) (Figure 3.5A and B). We used shrinkage of effect sizes (log 

fold change) to visualize the differences in gene expression between ND and WA. There are 18% 

upregulated (1,337), 32% downregulated (3,871) and 50% non-significant (10,190) genes found  



 

58 

 

Figure 3.5. A) PCA of the top 500 highly expressed genes revealed similarity of genes being 

expressed between ND and WA, B) PCA shows the relationship between the samples across two 

environments where they formed two groups of clusters with overlapping expression patterns, C) 

Volcano plot representing differential gene expression between the two environmental conditions 

(ND & WA), and D) the top six genes expressed amongst both environments. 

in this condition (Figure 3.4C). We also found one of the most significant upregulated (gene-

KIW84_071658) and downregulated (gene-KIW84_011967) genes with -log10(p-value) >200 

(Figure 3.5C). Such extreme p-values supporting the differential expression of these genes 

indicates a substantial change in expression levels compared to other genes. 

We also took a detour to delve into the differential gene expression between high and low 

protein conditions in ND and WA. Based on the histogram of protein phenotype distribution of 

ND and WA, we extracted the 10% genotypes of lower and upper intervals (Figure 3.6A and 

3.7A). Overall, we had 48 genotypes for ND (24 lower and 24 upper - Figure 3.6A) and 46 

genotypes for WA (23 lower and 23 upper – Figure 3.7A). The DESEQ2 was analyzed for these 

samples with low vs high protein conditions separately for each environment. The number of  
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Figure 3.6. Analysis of the ND environment dataset showing A) the distribution of protein, B) 

PCA showing the relationship between the samples across two protein groups (high 10% & low 

10%), C) Volcano plot representing differential gene expression between two protein conditions, 

and D) the top six genes expressed in two protein groups. 

 

 

Figure 3.7. Analysis of the WA environment dataset showing A) distribution of protein, B) PCA 

showing the relationship between the samples across two protein groups (high 10% & low 10%), 

C) Volcano plot representing differential gene expression between two protein conditions, and 

D) the top six genes expressed in two proteins. 



 

60 

genes used for further analysis after quality controls was 15,083 (ND) and 14,832 (WA). A 

portion of differentially expressed genes was retrieved in both environments for high vs low 

protein, as shown in Figure 3.6C and Figure 3.7C. In ND, we detected 4,338 upregulated and 

5,040 downregulated genes, whereas in WA, we only had 132 upregulated and 333 

downregulated genes. 

We found a common and highly significant upregulated gene tag “KIW84_031063” 

between ND and WA protein conditions. This gene encodes the WW domain-containing protein 

(Sudheesh et al., 2015). As one of the upregulated gene, it was expected to increase in expression 

levels as the protein content increases. Consequently, the correlation with the ND protein (R = 

0.51 - Appendix Figure B.1(A)) was higher than with the WA protein (R = 0.29 –Appendix 

Figure B.1(B)); both are positively correlated. We also performed combined correlation analysis 

with ND and WA protein to understand whether this could increase the correlation between the 

gene and the protein, unfortunately it did not increase the correlation (R = 0.46 – Appendix 

Figure B.1(C)). This WW domain-containing protein may play a role in the biological pathways 

responsible during changes in the environment. 

TWAS and GWAS 

Transcriptome-wide association studies were performed using the filtered gene 

expression data (15,398 genes) for within and multi-environments (ND ~275 lines and WA ~248 

lines) and the Genome-wide association studies were conducted using a filtered SNP dataset 

(~137,725). Using the four mixed linear models, we detected the top 1% genes based on their p-

values (Kremling et al., 2019). Since we are using continuous TWAS and discrete GWAS 

datasets, this method of detecting the genes will avoid direct comparisons of p-values. We 

identified a unique and common set of genes in all of these models for protein and yield traits. 
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Considering protein trait, we found four similar genes such as KIW84_060149, KIW84_046360, 

KIW84_051242, and KIW84_063439 between ND-TWAS and WA-TWAS. One of those genes 

KIW84_046360 located in chromosome 4 was also present in the ME-TWAS model. 

KIW84_046360 was the only gene similar between WA-TWAS and ME-TWAS while seven 

additional genes were found to be similar between ND-TWAS and ME-TWAS. When we 

compared GWAS with the ND-TWAS, we detected another 10 significant genes. Additionally, 8 

genes were similar between WA-TWAS and GWAS. One of the genes KIW84_063439 in 

chromosome 6 was found in all GWAS, ND-TWAS, and WA-TWAS models. Moreover, another 

gene KIW84_010029 in chromosome 1 was detected similarly between GWAS, ND-TWAS, and 

ME-TWAS. Apart from that, 10 more genes were similar between GWAS and ME-TWAS. For 

yield trait, we found two genes KIW84_032148, and KIW84_021648 similar between ND-

TWAS and WA-TWAS. With ME-TWAS, we found 8 genes similar to ND-TWAS and 6 genes 

with WA-TWAS. When compared with GWAS, we detected 10 genes similar to ND-TWAS and 

14 genes with WA-TWAS. Finally, when comparing the GWAS with the multi-environment 

model, we also identified 14 similar genes. Gene KIW84_023481 on chromosome 2 was found 

to be similar in all GWAS, ND-TWAS and ME-TWAS models (See Table 3.2).  

Furthermore, similar genes were identified between the protein and yield traits. Common 

sets of genes were also observed among different models. For example, KIW84_073247 (See 

Figure 3.8A & 3.9A) was also similarly identified in both GWAS and WA-TWAS. This gene 

encodes the filament-like protein 7 (FFP7); belonging to the long coiled-coil plant protein family 

(Gindullis et al., 2002). We retrieved three more genes that were present in both protein and 

yield trait GWAS models which were KIW84_065802, KIW84_055084, and KIW84_055103. 

One of the genes KIW84_065802 encodes the LOB domain-containing protein 38 which  
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Figure 3.8. Mixed linear model - Manhattan plots of protein (A) GWAS (B) ND-TWAS (C) 

WA-TWAS, and (D) ME-TWAS. The genes highlighted in red falls within the top 10 genes for 

that model and also are common across other models. The blue highlighted gene from (A) is 

common in the yield trait from Figure 3.9A. 
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Figure 3.9. Mixed linear model - Manhattan plots of yield (A) GWAS (B) ND-TWAS (C) WA-

TWAS, and (D) ME-TWAS. The genes highlighted in red falls within the top 10 genes for that 

model and also are common across other models. The blue highlighted gene from (A) is common 

in the protein trait from Figure 3.8A.  
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regulates gene expression and was also found in the ND-TWAS (yield) and ME-TWAS (protein) 

models. Additionally, we also detected one more gene in the ND-TWAS, three more in the WA-

TWAS, and another three in the ME-TWAS models that are common between the traits (See 

Table 3.2). Another interesting gene was the KIW84_063439 which was commonly found in the 

ND-TWAS models for both traits, and was also detected in the GWAS and WA-TWAS protein 

models. KIW84_063439 is a 60S ribosomal protein-L4 which enables RNA binding and 

structural constituent of ribosome (Zhukov et al., 2015). 

Unfortunately, many significant genes from TWAS models were not identified by GWAS 

and there were certain differences among the candidate genes. How does TWAS identify these 

significant genes that GWAS was unable to detect? One possible explanation could be the 

variation in the phenotypic dataset utilized in the GWAS model. This dataset consisted of 300 

genotypes and incorporated the multi-environment factor over a span of 2 years. In contrast, the 

TWAS models (ND & WA) were based on specific environments over the same 2-year period, 

but with varying sample sizes (See Results). Considering that we are dealing with quantitative 

traits, these sample variations could lead to minor differentiation in the results. Also, if there is 

no notable SNP in close proximity to the causal gene, GWAS will be unable to establish a 

correlation between that gene and the variation in the trait (Li et al., 2021). Likewise, TWAS also 

did not detect significant genes that were present in the GWAS model. Some of the results may 

be false negatives due to the possibility that certain genes were not expressed or their expression 

levels were too low to be included in the subsequent analysis. According to the GWAS model, 

some of them could be false-positives as well or the variations in the GWAS panel are not 

associated with the variations in the expression data (Li et al., 2021). 
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     Table 3.2. Top significant genes in all GWAS and TWAS models. 

Gene Id Transcript Id Chromosome Start End GWASa ND-TWASb WA-TWASc ME-TWASd 

KIW84_045675 Psat04G0567500 4 472722881 472729994 Pe P 
  

KIW84_065197 Psat06G0519700 6 420537202 420538798 P P 
  

KIW84_010029 Psat01G0002900 1 665002 669503 P P 
 

P 

KIW84_058009 Psat05G0800900 5 628385604 628392041 P P 
  

KIW84_044335 Psat04G0433500 4 360303549 360323974 P P 
  

KIW84_040625 Psat04G0062500 4 36145992 36146783 P P 
  

KIW84_053407 Psat05G0340700 5 258658213 258660736 P P 
  

KIW84_041639 Psat04G0163900 4 107103524 107105614 P P 
  

KIW84_062665 Psat06G0266500 6 196634039 196635126 P P 
  

KIW84_025557 Psat02G0555700 2 491529795 491531150 P P 
  

KIW84_073610 Psat07G0361000 7 243998139 243998555 P 
 

P 
 

KIW84_042868 Psat04G0286800 4 213255385 213261441 P 
 

P 
 

KIW84_073247 Psat07G0324700 7 217451536 217454987 P, Yf 
 

P, Y 
 

KIW84_076861 Psat07G0686100 7 540090158 540095165 P 
 

P 
 

KIW84_071645 Psat07G0164500 7 110041233 110049169 P 
 

P 
 

KIW84_035877 Psat03G0587700 3 509316691 509318930 P 
 

P 
 

KIW84_035910 Psat03G0591000 3 510480858 510483200 P 
 

P 
 

KIW84_063439 Psat06G0343900 6 286280948 286283037 P P, Y P 
 

KIW84_065350 Psat06G0535000 6 430008547 430010313 P 
  

P 

KIW84_065802 Psat06G0580200 6 465659895 465660653 P, Y Y 
 

P 

KIW84_025299 Psat02G0529900 2 483016380 483022295 P 
  

P 

KIW84_065566 Psat06G0556600 6 445620844 445626359 P 
  

P 

KIW84_074115 Psat07G0411500 7 278789677 278791363 P 
  

P 

KIW84_074782 Psat07G0478200 7 342132938 342136434 P 
  

P 

KIW84_070780 Psat07G0078000 7 49461182 49461736 P 
  

P 

KIW84_062493 Psat06G0249300 6 171263956 171264525 P   P 

KIW84_056247 Psat05G0624700 5 513018686 513020033 Y Y   

KIW84_041746 Psat04G0174600 4 113824200 113830669 Y Y   

KIW84_052148 Psat05G0214800 5 167464755 167468313 Y Y   
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Table 3.2. Top significant genes in all GWAS and TWAS models (continued). 

Gene Id Transcript Id Chromosome Start End GWASa ND-TWASb WA-TWASc ME-TWASd 

KIW84_070011 Psat07G0001100 7 622750 625474 Yf Y   

KIW84_073282 Psat07G0328200 7 219989262 219990096 Y Y   

KIW84_075976 Psat07G0597600 7 487030458 487031029 Y Y   

KIW84_073633 Psat07G0363300 7 245009736 245010842 Y Y   

KIW84_076941 Psat07G0694100 7 542446963 542448948 Y Y   

KIW84_036286 Psat03G0628600 3 535390308 535393372 Y  Y  

KIW84_076937 Psat07G0693700 7 542368800 542371571 Y  Y  

KIW84_012817 Psat01G0281700 1 235782657 235788553 Y  Y  

KIW84_075987 Psat07G0598700 7 487435525 487435971 Y  Y  

KIW84_076804 Psat07G0680400 7 537619904 537621427 Y  Y  

KIW84_051500 Psat05G0150000 5 119085200 119087383 Y  Y  

KIW84_043428 Psat04G0342800 4 255938249 255946186 Y  Y  

KIW84_073994 Psat07G0399400 7 270698256 270709076 Y  Y  

KIW84_057896 Psat05G0789600 5 622745648 622749471 Y  Y  

KIW84_060282 Psat06G0028200 6 8574465 8577797 Y  Y  

KIW84_020560 Psat02G0056000 2 28761566 28766103 Y  Y  

KIW84_040445 Psat04G0044500 4 27320070 27323682 Y  Y  

KIW84_073140 Psat07G0314000 7 209779835 209794432 Y  Y  

KIW84_030145 Psat03G0014500 3 11597847 11603506 Y   Y 

KIW84_064113 Psat06G0411300 6 329085938 329091987 Y   Y 

KIW84_020590 Psat02G0059000 2 29367473 29370856 Y   Y 

KIW84_014158 Psat01G0415800 1 378245551 378247143 Y   Y 

KIW84_075051 Psat07G0505100 7 386498734 386500951 Y   Y 

KIW84_040318 Psat04G0031800 4 18683999 18685489 Y   Y 

KIW84_052812 Psat05G0281200 5 217561742 217563766 Y   Y 

KIW84_055565 Psat05G0556500 5 458610976 458615751 Y   Y 

KIW84_073249 Psat07G0324900 7 217877072 217883174 Y   Y 

KIW84_033789 Psat03G0378900 3 298852358 298859092 Y   Y 

KIW84_073996 Psat07G0399600 7 270817500 270819862 Y   Y 
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Table 3.2. Top significant genes in all GWAS and TWAS models (continued). 

Gene Id Transcript Id Chromosome Start End GWASa ND-TWASb WA-TWASc ME-TWASd 

KIW84_023481 Psat02G0348100 2 352575604 352577167 Yf Y  Y 

KIW84_055084 Psat05G0508400 5 389847498 389848500 Pe, Y    

KIW84_055103 Psat05G0510300 5 390105090 390106151 P, Y    

KIW84_064531 Psat06G0453100 6 364504406 364517071  Y P  

KIW84_010174 Psat01G0017400 1 10755069 10761421   P, Y  

KIW84_071645 Psat07G0164500 7 110041233 110049169   P, Y  

KIW84_045090 Psat04G0509000 4 428480281 428483899    P, Y 

KIW84_033002 Psat03G0300200 3 246495016 246504433    P, Y 

KIW84_030624 Psat03G0062400 3 47930025 47933975    P, Y 

KIW84_060149 Psat06G0014900 6 4302634 4305223  P P  

KIW84_046360 Psat04G0636000 4 496792717 496794721  P P P 

KIW84_051242 Psat05G0124200 5 98455060 98462047  P P  

KIW84_032148 Psat03G0214800 3 179367126 179372251  Y Y  

KIW84_021648 Psat02G0164800 2 128545485 128856972  Y Y  

KIW84_012599 Psat01G0259900 1 202408817 202417410  P  P 

KIW84_035274 Psat03G0527400 3 444081166 444085328  P  P 

KIW84_056167 Psat05G0616700 5 507558968 507562592  P  P 

KIW84_074531 Psat07G0453100 7 312436144 312444093  P  P 

KIW84_054131 Psat05G0413100 5 320376797 320383213  P  P 

KIW84_072119 Psat07G0211900 7 146487227 146492881  Y  Y 

KIW84_064620 Psat06G0462000 6 373577608 373583949  Y  Y 

KIW84_025099 Psat02G0509900 2 475245850 475248918  Y  Y 

KIW84_073207 Psat07G0320700 7 214386369 214389703  Y  Y 

KIW84_011503 Psat01G0150300 1 104701196 104713429  Y  Y 

KIW84_056801 Psat05G0680100 5 553140383 553143580  Y  Y 

KIW84_075241 Psat07G0524100 7 413876881 413892168  Y  Y 

KIW84_040712 Psat04G0071200 4 41406319 41408291   Y Y 

KIW84_041173 Psat04G0117300 4 70339146 70350168   Y Y 

KIW84_050524 Psat05G0052400 5 42068139 42071428   Y Y 
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Table 3.2. Top significant genes in all GWAS and TWAS models (continued). 

Gene Id Transcript Id Chromosome Start End GWASa ND-TWASb WA-TWASc ME-TWASd 

KIW84_050942 Psat05G0094200 5 75224349 75228493     Yf Y 

KIW84_060965 Psat06G0096500 6 35096931 35099670     Y Y 

KIW84_060904 Psat06G0090400 6 33083559 33085744     Y Y 

a Genome-wide association study 
b North Dakota - Transcriptome-wide association study 
c Washington - Transcriptome-wide association study 
d Multi-Environment Transcriptome-wide association study 
e Protein 
f Yield 
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In the GWAS model, LD could also have resulted in some false-positive genes (Li et al., 

2021), especially in self-pollinating species like pea which has a slow rate of LD-decay of 

~250kb. When we used 250kb upstream and downstream from the significant markers, overall, 

we detected all the genes within the 500kb window size. In that case, we retrieved a greater 

number of genes from the top 1% SNPs than with any of the TWAS models. For example, the 

commonly detected gene KIW84_010029 was found in the GWAS protein model from the top 

1% significant SNPs in chromosome 1 along with 52 annotated genes due to LD but in ND-

TWAS and ME-TWAS models, we detected this gene directly within the top 1% genes. To 

further validate its significance, we conducted a Welch two sample t-test for KIW84_010029 

differential gene expression between high and low protein groups using ND lines which showed 

that it is statistically significant with p-value < 2.2e-16 (Appendix Figure B.2(A)). Despite the 

high LD-decay rate, TWAS managed to detect the KIW84_010029 gene associated with protein. 

In a similar way, Li et al., (2021) mapped a known gene associated with a qualitative trait 

directly in a high-LD soybean genome using TWAS but in the GWAS, the authors detected 80 

genes along with the known gene. One of the highly significant downregulated genes, 

KIW84_065350, found in chromosome 6 from the differential expression analysis between high 

vs low protein conditions was also detected in the GWAS and ME-TWAS models. This gene 

was further studied and found to exhibited a significance having a p-value 2.861e-12 (Welch two 

sample t-test) using the differential gene expression between high and low protein across multi-

environment lines (Appendix Figure B.2(B)).  

As previously discussed, the LD decay rate might affect the detection power of GWAS 

using SNP data. At the same time, if the expression levels of neighboring genes are highly 

correlated, it can also affect the TWAS resolving power which was noted in some of the human 
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TWAS studies (Wainberg et al., 2019; Mancuso et al., 2019). More false-positive signals could 

have been detected due to the high correlation (Zheng et al., 2020), but this was not observed in 

our study. Since we are dealing with quantitative traits, it is also difficult to narrow down the top 

significant genes as easily as it is in qualitative traits even with low correlation. In the case of 

soybean (Li et al., 2021), the authors knew the exact gene that they were trying to find in their 

studies. Since we are using the new reference genome in our study, some of the genes have not 

been validated and their functions are unknown. Most of the significant genes from Table 3.2 are 

not validated but with the model information from NCBI 

(https://www.ncbi.nlm.nih.gov/gene/?term=pisum+sativum) and the pea genome database 

developed by the Chinese Academy of Agricultural Sciences (Yang et al., 2022b), we were able 

to shortlist the important genes. Based on the results generated from this study, it is vital to 

indicate that TWAS is less affected by LD than GWAS as proved by Li et al., (2017) and Li et 

al., (2021) however it could supplement GWAS analysis.  

Conclusion 

We extended the TWAS study from qualitative traits to quantitative traits in a self-

pollinating crop and noted that TWAS was also an additional resource for GWAS and they are 

less affected by LD (Li et al., 2017; Li et al., 2021). By utilizing the developing pod tissue that 

was associated with the traits, we were able to effectively integrate their expression data with the 

phenotypes and readily identify the genes. We noticed more similarities between the genes 

expressed in different environments. By analyzing protein and yield traits in individual 

environments, TWAS was able to detect the most significant genes even with high LD which 

makes this tool more helpful. We also were able to detect a greater number of significant genes 

that were commonly found in GWAS with multi-environment TWAS than within-environment 

https://www.ncbi.nlm.nih.gov/gene/?term=pisum+sativum
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TWAS and the differentiation between the expression levels of the two environments explains 

the complex interaction of genotype by environment. Finally, it has been proven that TWAS can 

be used to detect the trait-associated genes in quantitative traits as well and serves as a 

complementary resource for GWAS.  
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CHAPTER 4. INCREASING THE POWER OF GENETIC MAPPING BY COMBINING 

GWAS AND TWAS IN DRY PEA 

Introduction 

Dry peas (Pisum sativum) are one of the widely consumed pulse crops around the world, 

and Mendel’s favorite species. The 21st century has mostly become a plant-based food century 

where the food markets, are always seeking for the optimal alternate source of protein, among 

which peas hold a strong position. This is largely attributed to their high protein content, around 

32%, as well as their vitamins, fibers and minerals (Bari et al., 2021). Peas are also known to 

improve gut health and prevent certain cancers (Bari et al., 2021; Mudryj et al., 2014). In recent 

years, pea cultivation has increased due to market demands, with a greater emphasis on research 

in the field. Researchers in pulse crops are consistently evaluating and performing various field 

trials to maximize protein content. To pursue this, understanding the biological pathway 

underlying protein variations is crucial for the researchers. Methods such as genome-wide 

association studies (GWAS) and linkage mapping have been used for the past two decades to 

identify the genes associated with their trait-of-interest. The accuracy of linkage mapping in 

identifying the causal variant is constrained by the fewer recombination events from the bi-

parental population (Beji et al., 2020). Following linkage mapping, GWAS emerged as a more 

popular method for conducting gene mapping, as it utilizes genetic diversity and ancestral 

recombination from diversity panels (Gupta et al., 2014). Both linkage mapping and GWAS are 

based on linkage disequilibrium (LD) between markers and targeted loci. However, the 

difference lies in the fact that LD from linkage mapping is created by biparental mating, whereas 

in GWAS, LD comes from the diversity panels (Bangarwa et al., 2020). LD is solely influenced 

by recombination in linkage mapping bi-parental populations; however, in GWAS, LD is also 
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influenced by other factors such as genetic drift, selection, mutation, population structure, 

relatedness and mating (Flint-Garcia et al., 2003). Besides linkage mapping, GWAS surpasses 

pedigree-based QTL mapping as it utilizes LD and recombination rates from much broader 

germplasm collections (Bangarwa et al., 2020). GWAS has been employed in plants, animal and 

human genome studies to dissect genes associated with phenotypes (Gangurde et al., 2022). 

GWAS is also a powerful tool in plant breeding for conducting marker-assisted selection (MAS) 

experiments, where it detects molecular markers linked to targeted genomic regions (Gupta et al., 

2014). Over the past few years, this study has detected many significant markers associated with 

the trait-of-interest in peas (Desgroux et al., 2016; Gali et al., 2019; Tafesse et al., 2020; Beji et 

al., 2020; Martins et al., 2022).  

The efficacy of gene mapping continues to advance with the development of additional 

novel models and methodologies. Statistical models such as naïve, population structure (Q), 

kinship (K) and Q+K models were employed to conduct GWAS (Sharma et al., 2018). However, 

the performance of GWAS alone is not sufficient due to its low statistical power and high false 

positive signals. To address this, more advanced tools have been developed to perform GWAS, 

including GAPIT (Tang et al., 2016), ECMLM (Li et al., 2014), EMMA (Kang et al., 2008), 

GEMMA (Zhou and Stephens, 2012), FaST-LMM (Lippert et al., 2011), SUPER (Wang et al., 

2014) and GenABEL (Svishcheva et al., 2012). Despite these advancements, there is a limitation 

in resolution due to LD, as it cannot provide single-gene resolution. A promising emerging 

methodology in genetic mapping, known as transcriptome-wide association studies (TWAS), 

utilizes expression levels directly to pinpoint genes associated with phenotypic variations. This 

approach has shown success in qualitative traits and in achieving single gene resolution (Li et al., 

2021). We have extended this methodology to quantitative traits such as protein and yield in 
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peas, demonstrating that TWAS can effectively detect highly significant genes in both within- 

and multi-environment analysis (see Chapter 3).  

Kremling et al., (2019) enhanced gene mapping efficacy by integrating GWAS and 

TWAS results, thereby identifying more highly significant known genes in maize using Fisher’s 

combined test. Following their study, this approach has been successfully applied in sorghum to 

identify targeted genes correlated with variations of water use efficiency-related traits (Ferguson 

et al., 2021; Pignon et al., 2021) and in tocochromanol levels in maize grain (Wu et al., 2022). In 

this study, we aim to employ this approach to enhance genetic mapping in peas. The objective of 

this study is to integrate GWAS and TWAS results (from Chapter 3) for seed protein and yield 

traits to identify highly significant genes. 

Materials and Methods 

Fisher’s Combined Test for GWAS and TWAS 

We retrieved the top 10% of GWAS (Q+K model) results with the lowest p-value SNPs 

(~137,725 - from Chapter 3) and used them to perform Fisher’s combined test (FCT) with 

TWAS results based on Kremling et al., (2019). The nearest gene to each of the top 10% SNPs 

was extracted using the gene annotation file (CAAS_Psat_ZW6_1.0) and assigned to its 

respective GWAS p-values. We prioritized only the top 10% SNPs to reduce the computational 

burden, given the large number of 137,925 SNPs and their nearest genes. We also adjusted the 

TWAS results, as some genes identified in the top 10% of GWAS may not be available in 

TWAS; for these cases, their p-values were set to 1. Subsequently, we combined both TWAS 

and GWAS results based on their p-values. Finally, we conducted Fisher’s combined test for 

each gene using the ‘sumlog()’ function from the “metap” R package (version 1.1; Dewey 2019), 

focusing on protein and yield traits.  
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Statistical Analysis 

We utilized the differential gene expression data of the genes KIW84_023874, 

KIW84_063439 and KIW84_073247 in two protein groups with multi-environment lines (high 

vs low) from Chapter 3 to analyze the significance of these genes using the Welch two-sample t-

test (Welch 1947; Li et al., 2021). Additionally, we extracted high and low yield multi-

environment lines phenotypic data, along with their respective gene expression levels, to conduct 

t-tests for the genes KIW84_012622 and KIW84_030145. 

Results and Discussion 

FCT of Protein and Seed Yield 

The Fisher’s combined test (FCT) was conducted by integrating GWAS (top 10%) and 

TWAS results retrieved from Chapter 3. Employing three FCT models such as Fisher’s 

combined test – North Dakota (FCT-ND), Fisher’s combined test – Washington (FCT-WA) and 

Fisher’s combined test – Multi-Environment (FCT-ME) for each trait, we identified the top 1% 

significant genes, following Kremling et al., (2019) and Wu et al., (2022). We detected a greater 

number of unique and common gene sets in these models associated with protein and seed yield 

phenotypes. For protein traits, we narrowed down three highly significant genes from the top 10 

genes: KIW84_031658, KIW84_031667 on chromosome 3 and KIW84_012863 on chromosome 

1 (Figure 4.1A, B & C) which were consistent across all FCT-ND, FCT-WA and FCT-ME 

models. Additionally, four more genes were commonly found between FCT-ND and FCT-WA, 

with seven genes common in FCT-ME, and three genes between FCT-WA and FCT-ME (Table 

4.1). Considering all the top 1% genes, we detected 76 genes common between FCT-ND and 

FCT-ME, and 431 with FCT-ME. Fifty-two genes were similar among FCT-WA and FCT-ME. 

One highly significant gene, KIW84_065350 (Figure 4.1C), found in FCT-ME, was also  
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Figure 4.1. Fisher’s Combined Test – Manhattan plots for protein (A) FCT-ND, (B) FCT-WA, 

and (C) FCT-ME. The genes highlighted in red fall within the top 10 genes for that model and 

also are common across other models. The green highlighted genes are similar to models from 

Chapter 3 (Figure 3.7A, D & Table 3.2). The RGB gene is highlighted in blue (C). 
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identified in GWAS and ME-TWAS, demonstrating its significance among high vs. low protein 

lines (see Chapter 3). Additionally, we identified the gene KIW84_063439 (Figure 4.1B) in WA-

TWAS, GWAS, and in both traits for ND-TWAS. To assess the significance of this gene in high 

and low protein groups from ME, we conducted the Welch two sample t-test, confirming its high 

significance with a p-value of 1.766e-10 (Appendix Figure C.1(A)).  

Regarding yield traits, the top 10 significant genes that were similar across all models 

include KIW84_041159 and KIW84_041156 on chromosome 4, KIW84_076507 on 

chromosome 7, and KIW84_055077 on chromosome 5. Additionally, six genes were common 

between FCT-ND and FCT-ME, while three genes were common between FCT-WA and FCT-

ME. Two highly significant genes, such as KIW84_012622 (Chromosome 1) and 

KIW84_030145 (Chromosome 3) (Figure 4.2C), were also detected in GWAS and ME-TWAS 

models (Chapter 3). Subsequently, we performed t-test again, revealing their high significance 

among high vs low yield ME lines, with p-values < 2.22-16 and 4.56e-07, respectively. 

(Appendix Figure C.2(A) & (B)) 

When comparing genes associated with protein and yield traits, we found the same gene 

i.e., KIW84_055077 that were common in all models for both traits. Despite being detected in all 

TWAS models, GWAS was unable to map this gene from the significant SNPs (Chapter 3). 

Furthermore, we identified three additional genes in FCT-ND models for both protein and yield, 

two in FCT-WA models, and six more in FCT-ME models. One of these genes, KIW84_073247 

from FCT-WA models, was also detected in GWAS and TWAS-WA models for both protein 

and yield, which is a filament-like protein 7 (Chapter 3). To further validate its significance in 

protein, we conducted a t-test for KIW84_073247 differential gene expression between high and  
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Figure 4.2. Fisher’s Combined Test – Manhattan plots for seed yield (A) FCT-ND, (B) FCT-

WA, and (C) FCT-ME. The genes highlighted in red fall within the top 10 genes for that model 

and also are common across other models. The green highlighted genes are similar to models 

from Chapter 3 (Figure 3.8A & Table 3.2). 
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     Table 4.1. Top significant genes in all Fisher’s combined test models. 

Gene Id Transcript Id Chromosome Start End FCT-NDa FCT-WAb FCT-MEc 

KIW84_031658 Psat03G0165800 3 138948792 138949790 Pd P P 

KIW84_031667 Psat03G0166700 3 139552600 139556455 P P P 

KIW84_012863 Psat01G0286300 1 244550420 244553547 P P 
 

KIW84_036137 Psat03G0613700 3 525424245 525427282 P P 
 

KIW84_074991 Psat07G0499100 7 377973060 377973738 P P 
 

KIW84_050838 Psat05G0083800 5 66767705 66770453 P P 
 

KIW84_012599 Psat01G0259900 1 202408817 202414484 P 
 

P 

KIW84_012863 Psat01G0286300 1 244550420 244553547 P P P 

KIW84_035274 Psat03G0527400 3 444081166 444085328 P 
 

P 

KIW84_012047 Psat01G0204700 1 149571491 149572814 P 
 

P 

KIW84_035875 Psat03G0587500 3 509283027 509306740 P 
 

P 

KIW84_074531 Psat07G0453100 7 312431644 312444093 P 
 

P 

KIW84_022726 Psat02G0272600 2 257754793 257755365 P 
 

P 

KIW84_055501 Psat05G0550100 5 450734801 450743844 P 
 

P 

KIW84_063439 Psat06G0343900 6 286280948 286283037 
 

P P 

KIW84_075984 Psat07G0598400 7 487257166 487257612 
 

P P 

KIW84_035877 Psat03G0587700 3 509316691 509318930 
 

P P 

KIW84_041159 Psat04G0115900 4 69617914 69620069 Ye Y Y 

KIW84_041156 Psat04G0115600 4 69499199 69499777 Y Y Y 

KIW84_076507 Psat07G0650700 7 624834489 524836686 Y Y Y 

KIW84_062392 Psat06G0239200 6 156672382 156671540 Y 
 

Y 

KIW84_073282 Psat07G0328200 7 219989262 219990096 Y 
 

Y 

KIW84_035193 Psat03G0519300 3 434937960 434938322 Y 
 

Y 

KIW84_056247 Psat05G0624700 5 513018686 513020033 Y 
 

Y 

KIW84_022531 Psat02G0253100 2 222374551 222378465 Y 
 

Y 

KIW84_076494 Psat07G0649400 7 524197599 524199524  Y Y 

KIW84_035191 Psat03G0519100 3 434784481 434784826  Y Y 

KIW84_055077 Psat05G0507700 5 389683369 389683475 P, Y P, Y Y 

KIW84_031661 Psat03G0166100 3 139247130 139247642 P, Y   
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      Table 4.1. Top significant genes in all Fisher’s combined test models (continued). 

Gene Id Transcript Id Chromosome Start End FCT-NDa FCT-WAb FCT-MEc 

KIW84_071643 Psat07G0164300 7 109973449 109974365 Pd, Ye   

KIW84_044335 Psat04G0433500 4 360303549 360323974 P, Y   

KIW84_073247 Psat07G0324700 7 217451536 217454987  P, Y  

KIW84_071645 Psat07G0164500 7 110041233 110041233  P, Y  

KIW84_065802 Psat06G0580200 6 465659895 465659895   P, Y 

KIW84_076804 Psat07G0680400 7 537619904 537621427   P, Y 

KIW84_055206 Psat05G0520600 5 403803138 403805391   P, Y 

KIW84_032656 Psat03G0265600 3 223525052 223547303   P, Y 

KIW84_075899 Psat07G0589900 7 478543931 478546088   P, Y 

KIW84_056876 Psat05G0687600 5 557297578 557302697   P, Y 

a Fisher’s combined test – North Dakota 
b Fisher’s combined test – Washington 
c Fisher’s combined test – multi-Environment 
d Protein 
e Yield 
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low protein groups using ME lines, establishing its significance with a p-value < 2.2e-16 

(Appendix Figure C.1(B)). 

Some genes detected in FCT models were not identified in either GWAS or TWAS 

models. For instance, we identified the validated gene KIW84_023874 (RGB – Figure 4.1C) 

from the top 1% FCT-ME protein, which was absent in both GWAS and TWAS models. This 

gene is known to regulate cell wall biosynthesis (Daba et al., 2022; Dhugga et al., 1997), and was 

previously reported as a positional candidate gene by Burstin et al., (2007). Its significance was 

further evaluated with a t-test on high vs low protein group ME lines, confirming its significance 

with a p-value of 2.20e-10. Given that this study was based on the new reference genome 

(CAAS_Psat_ZW6_1.0- Yang et al., 2022a), we were unable to confirm the functions of some 

genes as they are yet to be validated. However, leveraging available gene information from 

NCBI (https://www.ncbi.nlm.nih.gov/gene/?term=pisum+sativum) and the pea genome database 

developed by the Chinese Academy of Agricultural Sciences (Yang et al., 2022b), we were able 

to shortlist genes and identify an increased number of validated genes using Fisher’s method 

compared to running GWAS or TWAS alone (Kremling et al., 2019). Other studies in maize 

grain for tocochromanol levels have also demonstrated the detection of a greater number of 

known genes with the FCT model compared to GWAS or TWAS alone (Wu et al., 2022), as well 

in maize kernel traits (Kremling et al., 2019). The Fisher’s combined test has been successfully 

employed to retrieve candidate genes associated with maize leaf cuticular conductance (gc) trait 

(Lin et al., 2022). As demonstrated in these studies, combining GWAS and TWAS increases the 

statistical power to detect candidate genes for the trait-of-interest (Lin et al., 2022). 

https://paperpile.com/c/zcMkIU/9LeS
https://www.ncbi.nlm.nih.gov/gene/?term=pisum+sativum
https://www.peagdb.com/go/
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Conclusion 

The research findings from this study represent the first combined GWAS and TWAS 

models in peas and underscore their significance in genetic mapping. Utilizing GWAS, TWAS, 

and FCT models, we detected 45 genes for protein, 60 genes for yield, and 20 genes that were 

common to both traits (See Table 3.2 and 4.1), based on similarities observed across the models. 

Considering the top 1% genes following the methodology outlined by Kremling et al., (2019), 

we retrieved a greater number of significant genes associated with each phenotype. Notably, we 

detected a positional candidate gene, RGB, for protein using the FCT-ME model, which 

remained undetermined in both GWAS and TWAS models. GWAS can identify genes even in 

regulatory elements, while TWAS validates genes through their expression levels; hence, 

combining both approaches capitalize on the strengths of each study. Recent researches have 

increasingly proved that integrating genomics and transcriptomics yields improved results. The 

FCT statistical approach holds promising power for mapping candidate genes in other species as 

well. Future studies in pea genetic mapping should consider incorporating GWAS and TWAS 

into investigating other agronomic traits. 
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APPENDIX A 

 

Figure A.1. SNP density of NDSU and USDA set, x-axis is the genomic location (bp) and y-axis 

is the density. 
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Figure A.2. Genome-wide (C) and Chromosome-wide linkage disequilibrium decay in the 

NDSU (A) and USDA (B) with mean of r² (y-axis) and recombination rate (cM) (x-axis) 
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APPENDIX B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.1. Relationship between gene KIW84_031063 to protein (high and low genotypes) 

showing positive correlation A) Correlation of the gene to ND lines with R=0.51 B) Correlation 

of the gene to WA lines with R=0.29, and C) Correlation of the gene to ME lines with R=0.46, 

which is higher than the individual environments relationship with the gene. 
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Figure B.2. A) Violin plots of gene KIW84_010029 in ND lines with high and low protein, 

showing the probability density curves of the KIW84_010029 gene in the two protein groups, B) 

Violin plots of gene KIW84_065350 in ME lines with high and low protein, showing the 

probability density curves of the KIW84_065350 gene in the two protein groups. 
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APPENDIX C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.1. (A) Violin plots of gene KIW84_063439 in ME lines with high and low protein, 

showing the probability density curves of the KIW84_063439 gene in the two protein groups, B) 

Violin plots of gene KIW84_073247 in ME lines with high and low protein, showing the 

probability density curves of the KIW84_073247 gene in the two protein groups. 
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Figure C.2. (A) Violin plots of gene KIW84_012622 in ME lines with high and low yield, 

showing the probability density curves of the KIW84_012622 gene in the two yield groups, B) 

Violin plots of gene KIW84_030145 in ME lines with high and low yield, showing the 

probability density curves of the KIW84_030145 gene in the two yield groups. 

 


