
WHICH TESTS TO MODIFY? A HISTORY-BASED TEST RECOMMENDER 

 

 

 

A Paper 

Submitted to the Graduate Faculty 

of the 

North Dakota State University 

of Agriculture and Applied Science 

 

 

 

 

By 

Sai Kiran Bhrugumalla 

 

 

 

 

In Partial Fulfillment of the Requirements 

for the Degree of 

 MASTER OF SCIENCE 

 

 

 

 

Major Department: 

 Computer Science 

 

 

  

 

 May 2024  

 

 

 

 

Fargo, North Dakota 

  



North Dakota State University 

Graduate School 
 

Title 
 

WHICH TESTS TO MODIFY? A HISTORY-BASED TEST 

RECOMMENDER 

  

  

  By   

  
Sai Kiran Bhrugumalla 

  

     

    

  The Supervisory Committee certifies that this disquisition complies with North Dakota 

State University’s regulations and meets the accepted standards for the degree of 

 

  MASTER OF SCIENCE  

    

    

  SUPERVISORY COMMITTEE:  

    

  
Dr. Ajay Kumar Jha 

 

  Chair  

  
Dr. Oksana Myronovych 

 

  
Dr. Jun Kong 

 

  
Dr. Harun Pirim 

 

    

    

  Approved:  

   

 07/01/2024  Dr. Simone Ludwig  

 Date  Department Chair  

    

 



 

iii 

ABSTRACT 

Regression testing is critical for maintaining software quality. Therefore, developers must 

maintain efficient and effective regression test suites. However, the task can be tedious and 

challenging, especially in Continuous Integration (CI) where developers frequently change code. 

With each code change, developers may need first to identify all relevant tests for the code change 

and then identify specific tests among the relevant tests that need to be modified. This process can 

reduce developers' productivity if they do this manually. In this paper, we propose a technique and 

tool, TRec1, that identifies relevant tests for code changes in CI and recommends tests to 

developers for modifications. We evaluate the effectiveness of TRec by recommending tests for 

1,867 developers' modified methods in 493 commits from three open-source Java projects. We 

find TRec's recommended tests include 3,180 (84.71%) of the 3,754 developers' modified tests for 

the 1,867 methods.  

 

  

 

 

1 Demo: https://github.com/STAM-NDSU/TRec/tree/main/Tool 



 

iv 

TABLE OF CONTENTS 

ABSTRACT ................................................................................................................................... iii 

LIST OF TABLES .......................................................................................................................... v 

LIST OF FIGURES ....................................................................................................................... vi 

LIST OF ABBREVIATIONS ....................................................................................................... vii 

1. INTRODUCTION ...................................................................................................................... 1 

2. APPROACH ............................................................................................................................... 3 

2.1. TCLI .................................................................................................................................... 3 

2.1.1. Identify Candidate Commits. ...................................................................................... 4 

2.1.2. Extract TCT Links. ...................................................................................................... 4 

2.1.3. Rank TCT Links .......................................................................................................... 5 

2.2. TCLM .................................................................................................................................. 5 

2.3. TR ........................................................................................................................................ 6 

3. EVALUATION........................................................................................................................... 7 

3.1. Method ................................................................................................................................ 7 

3.2. Results ................................................................................................................................. 9 

3.3. Threats to Validity............................................................................................................. 11 

3.3.1. Construct Validity ..................................................................................................... 11 

3.3.2. Internal Validity ........................................................................................................ 11 

3.3.3. External Validity ....................................................................................................... 12 

4. RELATED WORK ................................................................................................................... 13 

5. CONCLUSION ......................................................................................................................... 14 

REFERENCES ............................................................................................................................. 15 

  



 

v 

LIST OF TABLES 

Table Page 

1.  Studied projects. .................................................................................................................. 7 

2. Evaluation dataset: developers' modified methods and the corresponding modified 

tests. .................................................................................................................................... 9 

3.  TCT links extracted by TRec. ........................................................................................... 10 

4.  Number of developers' modified tests in Table 2 included in the TRec's 

recommended top 5 tests. .................................................................................................. 10 

 

 

 

  



 

vi 

LIST OF FIGURES 

Figure Page 

1.  A high-level overview of TRec........................................................................................... 3 

2.         Frequency of the extracted TCT links ................................................................................ 9 

 

  

 

  



 

vii 

LIST OF ABBREVIATIONS 

TREC. ............................................................Test Recommender. 

TCLI ...............................................................Test-to-Code Link Identifier. 

TCLM ............................................................Test-to-Code Link Maintainer 

TCT ................................................................Test-to-Code Traceability 

 

 

  



 

1 

1. INTRODUCTION 

Change is an essential characteristic of software development [1], and managing change is 

critical to the continuing usefulness of any software [2]. Software systems go through various types 

of changes [3]. After each change, developers ideally perform regression testing to ensure that 

software still works as expected [2], [4], [5], [6] . Regression testing plays a critical role in 

maintaining software quality by detecting bugs earlier, especially in Continuous Integration (CI) 

where developers merge code changes and test them frequently [7], [8], [9]. Therefore, developers 

must maintain efficient and effective regression test suites [10]. 

Developers need to modify tests after code changes [11], [12]. To accomplish the task, 

developers have to first identify all relevant tests for a code change and then identify tests among 

the relevant tests that need to be modified. Even for adding new tests, developers have to first 

identify all relevant existing tests to avoid creating redundant tests. Identifying relevant tests and 

selecting tests for modification manually is tedious and challenging [13], [14], [15]. The process 

can reduce developers' productivity [13], especially in large software systems with thousands or 

millions of tests [8], [16]. More importantly, developers may not modify tests due to time and 

resource constraints [7], resulting in inefficient and ineffective regression test suites. This can 

eventually increase regression testing costs [17] and affect software quality. Therefore, it is 

important to automate the process [18], [19]. 

Several techniques have been proposed to create test-to-code traceability (TCT) links to 

identify relevant tests for a piece of code (i.e., methods and classes) [14], [15], [20], [21], [22], 

[23]. Although these techniques effectively create TCT links, they do not create/update TCT links 

incrementally, meaning developers need to run them on the entire codebase after each change, 

requiring significant time and resources [14]. Therefore, the techniques are not ideal in CI settings. 



 

2 

Moreover, they do not recommend tests for a code change except TestNForce, which is a Visual 

Studio plugin that shows all the relevant tests for a code change to developers [14]. However, a 

piece of code may have many relevant tests, and all of them may not be equally important for a 

code change. Ranking relevant tests based on their importance for a code change can further help 

developers select tests for modification. 

To address the above gaps, we propose a technique and tool, TRec, that identifies TCT 

links from commit histories and recommends tests for code changes at the method level in CI 

environments. We hypothesize that the past co-evolution between methods and tests and their co-

evolution frequency indicate the relevancy and importance of the tests for future changes in the 

methods. TRec uses a combination of co-evolution and method-call analysis techniques [24] to 

extract TCT links from commit histories. TRec ranks TCT links (i.e., tests in the links) for a 

method based on their frequency in commit histories and recommends the top 5 tests for any 

changes in a method in a new commit. TRec also identifies any TCT links in a new commit, 

creating/updating TCT links incrementally, which is the recommended [25] and most desirable 

feature for a traceability technique [14]. 

We implement TRec as a command line tool and evaluate the effectiveness of TRec by 

recommending tests for 1,867 developers' modified methods in 493 commits from three open-

source Java projects. The modified methods have 3,754 corresponding developers' modified tests 

in the commits. We find TRec's recommended top 5 tests for the methods include 84.71% of the 

developers' modified tests, among which 58.87% and 19.65% are in the first and second ranks, 

respectively. This shows that the developers could have used the TRec's recommended tests for 

identifying the majority of tests that needed to be modified for the methods. Our online artifact 

page contains all the data and tools used in this study [26].  



 

3 

2. APPROACH 

Figure 1. A high-level overview of TRec 

 

 Figure 1 shows a high-level overview of TRec. It has three different components: Test-to-

Code Link Identifier (TCLI), Test-to-Code Link Maintainer (TCLM), and Test Recommender 

(TR). TCLI takes a project repository as input, analyzes existing commits in the repository, and 

extracts TCT links. TCLM maintains the TCT links extracted by TCLI in CI development 

environments. TCLM takes a new commit as input, identifies any TCT links in this commit, and 

updates the TCT links. TR also takes the new commit passed to TCLM as input, identifies modified 

methods that do not have a corresponding added or modified test in this commit, and recommends 

tests from the TCT links to developers for the modified methods. We now describe each 

component. 

2.1. TCLI 

TCLI analyzes existing commits in projects to identify and extract TCT links at the method 

level. TCLI first identifies candidate commits in a project that may potentially have TCT links and 

then analyzes code changes in the candidate commits to extract TCT links. TCLI then organizes 

and ranks the extracted TCT links for each method based on the frequency of the links in existing 

commits. TRec runs TCLI only once to collect historical information. 



 

4 

2.1.1. Identify Candidate Commits. 

TCLI identifies a commit as a candidate commit if the commit has at least one modified 

production file and a corresponding modified test file. Developers commonly use the same test 

filename as the production filename with a Test prefix or suffix to create a test file [15]. TCLI 

leverages this common practice to identify test files for a production file. Specifically, TCLI maps 

a test file to a production file in a commit if the test filename contains the production filename. 

TCLI does not perform exact match (e.g., Utilities → UtilitiesTest), because developers may create 

multiple test files for a production file with some variations in test filenames (e.g., Utilities → 

UtilitiesTest, UtilitiesBugFixTest). 

2.1.2. Extract TCT Links. 

For each method modified or added in a candidate commit, TCLI finds the corresponding 

tests modified or added in the candidate commit, establishing TCT links. TCLI leverages 

JavaParser2 for this task. Specifically, TCLI compares each modified file in a candidate commit 

with the previous version of the modified file in the direct parent commit to identify methods or 

tests added or modified in the candidate commit. TCLI considers a method or test as newly added 

if it appears in the modified file but not in the previous version of the file. Whereas TCLI considers 

a method or test as modified if the body of the method or test is not the same in the modified and 

the previous versions of the file. TCLI considers an added or modified test linked to an added or 

modified method in the candidate commit if the method is invoked in the test, creating a TCT link. 

TCLI also records and maintains the frequency of each unique TCT link in commit 

histories. Suppose developers modified foo method in five different commits, four of these 

 

 

2 https://javaparser.org/ 



 

5 

commits also have testFoo test modified and the remaining one has testFooFix test modified. If 

TCLI identifies the modified tests are linked to the foo method, TCLI extracts two different TCT 

links with their frequency: {foo-testFoo, 4} and {foo-testFooFix, 1}. 

2.1.3. Rank TCT Links 

A method may have several corresponding tests in a project, testing different behaviors of 

the method. However, all the tests may not be equally important for a code change in the method. 

Therefore, TCLI ranks the extracted TCT links for each method based on the frequency of the 

links. We assume developers modify some method behaviors and their corresponding tests more 

often than others. We acknowledge that the approach is not precise. However, an accurate 

approach would require fine-grained analysis of code changes (e.g., statement and branch), 

requiring significant time overhead, which is not ideal for CI settings. In the previous example, 

TCLI ranks testFoo first and then testFooFix for the foo method. At the end of this process, TCLI 

produces a database of ranked TCT links for each method in the links. 

2.2. TCLM 

Existing techniques that extract TCT links do not incrementally create/update TCT links 

as software evolves. It means the extracted TCT links may become obsolete and new TCT links 

will not be identified unless the techniques run from scratch again [25]. Running them from scratch 

requires significant redundant effort [14]. This may not be even feasible in CI environments, where 

the code churn rate can be high for large-scale systems [8], [16]. Unlike the existing techniques, 

TRec uses TCLM to create/update TCT links incrementally in CI environments. 

TCLM takes a new commit as input and extracts TCT links from this new commit as 

described in Section 2.1.2. If TCLM finds new TCT links that are not in the TCT link database, 

TCLM adds the links to the database along with frequency 1. If the links are already in the 



 

6 

database, TCLM increments their frequency by 1. This process ensures the identification of any 

new TCT links and the ranking update to the existing links in CI environments. 

2.3. TR 

TR also takes the new commit passed to TCLM as input, identifies candidate methods in 

the commit for test recommendation, and recommends tests for the candidate methods to 

developers. TR considers modified methods in a new commit as candidate methods for test 

recommendation if they do not have corresponding added or modified tests in the commit. TR 

checks modified method invocations in all the added/modified tests to identify their corresponding 

tests. For each identified candidate method, TR then finds all the associated TCT links in the TCT 

link database and selects the top 5 links based on their frequency. TR then recommends the tests 

in the top 5 links to developers in the ranked order. A candidate method may have many associated 

TCT links, resulting in many recommended tests if TR recommends all of them. In this case, 

developers may have to put significant effort into reviewing the recommended tests, especially if 

developers are not familiar with the codebase. Therefore, TR recommends only the top 5 tests. 

  



 

7 

3. EVALUATION 

To evaluate the effectiveness of TRec in recommending tests for code changes, we conduct 

a preliminary investigation and answer the following research question: 

RQ1: Does TRec recommend the same tests that developers modify for code changes? 

We investigate whether TRec's recommended tests are the same as developers' modified tests 

for code changes. This demonstrates TRec's capability to identify tests that need to be 

modified for code changes. 

Table 1. Studied projects. 

Project Num. of commits Num. of tests 

commons-lang 7,668 4,226 

gson 1,986 1,395 

commons-io 4,859 2,048 

Total 14,513 7,669 

For this preliminary investigation, we select three open-source Java projects: commons-

lang3, gson4, and commons-io5. They are popular and actively maintained projects used in previous 

test evolution studies [12], [27]. Commons-lang and commons-io are also used in a previous 

traceability study [21]. Table 1 shows the number of commits and tests in these projects. 

3.1. Method 

We run TRec on the projects to extract TCT links from commit histories. We run TRec on 

a system containing Windows 11 operating system, 12th Gen Intel(R) Core(TM) i7-12700H 2.30 

GHz processor, and 16 GB RAM. TRec creates a database of TCT links for each project. Note that 

 

 

3 https://github.com/apache/commons-lan 
4 https://github.com/google/gson 
5 https://github.com/apache/commons-io 



 

8 

TRec incrementally extracts TCT links from each commit in a project in the temporal order (i.e., 

old to recent commit), creating/updating TCT links in the database. 

To recommend tests, TRec requires a new commit with methods containing code changes. 

We also need developers' modified tests for the code changes to answer the RQ. Therefore, we 

create an evaluation dataset that satisfies the above requirements by analyzing existing commits in 

the studied projects. We first identify those commits where developers modify a method and its 

tests. The idea is to recommend tests for a modified method and check whether TRec recommends 

the same tests as modified by developers. We use the same approach described in Section 2.1.2 to 

identify commits for creating the evaluation dataset. However, we do not consider added 

methods/tests for this purpose, because they do not have any modification history; therefore, TRec 

cannot recommend tests for them. We identify 493 commits in the projects where developers 

modify 1,867 methods and their 3,754 tests as shown in Table 2.The modified methods and tests 

may not be unique across the commits in a project. 

We next run TRec on each identified commit to recommend the top 5 tests for each 

modified method. For the recommendation, TRec considers only those TCT links extracted from 

the previous commits to the commit for which TRec recommends tests. For example, to 

recommend tests for commit Cn, TRec considers TCT links extracted from C1 to Cn-1 commits. 

Therefore, Cn is effectively a new commit for TRec. 

After the recommendation, we match the top 5 recommended tests with the developers' 

modified tests for each method. We then calculate TRec's test recall, the fraction of developers' 

modified tests included in the top 5 TRec's recommended tests for all the methods in a project. We 

also identify the rank at which developers' modified tests appear in the recommended tests. We do 

not calculate precision because it depends on how many tests developers modify for a method. For 



 

9 

example, if developers modify one test for a method, at least four of the five TRec's recommended 

tests will be incorrect, even though the tests are testing the method. 

Table 2. Evaluation dataset: developers' modified methods and the corresponding modified tests. 

Project #Commits #Modified methods 

(unique methods) 

#Modified tests 

(unique tests) 

commons-lang 288 1,022 (818) 1,717 (1,019) 

gson 62 142 (98) 544 (292) 

commons-io 143 703 (543) 1,493 (722) 

Total 493 1,867 (1,459) 3,754 (2,033) 

 

3.2. Results 

Table 3 shows the number of TCT links extracted by TRec from the projects. TRec extracts 

5,299 unique TCT links for 2,748 methods from 1,133 commits. TRec takes 3 hours 22 minutes, 

37 minutes, and 1 hour 48 minutes to extract the TCT links from commons-lang, gson, and 

commons-io, respectively. Note that this is a one-time effort.  

Figure 2. Frequency of the extracted TCT links 

 

 



 

10 

Table 3. TCT links extracted by TRec. 

Project #Commits with links #Methods with links #TCT Links 

commons-lang 673 1,737 2,798 

gson 126 186 692 

commons-io 334 825 1,809 

Total 1,133 2,748 5,299 

 

Table 4. Number of developers' modified tests in Table 2 included in the TRec's recommended 

top 5 tests. 

Rank commons-lang gson commons-io All 

1 1,033 142 697 1,872 

2 282 87 256 625 

3 123 59 148 330 

4 72 41 99 212 

5 44 28 69 141 

Total top-5 1,554 357 1,269 3,180 

Test recall 90.50% 65.63% 85.00% 84.71% 

 

Figure 2 shows the frequency of the TCT links in the commits. The median frequency value 

is one for all the projects. However, some TCT links have high frequency, reaching up to 11 and 

5 in commons-lang and commons-io, respectively. 

Table 4 shows TRec's test recommendation results. We find that TRec's recommended top 

5 tests include 3,180 of the 3,754 developers' modified tests across the projects with a test recall 

of 84.71%. TRec's test recall ranges from 65.63% in gson to 90.50% in commons-lang. Among 

the 3,180 TRec's recommended tests that match with the developers' modified tests, 1,872 tests 

(58.87%) are ranked first and 625 (19.65%) are ranked second by TRec in the top 5 recommended 

lists. TRec's recommended top 5 tests do not include 574 of the 3,754 developers' modified tests. 

We find two key reasons for this. First, developers modify more than five tests for a method. For 

example, in commit 5292526 in commons-lang, the developer modifies eight tests for newThread 

method in BasicThreadFactoryTest class. However, TRec recommends only five tests for the 



 

11 

method, missing three developer's modified tests. Second, some or all of the TRec's recommended 

top 5 tests for a method are not the same as developers' modified tests. For example, in commit 

839b0c2 in gson, the developer modifies four tests for shouldSkipField method. However, none   

of the TRec's recommended top 5 tests for this method is the same as the developer's modified 

tests. Note that TRec successfully extracts TCT links containing all the developers' modified tests 

for both examples although TRec does not recommend them in the top 5 lists. 

RQ 1: TRec's recommended tests for the 1,867 modified methods include 84.71% of the 

tests that developers' modified for the methods. Among these, 58.87% and 19.65% are ranked first 

and second in the top 5 lists, respectively. This indicates TRec's capability of successfully 

recommending the majority of tests that needed to be modified for the methods. 

3.3. Threats to Validity 

3.3.1. Construct Validity 

To extract TCT links, TRec links a test to a method if the method is invoked in the test. A 

method can be used as a helper method in a test. Therefore, the extracted TCT links in Table 3 

may include helper method and test pairs. However, unlike existing techniques that focus on 

identifying TCT links for focal methods [15], [21], our goal in this work is to identify TCT links 

containing method and test pairs that may potentially get modified together, regardless of whether 

the method is a helper or focal. 

3.3.2.  Internal Validity 

To identify candidate commits (Sec 2.1.1), TRec maps a test file to a production file if the 

test filename contains the production filename. Although developers commonly write a test 

filename by prefixing or suffixing the corresponding production filename with Test [15], 

developers may not follow this naming convention. This may have resulted in TRec not identifying 



 

12 

some candidate commits and eventually not extracting TCT links from the commits. However, this 

does not affect the recommendation results in Table 4, because the evaluation dataset in Table 2 

and the extracted TCT links in Table 3 do not include methods and tests from potentially missing 

candidate commits. 

3.3.3. External Validity 

 We evaluated TRec by recommending tests for 1,867 methods from three open-source 

Java projects. The results may not generalize beyond the studied projects. However, this is the first 

attempt to incrementally extract and update TCT links and recommend tests for modified methods 

in CI settings. 

  



 

13 

4. RELATED WORK 

Several studies have proposed different techniques to extract TCT links [24]. Rompaey and 

Demeyer proposed six different techniques to extract TCT links at the class level [15]. TRec also 

uses three of them to extract TCT links, but TRec extracts TCT links at the method level. White et 

al. proposed an approach that combines different dynamic and static analysis techniques to extract 

TCT links at both method and class levels [21]. They do not use the co-evolution technique, which 

TRec is mainly based on due to its design to work incrementally in CI environments. Sohn and 

Papadakis proposed a technique that identifies evolutionary coupling between methods and tests 

by computing the average time interval between their past changes [23]. The technique then uses 

the coupling degree to extract TCT links. Unlike this approach, TRec uses method-call analysis to 

link a test to a method. None of the approaches create/update TCT links incrementally and 

recommend tests for code changes. Only TestNForce recommends tests for code changes based on 

TCT links generated through test execution [14]. Unlike TestNForce, TRec not only 

creates/updates TCT links incrementally but also ranks all the relevant tests for code changes and 

recommends the top 5 tests for each modified method. 

  



 

14 

5. CONCLUSION 

In this paper, we proposed TRec, a regression test recommender that identifies tests for 

methods modified in a commit, ranks the tests identified for each modified method, and 

recommends the top 5 tests for each modified method to developers. We evaluated TRec by 

recommending tests for 1,867 developers' modified methods from three open-source Java projects. 

TRec's recommended tests for the methods included 84.71% of the tests that developers modified 

for the methods, indicating TRec's capability of successfully identifying and recommending the 

majority of tests needed to be modified for the methods. 

  



 

15 

REFERENCES 

 

[1]  M. W. Godfrey and D. M. German, "The past, present, and future of software evolution," 

in 2008 Frontiers of Software Maintenance, 2008.  

[2]  H. Agrawal, J. R. Horgan, E. W. Krauser and S. A. London, "Incremental regression 

testing," in 1993 Conference on Software Maintenance, 1993.  

[3]  N. Chapin, J. E. Hale, K. M. Khan, J. F. Ramil and W.-G. Tan, "Types of software 

evolution and software maintenance," Journal of software maintenance and evolution: 

Research and Practice, vol. 13, p. 3–30, 2001.  

[4]  W. E. Wong, J. R. Horgan, S. London and H. Agrawal, "A study of effective regression 

testing in practice," in PROCEEDINGS The Eighth International Symposium On Software 

Reliability Engineering, 1997.  

[5]  H. K. N. Leung and L. White, "Insights into regression testing (software testing)," in 

Proceedings. Conference on Software Maintenance-1989, 1989.  

[6]  A. K. Onoma, W.-T. Tsai, M. Poonawala and H. Suganuma, "Regression testing in an 

industrial environment," Communications of the ACM, vol. 41, p. 81–86, 1998.  

[7]  G. Pinto, M. Rebouças and F. Castor, "Inadequate testing, time pressure, and (over) 

confidence: a tale of continuous integration users," in 2017 IEEE/ACM 10th International 

Workshop on Cooperative and Human Aspects of Software Engineering (CHASE), 2017.  

[8]  A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siemborski and J. Micco, 

"Taming Google-scale continuous testing," in 2017 IEEE/ACM 39th International 

Conference on Software Engineering: Software Engineering in Practice Track (ICSE-

SEIP), 2017.  

[9]  S. Elbaum, G. Rothermel and J. Penix, "Techniques for improving regression testing in 

continuous integration development environments," in Proceedings of the 22nd ACM 

SIGSOFT International Symposium on Foundations of Software Engineering, 2014.  

[10]  T. Winters, T. Manshreck and H. Wright, Software engineering at google: Lessons learned 

from programming over time, O'Reilly Media, 2020.  

[11]  A. Van Deursen and L. Moonen, "The video store revisited–thoughts on refactoring and 

testing," in Proc. 3rd Int’l Conf. eXtreme Programming and Flexible Processes in Software 

Engineering, 2002.  



 

16 

[12]  L. S. Pinto, S. Sinha and A. Orso, "Understanding myths and realities of test-suite 

evolution," in Proceedings of the ACM SIGSOFT 20th international symposium on the 

foundations of software engineering, 2012.  

[13]  S. Makady and R. J. Walker, "Validating pragmatic reuse tasks by leveraging existing test 

suites," Software: Practice and Experience, vol. 43, p. 1039–1070, 2013.  

[14]  V. Hurdugaci and A. Zaidman, "Aiding Software Developers to Maintain Developer 

Tests," in 2012 16th European Conference on Software Maintenance and Reengineering, 

2012.  

[15]  B. Van Rompaey and S. Demeyer, "Establishing traceability links between unit test cases 

and units under test," in 2009 13th European Conference on Software Maintenance and 

Reengineering, 2009.  

[16]  A. A. Philip, R. Bhagwan, R. Kumar, C. S. Maddila and N. Nagppan, "Fastlane: Test 

minimization for rapidly deployed large-scale online services," in 2019 IEEE/ACM 41st 

International Conference on Software Engineering (ICSE), 2019.  

[17]  A. Labuschagne, L. Inozemtseva and R. Holmes, "Measuring the cost of regression testing 

in practice: A study of Java projects using continuous integration," in Proceedings of the 

2017 11th joint meeting on foundations of software engineering, 2017.  

[18]  D. Ståhl, K. Hallén and J. Bosch, "Achieving Traceability in Large Scale Continuous 

Integration and Delivery Deployment, Usage and Validation of the Eiffel Framework".  

[19]  A. Qusef, "Test-to-code traceability: Why and how?," in 2013 IEEE Jordan Conference on 

Applied Electrical Engineering and Computing Technologies (AEECT), 2013.  

[20]  N. Aljawabrah, T. Gergely, S. Misra and L. Fernandez-Sanz, "Automated recovery and 

visualization of test-to-code traceability (TCT) links: An evaluation," IEEE Access, vol. 9, 

p. 40111–40123, 2021.  

[21]  R. White, J. Krinke and R. Tan, "Establishing multilevel test-to-code traceability links," in 

Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering, 

2020.  

[22]  A. Kicsi, V. Csuvik and L. Vidács, "Large scale evaluation of natural language processing 

based test-to-code traceability approaches," IEEE Access, vol. 9, p. 79089–79104, 2021.  

[23]  J. Sohn and M. Papadakis, "CEMENT: On the use of evolutionary coupling between tests 

and code units. A case study on fault localization," in 2022 IEEE 33rd International 

Symposium on Software Reliability Engineering (ISSRE), 2022.  



 

17 

[24]  R. M. Parizi, S. P. Lee and M. Dabbagh, "Achievements and challenges in state-of-the-art 

software traceability between test and code artifacts," IEEE Transactions on Reliability, 

vol. 63, p. 913–926, 2014.  

[25]  O. Gotel, J. Cleland-Huang, J. H. Hayes, A. Zisman, A. Egyed, P. Grünbacher, A. 

Dekhtyar, G. Antoniol and J. Maletic, "The grand challenge of traceability (v1. 0)," 

Software and systems traceability, p. 343–409, 2012.  

[26]  TREC Artifacts, https://github.com/STAM-NDSU/TRec, 2024., 2024.  

[27]  T. Virgı́nio, L. Martins, L. Rocha, R. Santana, A. Cruz, H. Costa and I. Machado, "Jnose: 

Java test smell detector," in Proceedings of the XXXIV Brazilian Symposium on Software 

Engineering, 2020.  

 

 

 


