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ABSTRACT 

The problem of outliers is an old phenomenon in statistics, and it appears with surprising 

frequency in many datasets in both the natural and social sciences and can have both positive and 

negative effects on statistical analysis. Unlike the traditional approach to dealing with outliers in 

a dataset, this study considers both the base and contaminating distributions that generate outliers 

and estimates the best-fitting distribution for each separately. Using the natural conjugate prior 

distribution for the probability of occurrence, the ‘Bayesian averaging’ technique is used in a 

way that preserves most of the information in the total dataset. The KS-test and AD-test statistics 

were computed by contrasting the simulated to the actual data distribution to obtain the 

comparative metric. Analysis of seven sample datasets (each containing outliers) indicated that 

these alternate simulation procedures provided a stronger goodness-of-fit to the historical data 

when compared to other, more traditional approaches. 
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1. INTRODUCTION 

A significant amount of research has been dedicated to developing efficient outlier 

detection techniques that consider efficiency, data dimensionality, and accuracy, among many 

other factors. Traditionally, data cleaning was at the core of outlier detection so that parametric 

statistical models would fit the training data more smoothly (Boukerche, Zheng, and Alfandi 

2021). In recent times, more attention has been shifted to the outliers themselves because they 

represent information of interest. Outlier detection and labeling have been applied to a variety of 

real-life scenarios, including system diagnosis related to host-based intrusion detection systems, 

mechanical-based systems, and UNIX systems, among others.    

Most of these systems, such as medical diagnosis, intrusion detection, and biological 

applications, generate discrete-valued temporal sequences. In biological applications, the data 

may contain sequences of amino acids in which anomalous sub-sequences can present unusual 

properties of genome sequences. On the other hand, in medical anomaly diagnosis, medical 

equipment is used to collect data on potential disease risks (Akram et al. 2021), while in 

intrusion detection systems, malicious activities are detected through collected data. These 

discrete sequences are caused by temporal ordering in certain fields, such as intrusion detection 

and systems diagnosis, whereas physical ordering is the reason in others, such as biological data 

(Aggarwal 2017).  

In time series, outliers are either contextual or collective anomalies. Outliers are 

contextual when large subsequences within a time series have unusual shapes. Contextual 

outliers have values at specific time stamps that suddenly change with respect to their temporary 

adjacent values.  
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 Aggarwal (2017) defines a sequence as an ordered set of symbols, a1, a2, . . . ar drawn 

from the symbol set Σ = {𝜎1, … , 𝜎|𝑎Σ|}. In the most general form, a sequence can also be defined 

as an ordered set of sets S1, S2, . . . Sr, where each Si is a subset of Σ. Consequently, the common 

regression-modeling methods used for identifying anomalies in continuous data are challenging 

to apply in this context. However, outliers can be defined either by their divergence from 

expected values at certain timestamps or by unusual sequential arrangements of sequence values. 

The goal is to create a discrete predictive or regularity model that mirrors its continuous 

counterpart. Just like with continuous data, outliers are categorized into two types based on 

whether individual locations are viewed as outliers or if combinations of symbols are seen as 

outliers. In a position-based model, values at specific locations are forecasted to measure the 

deviation from a model and identify certain positions as outliers. Predictive outlier detection 

employs Markovian techniques. When dealing with outliers, an entire symbol combination is 

used to assess if the complete test sequence is atypical. 

1.1. Problem Statement 

The presence of outliers in a data set can introduce severe bias when utilizing distribution 

fitting procedures such as the Bestfit procedure in Palisade's @Risk Monte Carlo simulation 

software. The usual approach of ignoring or discarding outlier observations ignores useful 

information that may be present in these observations. Outliers are generally produced from a 

separate "contaminating" distribution (Hawkins 1981) that may assert their presence from time to 

time. Therefore, the true underlying stochastic process is likely to be a probability-weighted 

combination of the "base" and "contaminating" distributions. Outliers in a sample will show such 

characteristics as large gaps between 'outlying' and 'inlying' observations and deviations between 

the outliers and the group of inliers as measured on a standard scale. (Hawkins, 1980). 
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1.2. Research Goals 

The primary goal of this study is to develop and evaluate an improved procedure for 

fitting statistical distributions to data in the presence of "contaminating" outlier distributions. 

This alternative procedure will be applied to a variety of real-world datasets and compared to 

traditional methods using non-parametric statistical goodness-of-fit tests (Kolmogorov-Smirnov 

and Anderson-Darling) as the primary comparison metrics. 

This alternative procedure begins with dividing the candidate dataset into "base" and 

"contaminating" distributions using one of three alternative outlier labeling methods: 1) the 

modified Z-statistic proposed by Iglewicz and Hoaglin (1993), 2) an approach using the 

interquartile range (IQR) proposed by Tukey (1977), and 3) an approach using k-means 

clustering (MacQueen, 1967) to divide the dataset. The three approaches were all compared 

using the Kolmogorov-Smirnov and Anderson-Darling statistics for goodness-of-fit for each 

dataset. 

Once the dataset was divided into the "base" and "contaminating" subsets, the Bestfit 

procedure contained in the @Risk (Palisade, 2022) computer software was used to find the best-

fitting statistical distributions for each subset individually. For simulation purposes, these 

individual subset distributions were combined using a technique known as "Bayesian averaging," 

where the frequency of draws from each individual distribution is based upon the prior 

probability distribution using a beta or multivariate beta (i.e., Dirichlet) distribution to generate 

random probabilities for each subset based upon their observed frequency in the actual dataset. 

To calculate the comparison metric, the Kolmogorov-Smirnov and Anderson-Darling test 

statistics were estimated by comparing the actual sample data to the Monte Carlo simulated data 

from each alternative approach (simulated at the same exact sample size as the original data). 
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Lower values of the test statistics would indicate a stronger goodness-of-fit between the actual 

and candidate data distributions. Two traditional procedures where Bestfit is applied to the entire 

original dataset (i.e., ignore the presence of outliers) and where identified outliers are discarded 

from the estimation dataset were also included in the comparisons. 

1.3. Relevance of the Study 

The problem of outliers is one of the oldest in statistics, and it appears with surprising 

frequency in many datasets in both the natural and social sciences. Most previous studies focused 

upon the identification of outliers using either labeling or statistical procedures but generally 

handle them using one of three methods: (1) just ignore their existence and estimate a best-fitting 

distribution to the total dataset using a "fat-tails" distribution such as the Pareto; (2) remove the 

offending observations from the dataset and estimate a best-fitting distribution upon the 

remaining values; or (3) use a non-parametric distribution based upon order-statistics (such as 

the median as a measure of centrality) to minimize the influence of the offending values. 

This study is unique in that it directly attacks the outlier problem by considering both the 

"base" (or natural) distribution generating the data and the "contaminating" distributions that 

generate outliers and estimating best fitting distributions separately to each. Using the natural 

conjugate prior (beta or Dirichlet) distribution for the probability of occurrence, the distributions 

are combined in a manner that effectively preserves most of the information in the total dataset. 

This improved method can be used by practitioners of Monte Carlo simulation modeling to more 

accurately reflect historical data distributions that have a significant number of outliers present in 

the historical data. 



 

5 

1.4. Organization 

The next section (Chapter 2) contains a review of the relevant literature organized in 

subsections by topic. Chapter 3 presents a discussion on the theory and conceptual framework of 

the study. It discusses the procedure and methodological approaches employed in the study, 

including background on the outlier labeling procedures, the statistical tests employed, and a 

discussion of the seven sample data sets used for the analysis. Chapter 4 contains a description 

and characteristics of the data series. Chapter 5 presents the empirical results and discussion of 

the labeling procedures, distribution fitting, and statistical goodness-of-fit comparisons using the 

Kolmogorov-Smirnov and Anderson-Darling statistics. Chapter 6 summarizes the major 

observations from the empirical analysis and recommendations for future studies. 
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2. LITERATURE REVIEW 

Outliers have varied interpretations despite its general understanding. It has been defined 

and interpreted by many professionals (Iglewicz & Hoaglin, 1993a). In 1960, Grubbs likely 

provided the first definition of outliers (Boukerche et al., 2021a): "An outlier is a deviation that 

appears to deviate markedly from other members of the sample in which it occurs." Hawkins 

(1980) defines outliers similarly "as an observation that deviates so much from other 

observations as to arouse the suspicions that it was generated by a different mechanism." 

Alternatively, outliers can also be noise that harms a data process, distorts, and affect statistical 

conclusions (Yang et al., 2019). It makes their use inaccurate because of the presence of 

biasedness. Similarly, Aggarwal (2005) referred to outliers as deviants, discordance, 

abnormalities, or anomalies in data mining and statistics literature.  

2.1. Genesis of Outliers 

Outliers and anomalies are common words with almost similar meanings used 

interchangeably for outlier detection. However, Ajith Kumar et al. (2019) argued that the terms 

have different meanings. The motive behind outlier detection is to find the type of abnormality in 

any data set that can be identified as an outlier. Boukerche et al. (2021) placed a strong emphasis 

on the subtle difference between them. While anomalies suggest a different understanding of the 

underlying generative mechanism, outliers highlight statistical rarity and deviation, and whether 

they are generated by a different mechanism is not directly addressed. Anomalies are the 

preferred term in supervised learning since there is solid advice to represent the aberrant 

generating mechanism. Unsupervised learning approaches, on the other hand, rely on the 

inherent distribution or structure of the data to quantify the deviation from the norm, hoping that 

the detected outliers reflect the anomalies of interest owing to a lack of solid guidance. As far as 
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statistics and machine learning are concerned, outliers are those instances of data (sometimes

erroneous data points) that complicate fitting a particular model  One can either remove outliers

or use robust models to minimize their impact.

Many factors can contribute to outliers, including data errors, variable construction,

omitted variables, sampling errors, and non-normality. What constitutes a sufficient deviation for

a point to be considered an outlier is often a subjective judgment  (Lightfoot and O’Connell

2016). Usually, deviations of interest are those that have a significant impact on the data. Various

mechanisms give rise to samples that show outliers in them. In one mechanism, data proceeds

from a heavy-tailed distribution. Hawkins (1980) classifies statistical distributions into two

families,  including outlier-prone and outlier-resistant families,  respectively. Outlier-prone

families  tend  to have tails that approach zero slowly. An outlier-prone  family  is said to be

absolute if there exists ε, δ > c > 1, δ >  0, and n0  > 0 such that:

Pr  [𝑋𝑛,𝑛  −  𝑋𝑛,𝑛−1  −  1  >  ε]  ≥  δ  for all n >  𝑛0  (1)

Pr  [𝑋𝑛,𝑛/𝑋𝑛,𝑛−1  −  1  >  𝑐]  ≥  δ  for all  n >  𝑛0  (2)

where  𝑋𝑛  is  the statistic  based on sample size n  and  𝑛0  is  an  integer.

There  is  a propensity for the  most significant order statistic to be suspiciously large

compared to its predecessors if either of  these conditions holds. Absolute and relative outlier-

resistant distributions are not absolute and relative outlier-prone,  respectively. The former class

includes the normal family distributions,  and the latter the gamma family (Hawkins, 1980). In

the second mechanism, data proceeds from two distributions: primary and contaminating. Basic

distribution generates good observations,  while contaminating distribution generates

contaminants. Contaminating distributions with heavier tails are more likely to be outliers than
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basic distributions because they can be separated from the good observations, which become 

inliers. 

2.2. Outlier Categorization 

Outliers can be organized categorically in different ways. First, outliers can be 

categorized based on the number of data instances involved to comprise an abnormal pattern, 

such as point outliers and collective outliers (Smith & Bryant, 1975). A point outlier can be 

defined as an individual that deviates mainly from the rest of a dataset. Point outliers can be 

further subclassified as local outliers and global outliers based on the scope of comparison. 

Whereas the detection of local outliers relies on the differences in characteristics between an 

outlier and its nearest neighbors, global outliers differ significantly from the entire dataset. The 

concept of local outliers was first introduced by Breunig et al. (1999). Collective outliers are a 

group of occurrences that appear anomalous from the rest of an entire dataset (Boukerche et al., 

2021b). 

Outliers can also be categorized based on the type of input data, that is, vector outliers 

and graph outliers (Boukerche et al., 2021b; Zhang, 2013). Graph outliers are associated with 

graph data, while vector outliers are associated with vectorlike multidimensional data. Multiple 

attributes are related to a vectorlike data point, each with a numerical categorical value. The 

interdependencies between data objects are best represented by the nodes and edges that make up 

graph data. Examples include node outliers, edge outliers, and subgraph outliers (Zhang, 2013). 

2.3. Data Modeling and Detection of Outliers 

In all outlier detection algorithms, the normal patterns in the data are modeled first, then 

the deviations from these patterns determine the outlier score for a given data point. Following 

Aggarwal (2017), a data point's outlier score is computed by evaluating the quality of its fit to 
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the model. Many times, the model is algorithmically defined. By analyzing the distribution of its 

k-nearest neighbor distance, nearest neighbor-based algorithms can predict the outlier tendency 

of a data point. In this case, outliers are assumed to be located at a distance from the majority of 

the data. It is thus assumed that outliers are located far from the majority of data in this case. The 

underlying presumption is that outliers are spread widely apart from most of the data. There is no 

doubt that the choice of the data model is crucial. Poor results may be produced from an 

incorrect choice of data. For example, Aggarwal (2017) shows that if underlying data is clustered 

arbitrarily, a linear model may not work.  

Comparably, the Gaussian mixture model may not work if sufficient data points are not 

available to learn the parameters of the model. As a result, outliers are sometimes reported 

incorrectly due to poor fit of the erroneous assumptions of the model. Distinguished from 

supervised data mining problems where there are labeled examples to learn the best model, 

outlier detection is largely an unsupervised problem with few examples to learn the best model 

for a particular data set. Hence, it is important to carefully evaluate the relevant modeling 

properties of a data domain before constructing an effective model for it. Again, there are trade-

offs that exist with model choice. A simple model created with an understanding of the data will 

likely produce much better results compared to a highly complex model with too many 

parameters which overfits the data and outliers. However, an oversimplified model is likely to 

declare normal patterns as outliers. 

2.4. Classification of Outlier Detection Methods 

There are different methods associated with outlier detection depending on the type of 

data. For time series data, Ajith Kumar et al. (2019) identified five methods: 
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2.4.1. Clustering 

The dataset is separated into several clusters based on mathematical distance or another 

metric. A point is then termed an outlier if the point does not belong to any of the clusters (i.e., a 

single point cluster). This method is used for supervised detection and sometimes for semi-

supervised detection). 

2.4.2. Density Estimators 

A point is considered to be an outlier based on assigned weights to points in a dataset. This 

method does not give a binary result, and it is based primarily on the relative neighborhood theory. 

Thus, whether an observation is considered an outlier or not depends upon the mathematical 

distance of the observation to its neighborhood centroid value. 

2.4.3. Classifiers 

Classifiers are widely used in statistical and machine-learning applications to assign a 

label or category to a data point based on its attributes. There are various types of classifiers, 

including logistic regression, naïve Bayes, K-nearest neighbors (KNN), support vector machines 

(SVM), decision trees, random forests, and neural networks. The choice of the classifier depends 

on the specific task and characteristics, such as the number of classes, the distribution of the 

features, and the size of the training dataset. In a review of various classifiers used in machine 

learning, Kotsiantis et al. (2007) noted that the performance of a classifier is dependent on 

factors such as the number of classes, the dimensionality of the feature space, the size and quality 

of the training dataset, and the nature of the decision boundary. Under this method, a model is 

established for historical time series data using either a regression model or a vector regression 

model. One of the novel applications of this approach is the graph-based outlier detection 

technique. The Classifier-based outlier detection technique is used in machine learning to detect 
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anomalous data points in a dataset. In this approach, a classifier is trained on most of the data 

points. It is then used to predict the class label of each data point. Data points assigned different 

class labels than the majority are considered outliers. The classifier-based outlier detection 

technique was applied to Wireless Sensor Networks (WSN) data with success, and the results 

were promising. Janakiram et al. (2006) proposed the use of an outlier detection scheme based 

on Bayesian belief networks, which captured the conditional dependencies among the 

observations of the attributes to detect outliers in the sensor streamed data in WSN. Their 

approach improves accuracy in detecting the outliers and missing values, demonstrating its 

effectiveness and reliability. 

2.4.4. Fixed Size Windows 

The fixed size windows are a subset of consecutive observations within observations 

within a dataset that have a pre-determined size or length. They are used in time series analysis 

and signal processing to compute statistical measures within a specific time interval or window. 

This methodology is dependent on the observation that a longer time-variant series can be 

separated into fixed smaller time series windows. Outliers can then be searched for after the 

division. There is the possibility of an outlier showing in the window if there was an outlier in 

the original time series. Compared with factor-based approaches, the method shows a significant 

level of performance.  

2.4.5. Distance Measures 

Knox and Ng (1998) first introduced the distance-based outlier detection techniques. 

According to them, "An object p in a dataset DS is a DB (q, distance) outlier if at least fraction q 

of the object in DS lies at a greater distance than the distance from p". The simple approach was 

improved by adding a rank based on the distance and using the rank as an outlier score by 
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(Ramaswamy et al., 2000.). A new concept, hubness-awareness was introduced to increase the 

efficiency of distance-based outlier analysis and the results were shown to be promising when 

applied on multidimensional datasets. In predicting the efficiency of the algorithm performance, 

the structural characteristics of the problem play an important role. The metadata of the problem 

can be extracted and used as an important parameter towards the outlier analysis and detection 

approach. (Ajith Kumar et al. 2019). 

2.5. Outlier Labeling Techniques 

There are many statistical techniques used for outlier identification. This paper discusses 

two kinds of outlier detection methods: formal tests and informal tests. Formal tests are usually 

referred to as tests of discordancy while informal tests are referred to as outlier labeling methods. 

2.5.1. Formal Tests 

Formal tests are usually based on the assumption of well-behaving distribution, and if the 

extreme value is an outlier of the distribution regardless of whether it deviates from the 

distribution. There are tests for single outliers and tests for multiple outliers. The choice of these 

tests largely depends on number and type of target outliers, and type of data distribution (Acuna 

and Rodriguez 2004). Iglewicz & Hoaglin, (1993b) and Barnett and Lewis (1994) have discussed 

various tests according to the choice of distributions.  

2.5.1.1. Grubbs Test 

The Grubbs test is also known as the Pearson-Hartley or the Extreme Studentized Deviate 

tests for a single outlier. Although Grubbs (1950) is the primary source, it might be challenging 

to find the actual source for the G statistic as it is described by sources like Wikipedia and NIST. 

Grubbs' test is defined as G = max|xi – u|/s where u is the sample mean and s is the sample 
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standard deviation. It is used to detect a single outlier in a univariate data set that follows an 

approximately normal distribution (Grubbs 1969 and Stefansky 1972).  

2.5.1.2. Dixon Test 

While the Grubbs test is used for relatively large sample size (N>30), the Dixon test 

(Dixon, 1950) is used for small sample size (N<30). The Dixon test also tests for single outliers 

and is considered superior to the Grubbs test. The idea is to compare the gap between the 

smallest or largest value and its adjacent value to the range, given a test statistic.  

2.5.1.3. T-tests 

The t-test is a statistical test used to determine if there is a significant difference between 

the means of two groups. It is commonly used in hypothesis testing to compare the means of two 

samples, such as the mean test scores of two groups of students. The t-test is based on the t-

distribution, which is a probability distribution that considers the sample size and standard 

deviation of the samples being compared . There are two types of t-tests: the independent-

samples t-test and the paired-end t-test. The independent samples t-test is used to compare the 

means of two independent groups, while the paired samples t-test is used to compare the means 

of two related groups, such as before and after treatment.  

2.5.1.4. ANOVA Test 

Compared to T-test, ANOVA is used when comparing means of three or more 

independent groups or samples. ANOVA assumes homogeneity of variances between all groups 

being compared.  In other words, T-test is a special case of ANOVA, where there are only two 

groups. If the assumption of variance homogeneity is violated, a modified version of ANOVA 

called the Welch's ANOVA can be used. There are several different types of ANOVA tests, 

including one-way ANOVA, two-way ANOVA, and repeated measures ANOVA.  
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2.5.1.5. Wilcoxon rank-sum test 

The Wilcoxon rank-sum test, also known as Mann-Whitney U test, is a nonparametric 

statistical test used to compare two independent samples. It is often used as an alternative to the 

T-test when the assumption of normal distribution is violated, or when the data is ordinal or 

skewed. The Wilcoxon rank-sum test involves ranking all the observations from both groups and 

calculating the sum of ranks for each group. The test statistic is then calculated as the smaller of 

the sum of ranks for the two groups, and the expected value of this statistic under the null 

hypothesis is calculated using a reference distribution (Mann, H. B., & Whitney, D. R., 1947) 

2.5.1.6. Kruskal-Wallis H test 

The Kruskal-Wallis H (1952) test is a nonparametric statistical test used to compare the 

means of two or more groups. It is similar to the ANOVA, but it is more robust and can be used 

when the assumptions of the ANOVA are not met, that is assumption of normality is violated, or 

when the data is ordinal or skewed. The Kruskal-Wallis H test involves ranking all the 

observations from all groups combined and calculating the sum of ranks for each group. The test 

statistic is then calculated as a function of the sum of ranks, and the expected value of this 

statistic under the null hypothesis is calculated using a reference distribution.  

2.5.1.7. Chi-square test of independence 

The chi-square test of independence is a non-parametric test used to determine whether 

there is a significant association between two categorical variables. The test statistic is calculated 

by summing the squared differences between the observed and expected frequencies and 

dividing by the expected frequencies. The resulting chi-square statistic follows a chi-square 

distribution with (r-1) (c-1) degrees of freedom, where r is the number of rows in the 

contingency table and c is the number of columns. This statistic is then compared to a critical 
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value to determine whether the two variables are independent. If the chi-square statistic is greater 

than the critical value, then the two variables are dependent. Chi-square test of independence can 

be used to test for independence in a variety of situations, including comparing proportions, 

testing for association, and testing for goodness of fit. 

2.5.2. Informal Tests 

Conversely, informal labeling tests involve flagging potential outlier erroneous data, 

indicative of an inappropriate distributional model for further investigation. Most informal 

outlier labeling approaches create an interval or criterion for outlier detection rather than doing 

hypothesis tests, and any observations that fall outside of the interval or criterion are regarded as 

outliers. Even though the labeling approach is typically straightforward to apply, if the outliers 

are specified as just data that differ from the assumed distribution, then some observations 

outside the interval may be incorrectly detected after a formal test.  

Unlike the formal test, z-score, a labeling method measures how far the mean is from a 

data point. It can be place on a normal distribution curve and ranges from -3 standard deviations 

up to +3 standard deviations. The modified z-score, more robust to the z-score, measures outlier 

strength or how much more the scores differ from the typical score.  

Tukey's (1977) robust IQR method(boxplot) for labeling outliers is a graphical tool for 

displaying information about continuous univariate data, such as the median, lower quartile, 

upper quartile, lower extreme, and upper extreme of a data set.  

2.5.2.1. Z-Score 

The z-score or standard score of an observation is a metric that indicates how many 

standard deviations a data point is from the sample's mean, assuming a gaussian distribution. Z-

scores are a means of expressing the deviation of a given anatomic or physical measurement 
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from a size- or age-specific population mean (Curtis et al. 2016) This makes z-score a parametric 

method. the z-score of any data point can be calculated with the following expression: 

Z = 
(𝑥−𝜇)

𝜎
 

where χ = the observed measurement,  

μ = the expected measurement (population mean), and  

σ = the population standard deviation 

When the Z-score is above the population mean it will have a positive value, while when 

it is below the population mean it will have a negative value. The greater the deviation from 

zero, the greater the magnitude of the deviation (Curtis et al. 2016).  

Z-score can be used in different fields, such as agriculture, health, and business, among 

many others, to determine an outlier. Curtis et al., (2016) demonstrated using Z-scores in 

measuring the thoracic to determine treatment strategies in aneurysmal disease.  The Z-scores 

allowed them to determine whether actual pathology exists, which can be challenging in growing 

children. In addition, Z-scores allow for thoughtful interpretation of aortic size in different 

genders, ethnicities, and geographical regions. The advantage of the Z-score is its inclusion of 

body surface area (BSA) in determining whether an aorta is within normal size limits. An aorta 

outside the regular size limits presents itself as an outlier and, hence of interest for treatment.  

For a Z-score to be calculated, the mean and standard deviation for that body structure 

(e.g., aortic root diameter) was determined in the population. The mean and standard deviation 

were calculated in many individual studies of varying sample sizes. The individual studies were 

used to generate nomograms. A parameter of interest (e.g., aortic root diameter) was then 

recorded for each individual, allowing the generation of a scatterplot (Figure 1) and the 

calculation and plotting of a regression equation and confidence intervals. The scatterplot was 
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transformed into a nomogram (Figure 1B), allowing them to determine the Z-score for an 

individual patient given their BSA and parameter of interest (e.g., aortic root diameter). As a 

result of their extensive evidence base, Z-scores are a convenient tool for diagnosing and 

monitoring cardiovascular disease and for determining treatment efficacy in aortic aneurysms. 

 

Figure 1.  Panel A. Scatterplot of individual patient data illustrating the relationship 

between body surface area and diameter of the Sinuses of Valsalva. Solid line regression 

= equation; dashed line = confidence Intervals. Panel B. Nomogram generated from the 

scatterplot in Panel A for determining individual Z-score according to body surface area 

and diameter of the Sinuses of Valsalva (Curtis et al. 2016). 

 

2.5.2.2. Cook's Distance 

There are many techniques to remove outliers from a dataset. One method that is often 

used in regression settings is Cook's Distance (D).  It has been studied by several authors, such as 

Cook (1977), Besley et al., (1980 p. 201) under Gaussian errors, the identification problem of 

outliers or influential data in univariate or multivariate linear regression. In regression analysis, 

Cook's distance, Di, is used to identify outliers in a set of predictor variables, which can 

negatively impact your model. In other words, it's a way to identify outliers. Cook's distance is 
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determined by combining the leverage and residual values of each observation, the higher the 

leverage and residuals, the greater the distance. Technically, Cook's D is calculated by removing 

the ith data point from the model and recalculating the regression. It summarizes how much all 

the values in the regression model change when the ith observation is removed. The formula for 

Cook's distance is: 

 𝐷i = 
 ∑  (�̂�𝑗

𝑛
𝑗=1  − �̂�𝑗(𝑖))2

(𝑝+1)�̂�2   (3) 

For example, Jagadeeswari et al. (2013) used Cook's distance to identify outliers in 

agriculture datasets. They used the Principal Component Analysis-Minimum Volume Ellipsoid 

(PCA-MVE), which is one of the data techniques along with Cook's distance. To do this, he 

applied the technique of Gentleman and Wilk (1975) and John and Draper (1978), who 

investigated the problem of detecting outliers in a two-way table and provided a statistic, Qk, 

which is difference between the sum of square of residuals from original data and sum of squares 

revised residuals resulting from fitting the basic model after deleting K-influential observations.  

The Cook statistics also detect the outlying observations in experimental data. The results 

showed that such detection of the outliers helps in identifying errors in agriculture data set. 
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3. THEORY AND CONCEPTUAL FRAMEWORK 

3.1. Research Procedure  

This section briefly describes the procedure used in the study. To start the study, we 

asked faculty members of the Department of Agribusiness and Applied Economics for ideas 

about data containing potential outliers. We got some suggestions like the whole electricity data 

and spreads data. We had seven (7) candidate data series for the study (refer to the chapter for 

data description). We then applied Grubb’s test in XLSTAT (Addinsoft., 2023), an add-in 

software for Microsoft Excel, to confirm the presence of outliers in the candidate series. The 

results from Grubb’s test confirmed the presence of outliers in all the candidate series.  

Once we confirmed the presence of outliers in all the candidate series, we applied the 

outlier labeling procedures: Z-Score, Tukey IQR, and K-means clustering to each series. Each 

dataset for each candidate series was divided into base datasets and upper datasets or lower 

datasets if indicated by the labeling procedures. We fitted distribution to each candidate labeled 

set using @Risk (Palisade Software., 2023), an add-in software for Microsoft Excel. We ignored 

the outliers for full datasets, which is one candidate dataset. We removed outliers for truncated 

datasets identified by the modified Z-Score procedure. For each labeling procedure used, we 

labeled the separated datasets as base datasets, and upper outlier dataset if indicated or lower 

outlier dataset if indicated. The lower datasets were transformed by taking the negative transform 

so that we could fit more long-tailed skewed distributions. Each of the labeled dataset was then 

combined using the Bayesian Averaging Procedure (described in section 3.4.1). In the case of 

two outlier distributions, we use the beta distribution to generate random probabilities for each 

subset based on their observed frequency in the dataset. Similarly, we used multivariate beta 
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(i.e., Dirichlet) for three outlier distributions to generate random probabilities for each subset 

based on their observed frequency in the actual dataset.  

 Finally, we compared the Goodness-of-Fit to the actual dataset using the Two-Sample 

KS and AD Tests. That is, we compared the CDF of the datasets to actual datasets. For fitting the 

distributions, we used the one-sample test where we had a candidate and tested where the 

candidate fit the data.  

3.2. Labeling Procedures Utilized in the Study 

Labeling outliers involves identifying extreme values in a data set and assigning them a 

label or category. Labeling is essential to data analysis and interpretation, allowing us to organize 

and understand complex data sets. One approach to labeling outliers is using statistical methods 

to identify data points significantly different from the rest of the data. For example, the modified 

z-score and Tukey IQR methods are commonly used techniques for identifying outliers based on 

their distance from the mean or quartile ranges respectively (Aggarwal, 2017). The objective of 

the procedure is to flag potential outlier erroneous data indicating an inappropriate distributional 

model (Iglewicz and Hoaglin, 1993) of the datasets and to compare them using the Kolmogorov-

Smirnov statistic goodness of fit test and the Anderson-Darling test. These two tests are 

considered the basis of comparison to ensure consistency, coherence, and correspondence.  

3.2.1. Modified Z-Score 

The standard Z-score is sensitive to the influence of values and can be affected by 

outliers in a dataset. Two estimators of Z-score: sample mean (�̃�) and sample standard deviation 

can be affected by extreme values or even a single value. To avoid this problem, the median and 

the median of the absolute deviation (MAD) are employed in the modified Z-score (Iglewicz and 

Hoaglin, 1993). MAD is one of the basic robust methods which is not affected by the presence of 
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extreme values in a dataset (Burke, 1998). The median and MAD must first be estimated to 

calculate the modified Z-score for a data point. The median is the middle value of data sorted 

into ascending order. The sample mean has a breakdown point of approximately 50%, but the 

exact percentage depends on the sample size, even or odd. The breakdown point of the median 

for n odd is �̃� = xm or 100((n-1)/2)/n% = 50((1-1)/n)% and the corresponding n even is �̃� = 

(xm+xm+1)/2 or 100((n-2)/2)/n= 50((1-2)/n). MAD is defined as follows: 

2MAD Method: Median ± 2MAD 

2MAD Method: Median ± 2MAD, where MAD = 1.483 x MAD for large normal data 

and is an estimator f the spread in a data. 

MAD = median {|𝑥𝑖 − �̃�|}, where �̃� is the sample mean.  

The modified z-score method assumes that if the data is usually distributed, 

approximately 50% of the values should have a z-score between -1.96 and 1.96, while 95% of 

the values should have a z-score between -2.58 and 2.58 (Iglewicz & Hoaglin, 1993). However, 

in practice, many data sets may not be normally distributed, and extreme values or outliers can 

significantly affect the mean and standard deviation. The modified z-score method is designed to 

be more robust in these situations and is less likely to incorrectly identify legitimate data points 

as outliers. The modified Z-score can be computed as 

 Mi = (
0.6745(𝑥𝑖 − �̃�)

𝑀𝐴𝐷
) (4) 

 

 

  

   

 

where E(MAD) = 0.675σ for large normal data.

Iglwicz  and Hoaglin, (1993) suggested that observations are labeled outliers when |Mi| >

3.5 through the simulation based on pseudo-normal observations for sample sizes  10,20 and 40.

We  selected the  Modified Z-Score  option in  the  Grubb’s procedure  in  XLSTATS, an add-

in software for  Microsoft Excel  for the candidate datasets.  All scores greater than or equal to 3.5
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were labeled upper datasets for each of the series. All scores less than or equal to -3.5 were 

labeled lower datasets for each series while scores outside of these ranges labeled as base 

datasets for each of the series.  

3.2.2. Tukey’s Interquartile Range (IQR) 

Tukey's interquartile range (IQR) is a statistical technique for identifying outliers in a 

data set. It is based on the difference between the upper and lower quartiles of the data and is less 

sensitive to extreme values than other outlier detection methods that use the mean and standard 

deviation. The interquartile range is a valuable tool for describing the spread of a given set of 

data or distribution. It is typically used when there are outliers present in the distribution in the 

distribution or the distribution is skewed. The interquartile range value is estimated by 

subtracting the first quartile (Q1) from the third quartile value (Q3). The population IQR for a 

continuous distribution is defined to be: 

 IQR = Q3 – Q1 (5) 

Tukey's (1977) method of constructing a boxplot is a graphical tool to display 

information about the continuous data, such as the median, lower quartile, upper quartile, lower 

extreme, and upper extreme of a data set. The method has the following rules: 

 Low outliers = Q1- 1.5IQR (6) 

 Upper outliers = Q1+1.5IQR (7)  

IQR is the difference between inner fences and outer fences. The interval with 1.5IQR 

(inner fences) is situated below the Q1 and Q3 at 1.5 IQR3 distance. The interval with 3IQR 

(outer fences) is situated below Q1 and above Q3 at 3IQR distance. The observations among the 

inner fences and outer fences are considered potential outliers (Saleem, Aslam, & Shaukat, 

2021). This approach can detect more observations as outliers as the measure of skewness in the 
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data increases (Seo, 2021). Figure 2: components of a classic boxplot show the components of 

the boxplots. In figure 3, the Tukey boxplot shows the analysis of Indiana Electricity Peak data.  

 
Figure 2. Components of a classic Tukey boxplot with Interquartile Range (IQR) illustrated. 

 

 
Figure 3. Application of Tukey boxplot to Indiana Electricity price change data. 
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We followed Tukey IQR’s procedure described above and manually calculated the IQR 

from the descriptive statistics of each of the candidate series. We applied the Q1- 1.5IQR for 

lower outliers and Q1+1.5IQR for upper outliers. Aside from the DCV data series, the lower 

outliers and upper outliers were computed for all the candidate series for each dataset.  

3.2.3. K-means Clustering 

Data clusters are frequently encountered when sampling from a population because several 

distinct subpopulations may exist within the population. It is much easier to visually detect clusters 

in univariate or bivariate data, however, the task becomes complex as the dimensionality of the 

data increases. K-means is a clustering algorithm based on a partition where the data is only entered 

into one K cluster, the algorithm determines the number of grub in the beginning and defines the 

K centroid. (Nayak et al. 2015). A data cluster can be treated collectively as one group and may 

be considered as a form of data compression (Han & Kamber, 2001). James MacQueen introduced 

K-means in 1967 (MacQueen 1967). K-means clustering uses various distance functions to 

measure the similarity among the objects. To measure the similarity among the datasets, distance 

plays a significant role. It identifies the way datasets are interrelated, how various data are similar 

and which measures are used for comparison. As a result, distance metrics functions are calculated 

based on which data are clustered. The method of K-means begins with the random selection of k 

number of objects and is represented as cluster means. For each of the residual objects, a similar 

object is assigned which helps to complete a new cluster mean depending on the distance metric 

between the object and the cluster mean. For this work, the k-means algorithm using Euclidean 

distance function was used.  

Euclidean distance is a widely used measure of distance between two points in a 

multidimensional space which is a space that obeys the axioms of Euclidean geometry (Hastie, 
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Tibshirani, & Friedman, 2009). The Euclidean distance can be calculated using the Pythagorean 

theorem: 𝑎2 + 𝑏2 = 𝑐2, and the formula can be extended to higher-dimensional spaces. In 

machine learning, the Euclidean distance is widely used to measure the similarity or dissimilarity 

between data points in a dataset. For example, in k-means clustering, the distance between each 

data point and the centroid of each cluster is calculated using the Euclidean distance (Tan, 

Steinbach, & Kumar, 2019). The Euclidean distance is also commonly used in other machine 

learning algorithms, such as k-nearest neighbors, support vector machines, and principal 

component analysis. The Euclidean distance is the prototypical example of the distance in a 

metric space and defines all the properties of a metric space (Ivanov, 2013): 

1. It is symmetric; that is, for all points p and q, d(p,q) = d(q,p) 

2. It is positive; that is, the distance between every two distinct points is a positive number, 

while the distance from any point to itself is zero. 

3. It obeys the triangular inequality. That is, for every three (3) points p, q and r, d(d,p) + 

d(q,r) ≥ d(p,r). 

 It is used in many applications such as clustering, classification, and data visualization. 

To calculate the K-means by the Euclidean distance method for each of the candidate series of 

each datasets (electricity, oats futures, DCV data, wheat daily intermarket spread and daily 

intermonth spread) we applied the K-means function in XLSTAT, an add-in software for 

Microsoft Excel, we followed the procedure: let X={x1, x2, x3, …, xn} be the set of data points 

and B={b1, b2, b3,…, bn} be the set of clusters. 

1. Define 'N' be the number of clusters. 

2. Suppose 'C' randomly selected as cluster center. 
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3. Calculate the distance of each data point from cluster centers' C' using Euclidean 

distance. 

 distxy = √∑𝑘=1
𝑚 (𝑥𝑖𝑘 − 𝑥𝑗𝑘)

2
 (8) 

4. Data point is assigned to the cluster center whose distance "dist" from cluster 

center is minimum. 

5. The cluster center is recalculated using, 

 𝑏𝑡 = (
1

𝑐𝑖
) ∑ 𝑥𝑖

𝑐𝑖
1  (9) 

6. The distance between the new cluster center and data points is calculated and data 

point with minimum distance from a particular cluster center is assigned to that 

cluster center. 

7. If no data point was reassigned then stop, otherwise repeat steps from 3 to 6. 

We then used the shadow scores to pick the optimal number of clusters from the data. 

There were three (3) categories identified for KW-W Intermarket Spread, W Intermonth Spread, 

Indiana Hub, and NEPOOL. PJM had four (4) categories while two (2) categories were identified 

for DCV data. For three (3) clusters, we labeled the third cluster as the lower outlier while the 

first cluster was labeled base and the second or middle cluser labeled as upper outlier. The DCV 

dataset had two clusters and were labeled base and upper outlier. For four clusters as was the 

case of PJM Hub, the two clusters, that is, cluster three (3) and cluster four (4) were grouped into 

the same cluster. They were then labeled in the same order as three (3) clusters.  

3.3. Distribution Fitting Procedures Used in the Study 

3.3.1. Palisade Bestfit Procedure 

The Palisade BestFit procedure is a statistical software tool available in the @Risk 

software, which is widely used in risk analysis and decision-making in various industries such as 
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finance, engineering, and healthcare. The BestFit procedure in @Risk is designed to fit input 

data to a range of statistical distributions, including normal, lognormal, Weibull, exponential, 

and other distributions. The procedure uses the maximum likelihood method (MOM) to 

determine the distribution that best fits the input data. For the distribution artist and distributions 

with poorly defined derivatives, Bestfit uses a hybrid between MOM and ordinary least squares 

(OLS) regression to calibrate the shapes of the data and the theoretical probability density 

function (PDF), cumulative distribution function (CDF) or probability mass function (PMF). 

Maximum likelihood estimator (MLE) is a statistical method used to estimate the 

parameters of a probability distribution based on a set of observed data. The basic idea of the 

MLE is to find the values of the distribution parameters that maximize the likelihood of 

observing the given data. The likelihood function is a function of the parameters that describe the 

probability of observing the data given a specific set of parameter values. The MLE estimates the 

parameter values that maximize the likelihood function, that is, the parameter values that make 

the observed data most probable. For the distribution of the candidate series, the log-likelihood 

function was derived using: 

 𝐿(𝑥; 𝛩) =
1

𝑛
∑ ln 𝑓(𝑥𝑖|𝜃)𝑛

𝑖=1  (10) 

where the xi are the n observed values, and Θ is the vector of parameter values for the 

distribution in question. The log-likelihood function with respect to the parameter vector Θ was 

maximized by taking the partial derivate of L with respect to Θ and set to zero. 

To use the Palisade Bestfit procedure contained in @Risk software, we fitted candidate 

distributions to data using MLE. The procedure compared the likelihood values for each 

candidate distribution and ranked the distributions based on parametric statistics tests (Chi-

squared), non-parametric statistical tests (Kolmogorov-Smirnov (KS) and Anderson-Darling 
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(AD) and information criterion (Akaike Information Criterion (AIC) and Bayesian (Schwarz) 

Information Criterion (BIC). However, we did not use the Chi-squared because it is better for 

discrete than continuous fitting due to binning of data. If the four criteria used (KS, AD, AIC, 

BIC) were not unanimous in their recommendations, then we used visual examination of the 

Probability-Probability (P-P) plots to break the tie. If we could not visually distinguish a 

dominant distribution, then we went with the recommendation from the BIC criterion. One of the 

significant benefits of using the BestFit procedure in @Risk is that it provides a comprehensive 

list of statistical distributions to choose from, allowing users to find the best fit for their data.  

3.3.2. Review of Kolmogorov-Smirnov Test 

The goodness of fit refers to a statistical concept that determines how well sample data 

fits a distribution from a population with a normal distribution or one with a Weibull distribution 

(Jaccard & Becker, 2019). Measures of goodness of fit summarize the difference between 

observed values and the expected values under a model to see if there is a significant difference 

between the two. Such measures can be used in statistical testing to test for the normality of 

residuals, test whether two samples are drawn from the identical distribution, or whether the 

outcome follows a specified distribution. There are several methods for assessing goodness of fit, 

including graphical methods and statistical tests: the chi-squared test, the Kolmogorov-Smirnov 

test, and the Anderson-Darling test. The choice of test depends on the specific characteristics of 

the data and the theoretical distribution being tested. For the purpose of this paper, the 

Kolmogorov-Smirnov test and the Anderson-Darling test are applied. 

The goodness of fit statistics measures the compatibility of random samples against some 

theoretical probability distribution function. The Kolmogorov-Smirnov test (K-S test or KS test) 

is a nonparametric test of the equality of continuous, one-dimensional probability distributions 
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that are used to compare a sample with a reference probability distribution (one-sample K-S test) 

or to compare two samples (two-sample K-S test). It assumes that a list of data points can be 

easily converted to a cumulative distribution function. The test uses the maximum absolute 

difference between two cumulative distribution functions. The K-S statistic, when comparing 

one data set F(x) against a known cumulative distribution function P(x), is  

 DKS = max|F(x) – P(x)| (11) 

When comparing two samples with cumulative distribution functions F(x) and G(x), the 

statistic is defined as 

 DKS = max|F(x) – G(x)| (12) 

The Kolmogorov-Smirnov Test can be graphically represented in Figure 4. 

 
Figure 4. Cumulative Probability 

 

The Kolmogorov distribution, also known as the Kolmogorov-Smirnov distribution, is a 

probability distribution that describes the maximum deviation between a cumulative distribution 

function (CDF) and a hypothetical reference distribution. The Kolmogorov distribution is used in 

statistical tests, such as the Kolmogorov-Smirnov test, to determine whether a given dataset 
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follows a specified distribution. The Kolmogorov distribution is a continuous distribution with 

support on the interval [0,1]. The probability distribution is graphically represented in figure 4. 

Its PDF is given by: 

 f(x) = 
√2𝜋

𝑥
 ∑ (𝑒)

−(2𝑘−1)2𝑥2

8𝑥2∞
𝑘=1 , k=1,2,3,... (13) 

where x is a value between 0 and 1, and the summation goes over all positive integers k. The 

Kolmogorov-Smirnov statistic for a given cumulative distribution function F(x) is 

 𝐷n = 𝑠𝑢𝑝𝑋|𝐹𝑛(𝑥)  −  𝐹(𝑥)| (14) 

where 𝑠𝑢𝑝𝑋 is the supremum of the set of distances. Intuitively, the statistic takes the largest 

absolute difference between the two distribution functions across all x values. 

The Kolmogorov distribution is important in statistical inference because it provides a 

way to quantify the goodness-of-fit of a distribution to a dataset. Specifically, the Kolmogorov-

Smirnov test uses the Kolmogorov distribution to determine whether a given dataset is consistent 

with a specified distribution (refer to figure 5). 

 
Figure  5. Illustration of the Kolmogorov-Smirnov Distribution PDF 
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3.3.2.1. One-Sample Kolmogorov-Smirnov Test Statistic 

The one-sample Kolmogorov-Smirnov (KS) test is a nonparametric statistical test that is 

used to determine whether a sample follows a specific distribution or not. The test compares the 

cumulative distribution function (CDF) of the sample with the CDF of a specified theoretical 

distribution, such as the normal distribution or the uniform distribution. The null hypothesis of 

the one-sample KS test is that the sample comes from the specified distribution, while the 

alternative hypothesis is that the sample does not come from the specified distribution. The one-

sample KS test is often used when the underlying distribution of the sample is unknown, and it is 

used to test whether the sample can be considered representative of the population. The test is 

based on the maximum absolute difference between the CDF of the sample and the CDF of the 

specified distribution. This maximum difference is called the KS statistic. The critical value of 

the KS statistic depends on the sample size and the significance level of the test. If the p-value is 

less than the significance level, typically 0.05, then the null hypothesis is rejected, and it is 

concluded that the sample data does not come from the theoretical distribution being tested. The 

empirical distribution function Fn for n independent and identically distributed (i.i.d.) ordered 

observations Xi is defined as  

 𝐹𝑛 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 (𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 ≤ 𝑥)

𝑛
=

1

𝑛
∑ 1(−∞,𝑥]

𝑛
𝑖=1 (𝑋𝑖), (15) 

Where 1(−∞,x](𝑋𝑖) is the indicator function and equal to 1 if 𝑋𝑖 ≤ 𝑥 and 0 otherwise. 

3.3.2.2. Two-Sample Kolmogorov-Smirnov Test Statistic 

The K-S test may also be used to test whether two underlying one-dimensional 

probability distributions differ. It is a non-parametric statistical test used to compare two samples 

to determine if they come from the same distribution. It is based on the maximum difference 
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between the empirical distribution functions (EDF) of the two samples. The K-S statistic is given 

by: 

 𝐷n,m = 𝑠𝑢𝑝𝑥|𝐹1,𝑛(𝑥)  −  𝐹2,𝑚(𝑥)| (16) 

Where 𝐹1,𝑛 and 𝐹2,𝑚 are the empirical distribution of functions of the first and the second 

sample respectively and sup is the supremum function. For large samples, the null hypothesis is 

rejected at level of α if 

 𝐷n,m = 𝑐(𝛼) √
𝑛+𝑚

𝑛𝑚
  (17) 

Where n and m are the sizes of first and second sample respectively. The steps involved 

in performing the two-sample KS test are as follows: 

Calculate the empirical distribution function (EDF) for each sample, which is a step 

function that assigns a probability of (1/n) for each observed data point, where n is the sample 

size. 

Compute the KS test statistic, which is the maximum absolute difference (D) between the 

two EDFs. 

Determine the critical value of the KS statistic using a significance level (α) and the 

sample sizes, either from a table or software. 

Compare the computed KS test statistic with the critical value. If the computed KS 

statistic is less than the critical value, then we fail to reject the null hypothesis that the two 

samples are drawn from the same distribution. Otherwise, we reject the null hypothesis and 

conclude that the two samples come from different distributions. 

The null hypothesis (Ho) is that the two dataset values are from the same continuous 

distribution. The alternative hypothesis (Ha) is that these two datasets are from different 

continuous distributions. It is a two-tailed test and can detect differences in both the location and 
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shape of the distributions. The two-sample KS test is a useful non-parametric statistical test that 

can be used to compare two samples without any assumptions about the underlying distribution 

of the data. It is particularly useful for small sample sizes, data with unknown or non-normal 

distributions, and data with outliers or extreme values. 

 

 

 
Figure 6. Illustration of the two-sample Kolmogorov-Smirnov statistics. Red and blue 

lines each correspond to an empirical distribution function, and the black arrow is the 

two-sample KS statistic. 

3.3.3. Review of Anderson-Darling Test 

The Anderson-Darling (AD) test (Stephens 1974) is a statistical test used to determine 

whether a given sample of data comes from a given probability distribution, such as the normal 

distribution. The test compares the sample's empirical distribution function (EDF) with the 

cumulative distribution function (CDF) of the theoretical distribution being tested. It assumes 

that there are no parameters to be estimated in the distribution being tested, in which case the test 

and its set of critical values are distribution-free. If the hypothesized distribution is F, and the 
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empirical cumulative distribution function is Fn, then the quadratic function EDF statistics 

measure the distance between F and Fn by 

 𝑛 ∫ |𝐹𝑛(𝑥) − 𝐹(𝑥)|2𝛹(𝑥)𝑓(𝑥)𝑑𝑥
∞

−∞
, (18) 

Where n is the number of elements in the sample, and 𝜳(𝒙) is a weighting function. The test was 

first proposed by Anderson and Darling in 1952 as an improvement over the more commonly 

used Kolmogorov-Smirnov (KS) test. Compared to the Kolmogorov-Smirnov test, the AD test 

considers the entire distribution of the sample data, including the tails, and assigns more weight 

to deviations. This has the advantage of allowing a more sensitive test and the disadvantage that 

critical values must be calculated for each distribution. The Anderson-Darling test statistics is 

defined as 

 𝐴𝑛
2 = ∫ |𝐹𝑛(𝑥) − 𝐹(𝑥)|2𝛹(𝑥)𝑓(𝑥)𝑑𝑥

∞

−∞
, (19) 

which is obtained when the weight function is   

 𝛹(𝑥) =
𝑛

𝐹(𝑥){1−𝐹(𝑥)}
 (20) 

If the AD test hypothesizes the underlying distribution and assumes that the data does not arise 

from the distribution, the CDF of the data can be assumed to follow a uniform distribution. The 

data can then be tested for uniformity with a distance test (Shapiro 1980). The formula for the test 

statistic A to assess if data {Y1<…<Yn}is obtained from a CDF F is 

 𝐴2 = −𝑛 −  𝑆, (21) 

where 

 𝑆 = ∑
2𝑖−1

𝑛

𝑛
𝑖=1  [ln(𝐹(𝑌𝐼)) + ln(1 − 𝐹(𝑌𝑛+1−𝑖))] (22) 

The test statistic is then compared to the critical values of the theoretical distribution. In 

this case, no parameters are estimated in relation to the cumulative distribution function F. If the 

AD statistic is greater than the critical value, we reject the null hypothesis. Otherwise, we fail to 
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reject the null hypothesis. The AD test is a powerful tool for testing whether a sample of data 

comes from a specific probability distribution. It is particularly useful for testing normality or 

other specific distributions. However, like all statistical tests, it is important to interpret the 

results in the context of the specific problem being addressed. 

3.3.3.1. Review of One-Sample Test 

The one-sample Anderson-Darling test is a statistical test used to determine if a given 

sample of data comes from a particular probability distribution, such as the normal distribution. It 

is a modification of the Kolmogorov-Smirnov test that places more emphasis on the tails of the 

distribution. The test calculates a test statistic, the Anderson-Darling statistic, which measures the 

difference between the observed distribution and the expected distribution, and a p-value that 

determines the level of significance. Also, more weight is given to the tails of the distribution being 

fitted. To check the CDF F(x) of sample X to evaluate how well it fits a continuous distribution, 

sort the sample X in ascending order: x1 ≤ x2 ≤ …xn and perform the one-sample AD test: 

 𝐴 = −𝑛 − 
1

𝑛
∑ (2𝑖 − 1)𝑛

𝑖=1  [LN(𝐹(𝑥𝑖)) + LN(1 − 𝐹(𝑥𝑛−𝑖+1))] (23) 

The null-hypothesis that { x1 ≤ x2 ≤ …xn) comes from the underlying distribution F(x) is 

rejected if AD is larger than the critical value AD. In Stephens (1974), the one-sample AD test 

was relatively easy to calculate and provided a powerful test for assessing the fit of a given 

sample of data to a particular probability distribution. The study also provided tables of critical 

values for the Anderson-Darling statistic under various distributions, including the normal, 

exponential, and Weibull distributions. Best and Rayner (2006) suggested that a well-performed 

single test of fit statistic is the AD test statistic. The one-sample Anderson-Darling test is a 

valuable statistical tool for evaluating the normality of data and the goodness of fit of statistical 
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models. Its relatively simple calculation and high power make it a popular choice for many 

applications. 

3.3.3.2. Review of Two-Sample Test 

The two-sample Anderson-Darling test is a statistical test used to determine whether two 

independent samples of data come from the same underlying distribution. The two-sample AD 

test, introduced by Darling (1957) and Pettitt (1976), generalizes to the formula: 

 𝐴𝐷 =  
1

𝑚𝑛
 ∑ (𝑁𝑖𝑍(𝑛+𝑚−𝑛𝑖)

2𝑛+𝑚
𝑖=1

1

𝑖𝑍(𝑛+𝑚−𝑖)
 (24) 

where Z(𝑛+𝑚) is the combined and ordered samples X(𝑛) and Y(𝑚), of size n and m, respectively, 

and N(𝑖) is the number of observations in X(𝑛) that is equal to or smaller than the ith observation 

in Z(𝑛+𝑚). The null hypothesis that samples X(𝑛) and Y(𝑚) comes from the same continuous 

distribution is rejected if AD is larger than the correspondent critical value.  

3.3.4. Akaike Information Criterion 

Akaike's (1974) Information Criterion (AIC) is a statistical method used for model 

selection and comparison. It is an estimator of prediction error and, thus, a relative quality of 

statistical models for a given dataset (Stoica and Selen 2004; McElreath 2018; Taddy 2019). 

Thus, AIC provides a means for model selection. AIC is based on the principle of minimizing the 

Kullback-Leibler (KL) divergence between the data's true underlying distribution and the 

model's probability distribution.  

Kullback-Leibler  (1951) (KL) is a type of statistical distance that measures how one 

probability distribution P is different from a second, reference probability distribution Q. If P is 

the data, or a measured probability distribution and Q represents a theory, model, or an 

approximation of P, then the KL divergence is the average difference of the number of bits 

required for encoding samples of P using a code optimized for Q than one optimized for P. For 
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discrete probabilities, P and Q defined on a sample space, X, the relative entropy from Q to P is 

defined as 

 𝐷𝐾𝐿(𝑃|𝑄) = ∑ 𝑃(𝑥)𝑥∈𝑋 log (
𝑃(𝑥)

𝑄(𝑥)
) (25) 

For a distribution P and Q of a continuous random variable, the relative entropy is defined to be 

the integral as 

 𝐷𝐾𝐿(𝑃|𝑄) = ∫ 𝑝(𝑥) log (
𝑃(𝑥)

𝑄(𝑥)
) 𝑑𝑥

∞

−∞
 (26) 

     

 

 

 

   

  

  

 

 

  

  

where  p  and  q  are the probabilities densities  P  and  Q

            For the stated statistical model for the datasets, let  k  be the number of the estimated 

parameters in  the model.  Let  �̂�  be the maximized value of the likelihood function for the model.

Then the AIC value of the model is

𝐴𝐼𝐶  =  2𝑘  −  2  ln  �̂�  (27)

The AIC penalizes models with more  parameters since such models are more complex

and may overfit the data.  Lower AIC values indicate a better trade-off  between model

complexity and goodness of fit. Hence the model with the least AIC value  is considered the best

model among the competing models.  The AIC is  a simple and flexible method for model

selection that can  be applied to various models.  It is  more reliable  than other  methods because it

is a principled method  that considers both  model complexity and goodness of fit  rather than one

of these factors. However,  AIC does not  measure uncertainty related to  model  selection.  It  is

only applicable to models  that are  based on  MLE.  Finally, the AIC values may not be meaningful

if the  models are wrongly specified.  Using  XLSTAT, an add-in  Microsoft Excel  AIC was

applied  among competing models and  compared to the BIC's model selection.
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3.3.5. Bayesian Information Criterion 

The Bayesian Information Criterion (BIC) has a theoretical foundation in Bayesian 

statistical analysis, especially the Bayes Factor ((Kass and Raftery 1995; Kass and Wasserman 

1995; Kass and Vaidyanathan 1992; Kuha 2004). BIC is a statistical measure used to compare 

different models and select the one that best fits the data while considering the complexity of 

each model. The computation of BIC is based on the log-likelihood, does not require the 

specification priors, and is closely related to the AIC (Schwarz 1978). Thus, BIC appeals in 

many Bayesian modeling problems where priors are hard to set precisely. It is possible to 

increase the likelihood by adding parameters when fitting models. However, this may lead to 

overfitting. The BIC is defined as 

 𝐵𝐼𝐶 = 𝑘 ln(𝑛) − 2 ln(�̂�) (28) 

 

   

   

   

   

  

 

  

  

 

where:

�̂�  = the maximized value of the likelihood function of the model  M,  that is  �̂�  =  𝑝(𝑥|𝜃,  𝑀)

where  �̂�  are the parameter  values that maximize the likelihood of

𝒙  = the observed data

n  = the number of data points in  x,  the number of observations, the sample size.

k  = the number of parameters estimated by the model.

In a model selection, the minimum value of  BIC is  chosen  as the best model.  BIC has the

property of consistency  for model selection.  Theoretically,  consistency is arguably the strongest

optimality property of BIC.  Consistency requires the correct specification of one of the candidate

models.  This condition is not required by the Bayesian justification of BIC.  It is necessary to

modify the idea of consistency for BIC if the true model is not included in the candidate

collection. Using the BIC  selection model, the selected model is likely to converge with
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probability one to a model that can be termed quasi-true. In a candidate collection, the quasi-true 

model is the most parsimonious model closest to the true model in terms of Kullback-Leibler 

information (Claeskens and Hjort 2008). BIC selects models more parsimonious than those AIC 

favors as a model selection criterion. Simulation studies show that BIC outperforms other 

popular model selection criteria, such as AIC, in small to moderate sample size settings, as 

measured by the proportion of times a criterion selects the correct model structure (Nylund, 

Asparouhov, and Muthén 2007; Chih-Chien Yang and Chih-Chiang Yang 2007; Shao 1997). 

However, the BIC has some limitations, such as the assumption of independent and identically 

distributed data and sensitivity to the choice of prior distributions for the parameters of the 

model. 

3.4. Bayesian Averaging Procedure Used in the Study 

3.4.1. Review of Bayesian Averaging 

Bayesian Averaging (BA) is a statistical technique used to estimate the parameters of a 

model by averaging the estimates obtained from multiple models. It is based on the Bayesian 

theory, which involves assigning probabilities to hypotheses based on available evidence. The 

first mention of the model combination was provided by Barnard (1963) in a paper studying 

airline passenger data. However, most of the early work in model combination was not in 

statistical journals. Early work on model averaging in the statistical literature includes Roberts 

(1965), who proposed a distribution that integrates the views of two experts (or models). This 

distribution is similar to BMA since it is simply a weighted average of the posterior distributions 

of two models. Leamer (1978) developed this concept and provided the fundamental Bayesian 

Model Averaging (BMA) paradigm. Hoeting et al. (1999), Draper 1995, Chatfield 1995, and 

Kass and Raftery 1995, provided further review on BMA. 
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Following  the procedure in this study (section  3.1)  including the labeling procedures

(section 3.2)  and estimating  the parameters of  each distribution  of the dataset using the

maximum likelihood estimator,  the  labeled  separated datasets  or models  were combined using

the BA  simulation  procedure.  We used the Monte Carlo simulation in @risk  for  the simulation

process.

In a case where the labeling outlier procedure identified only one outlier distribution, that

is, upper or lower, we simulated probability weights for the two samples (base and outlier) for

observation i as:

{𝑝𝑏𝑎𝑠𝑒𝑖
,  𝑝𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑖

}  =  {Beta(𝑛𝑏𝑎𝑠𝑒  +  1,  𝑛𝑜𝑢𝑡𝑙𝑖𝑒𝑟  +  1),  1  −  beta(𝑛𝑏𝑎𝑠𝑒  +  1,  𝑛𝑜𝑢𝑡𝑙𝑖𝑒𝑟  +  1)},

where:

𝑝𝑏𝑎𝑠𝑒𝑖  
= simulated frequency probability for  base dataset,

𝑝𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑖  
= simulated frequency probability for outlier dataset,

𝑛𝑏𝑎𝑠𝑒  = number of observations in base dataset,

𝑛𝑜𝑢𝑡𝑙𝑖𝑒𝑟  = number of observations in outlier dataset.

and ‘~’ over-score indicates a random variable and {.} indicates a vector. We then

simulated one random variable from each of the Bestfit fitted distributions (�̃�𝑏𝑎𝑠𝑒𝑖 ,  �̃�𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑖).

Finally, we combined  the two simulated observations using a discrete distribution to simulate an

observation (i) of the simulated random variable (�̃�𝑖) as follows:

�̃�𝑖  =  Discrete({�̃�𝑏𝑎𝑠𝑒𝑖
,  �̃�𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑖

},  {�̃�𝑏𝑎𝑠𝑒𝑖
,  𝑝𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑖

}).

In the case where the labeling procedure identifies two outlier distributions: upper and

lower, we simulated the probability weights for the three samples, that is, base, lower outlier, and

upper outlier for observations i as:

{𝑝𝑏𝑎𝑠𝑒𝑖
,  𝑝𝑢𝑝𝑝𝑒𝑟𝑖

,  𝑝𝑙𝑜𝑤𝑒𝑟𝑖
}  =  Dirichlet(𝑛𝑏𝑎𝑠𝑒  +  1,  𝑛𝑢𝑝𝑝𝑒𝑟  +  1,  𝑛𝑙𝑜𝑤𝑒𝑟  +  1),
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where:

𝑝𝑏𝑎𝑠𝑒𝑖  
= simulated frequency probability for base dataset,

𝑝𝑢𝑝𝑝𝑒𝑟𝑖  
= simulated frequency probability for upper outlier dataset,

𝑝𝑙𝑜𝑤𝑒𝑟𝑖  
= simulated frequency probability for lower outlier dataset,

𝑛𝑏𝑎𝑠𝑒  = number of observations in base dataset,

𝑛𝑢𝑝𝑝𝑒𝑟  = number of observations in upper outlier dataset,

𝑛𝑙𝑜𝑤𝑒𝑟  = number of observations in lower outlier dataset.

Following the simulation of the probability weights for the three samples, we simulated

one random variable from each of the three fitted distributions (�̃�𝑏𝑎𝑠𝑒𝑖
,  �̃�𝑢𝑝𝑝𝑒𝑟𝑖

,  �̃�𝑙𝑜𝑤𝑒𝑟𝑖
). Lastly,

we combined the three simulated observations using a discrete distribution to simulate an

observation (i) of the simulated random variable (�̃�𝑖) as below:

�̃�𝑖  =  Discrete({�̃�𝑏𝑎𝑠𝑒𝑖
,  �̃�𝑢𝑝𝑝𝑒𝑟𝑖

,  �̃�𝑙𝑜𝑤𝑒𝑟𝑖
},  {𝑝𝑏𝑎𝑠𝑒𝑖

,  𝑝𝑙𝑜𝑤𝑒𝑟𝑖
,  𝑝𝑢𝑝𝑝𝑒𝑟𝑖

}).

3.5.  Procedure for Comparing Goodness-of-Fit  to Original Sample Data

The procedure for comparing goodness-of-fit  to  original datasets was used to evaluate the

accuracy of the models  and whether  the original dataset  (sample 1)  best fit  the  alternate  fitting

procedures (sample 2).  The alternate fitting procedures are simulated to the same number of

observations as the original dataset. We  used the  two (2)-sample KS  test and AD test statistics

for comparing the goodness-of-fit  of the  alternate  fitting procedures to the original datasets.  The

KS test involves comparing the  CDF of  the original dataset  to the  alternate  fitting procedures.

The AD test is based on the comparison of the  CDF of the  original dataset  and the  EDF of  the

alternate fitting procedure.  The mathematical process for  the  KS test and AD test has  been

described in sections  3.3.2  and  3.3.3,  respectively.
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In Fit1, the labeled ss, ‘Ignore Outlier,’ is fitted to the full sample. For Fit 2, the labeled 

candidate, ‘Truncate Outlier,’ is fit to sample minus modified Z-Score identified outliers. Fit 3 is 

the Bayesian Averaging applied to the partition of datasets based upon modified Z-score 

labeling. Fit 4 is the Bayesian Averaging applied to the partition of datasets based upon Tukey 

IQR labeling, while Fit 5 is Bayesian Averaging applied to the partition of datasets based upon 

k-Means cluster labeling. Both the KS and AD tests were used to compare the goodness-of-fit of 

each of the original datasets to the alternative procedure for all the fitting procedures by defining 

the null hypothesis Ho as the two samples follow the same distribution and the alternate 

hypothesis Ha as the distribution follows a different distribution. Rejection of the null hypothesis 

indicates a poor fit to the original dataset, and failure to reject the null hypothesis indicates an 

acceptable fit to the distribution. The level of significance alpha (D*) was set to 0.05. The KS 

and AD test statistic (D) functions in XLSTAT were used to determine the critical value and test 

statistic. We then compared the test statistics to the critical value. If D > D*, we reject the null 

hypothesis Ho. If D ≤ D*, we fail to reject the null hypothesis Ho. The results of the goodness-

of-fit test are explained in Chapter 5.  
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4. DATA SERIES DESCRIPTION AND CHARACTERISTICS 

4.1. Daily Car Values (DCV) for Secondary Rail Shipping 

Daily Car Values (DCV) is a method used in the secondary rail shipping industry to 

calculate the value of railroad cars daily.  The value of a car is calculated by taking the average 

daily lease rate for a specific type of railcar and adjusting it based on several factors, such as its 

age, condition, and type of cargo it is designed to carry. The DCV data for secondary rail 

shipping is a weekly market report sourced from Trade West Brokerage Company from 1/2/2004 

through 9/1/2022 (figure 8). The missing values in the series were filled using linear 

interpolation. This series is interesting in that DCV market can be volatile at times because of 

changes in demand and supply, fluctuations in the overall economy, fuel prices, weather events 

among many others. These factors can cause sudden changes in demand for certain types of 

railcars or disruptions to supply chains, which can impact the value of railcars. Additionally, 

DCV price is quoted as a premium (positive) or discount (discount) to the standard railcar tariffs 

which makes it even more interesting. The series is important because it helps to identify 

potential risks and opportunities. Additionally, it is a valuable tool for understanding the value of 

railroad cars in the secondary rail shipping industry and is used by a variety of stakeholders to 

make informed decisions about their logistics operations. The time series graph is presented in 

Figure 7.  

The series was tested for stationarity using the ADF stationarity test statistics. The null 

hypothesis Ho states that there is a unit root for the series and the alternative hypothesis Ha is 

that there is no unit root for the series at 5% significance level. As the computed p-value is lower 

than the significance level, we reject the null hypothesis Ho, and accept the alternative 
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hypothesis, Ha.  We conclude that there is no unit root, and the series is stationary at level. 

Hence, there is no need to difference the series for stationarity. 

 

 
Figure 7. Time series (DCV ($/car)) 

 

DCV series is quoted in U.S. dollars per car ($/car). There were 964 DCV time series 

observations for the period. The minimum and maximum value are $750 and $5000 respectively 

with a mean value of $260.82 and standard deviation of $788.24. The 1st quartile value is $175 

while the 3rd quartile value is $356.25. Pearson’s skewness and kurtosis are 2.7976 and 9.5957 

respectively. The descriptive statistic summary is presented in Table 1 below: 
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Table 1. DCV ($/car) Descriptive Statistic Summary 

Statistic Nbr. 

of obs 

Minimum Maximum 1st 

Quartile 

3rd Quartile Mean Standard 

deviation 

(n-1) 

DCV 

($/car) 
964 (750.00) 5,000.00 (175.00) 356.25 260.82 788.24 

 

 
Figure 8. (DCV ($/car)) Boxplot 

 

Figure 9 shows the DCV $/car Boxplot with outliers.  The outliers presented in the boxplot 

are upwards. It identified one outlier representing one and half IQR and two outliers representing 

3IQRs.  

4.2. Electricity Wholesale Price Daily Changes 

4.2.1. General Description 

The electricity wholesale market in the United States is regulated by Federal Energy 
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transmission grid and the operation of the wholesale energy markets are the responsibilities of 

the regional transmission organizations (RTOs) and independent system operators (ISOs). There 

are currently seven RTOs/ISOs operating in the United States including California ISO 

(CAISO), Electric Reliability Council of Texas (ERCOT), Midcontinent Independent System 

Operator (MISO), New York Independent System Operator (NYISO), PJM Interconnection 

(PJM), Southwest Power Pool (SPP), and the ISO New England (ISO-NE). Figure 10 shows the 

wholesale electricity markets or the RTO map.   

 
Figure 9. Regional Transmission Organizations/ Electricity Wholesale Market 

 

Like how wholesale and retail markets operate for other products, electricity is bought, 

sold, and traded in wholesale and retail markets. The purchase and sale of electricity to resellers 

is done in the wholesale market, while the purchase and sale of electricity to consumers is done 

in the retail market. The wholesale electricity price is predetermined by a buyer and seller 
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through bilateral contracts or set of organized wholesale markets. The clearing price for 

electricity in the wholesale markets is determined by an auction in which generation offer in a 

price at which they can supply a specific number of megawatt-hours of power. A successful bid 

which is said to "clear" the market. The cheapest options "clear" the market first followed by the 

cheapest option until demand is met. The market is "cleared" when supply equals demand and 

the price of the last resource to offer becomes the wholesale price of power. The nature of 

wholesale market price makes it an ideal candidate for the study.  

The wholesale price of power is calculated by dividing the sum of each transaction's price 

multiplied by its volume by the total number of all qualifying transactions. Mathematically, it is 

defined as  

 𝐼 = ∑(𝑃 ∗ 𝑉) /𝑇 (29) 

 

 

 

 

  

 

 

 

  

where:

            I = Volumetric Weighted Average Index Price

            P = price or premium of individual transaction

            V = volume of individual transaction

              ∑(𝑃  ∗  𝑉)  = sum of each transaction's price multiplied by its volume

            T = total volume of all qualifying transactions

We randomly selected three (3)  RTOs  including  Midcontinent Independent System

Operator (MISO), PJM Interconnection (PJM), and the ISO New England (ISO-NE) for the

study.  Wholesale electricity prices for these regions were sourced from  Energy Information

Administration: Wholesale Electricity and Natural Gas Market Data.  The ICE Electricity product

names  for these regions  is  Indiana Hub RT Peak,  PJM WH Real Time Peak, and  NEPOOL MH
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DA LMP Peak respectively. However, we used the variable names; Indiana Hub, PJM West and 

NEPOOL to represent the daily change in wholesale electricity prices.  

NEPOOL and PJM West hub daily price series are from January 2001 to October 2022 

while Indiana hub daily price series is from January 2006 to September 2022. The wholesale 

daily electricity prices are sourced from the U.S. Energy Information Administration (EIA)1. The 

market data provided by the EIA are republished from data collected by the Intercontinental 

Exchange (ICE) and updated biweekly. The ICE wholesale electricity markets include more than 

two dozen hubs and delivery points in North America.  

One of the main reasons why this data series is interesting is that the wholesale electricity 

market is volatile since electricity cannot be easily stored. As a result, the supply of electricity 

must be constantly matched to the demand in real time. This means that even small changes in 

supply or demand can have a significant impact on the market price. In addition, the wholesale 

electricity market is heavily influenced by regulatory policies, which can be subject to change. 

Overall, the electricity market is subject to a range of factors that can cause volatility such as 

unexpected power plant outages, shifts in energy policy, fluctuations in fuel prices etc., making it 

important for energy traders, utilities, and policy makers to closely monitor market trends and 

anticipate potential changes. Wholesale electricity market is important because it provides 

insights into market trends, enables more efficient energy procurement, helps to mitigate risks, 

and identify potential such as changes in demand for electricity of shifts or shifts in electricity 

policy.  

 

 
1 (“U.S. Energy Information Administration - EIA - Independent Statistics and Analysis” 2023.) 

Energy Information Agency, U.S. Department of Energy.  Website: https://www.eia.gov/electricity/wholesale/ 
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4.2.2. Indiana Hub 

The Indiana Hub Peak Electricity (IPE) is a market index that tracks the price of 

electricity at the Indiana Hub during peak hours. The Indiana Hub is a major electricity trading 

hub located in the Midwestern region of the United States, serving a large portion of the Midwest 

and Mid-Atlantic regions.  The IPE index is used as a benchmark for pricing electricity futures 

and options contracts, and it is also used by market participants for risk management and hedging 

purposes. The series was sourced from Energy Information Agency, U.S. Department of Energy. 

It is reported by Intercontinental Exchange as Indiana Hub RT Peak Price in $ per megawatt hour 

(MWh), volume weighted average for next day delivery. It is a daily price change from 1/5/2006 

to 9/30/2022. The time series graph for Indiana Hub price change ($/MWh) is presented in 

Figure 11. The series is stable across the period with extreme prices during certain peak periods. 

For example, price increased to $107.60, and price was as low as $ (85) during the height of 

covid-19 in 2020.  

 
Figure 10. Time series (Indiana Hub Price Change ($/MWh)) 
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The series was tested for stationarity using the ADF stationarity test statistics. The null 

hypothesis Ho states that there is a unit root for the series and the alternative hypothesis Ha is 

that there is no unit root for the series at 5% significance level. As the computed p-value is lower 

than the significance level, we reject the null hypothesis Ho, and accept the alternative 

hypothesis, Ha.  We conclude that there is no unit root, and Indian Hub price change ($/MWh) 

series is stationary at first differencing. There were 2692 Indian Hub price change ($/MWh) time 

series observations for the period. The minimum and maximum value are $(85) and $107.60 

respectively with a mean value of $0.08 and standard deviation of $8.54. The descriptive statistic 

summary for Indian Hub price change ($/MWh) is presented in Table 2.  

Table 2. Indiana Hub Price Change ($/MWh) Descriptive Statistic Summary 

Statistic Nbr. of 

Obs 

Min Max 1st 

Quartile 

Median 3rd 

Quartile 

Mean Standard 

deviation 

(n-1) 

Indiana Hub 

Price Change 

($/MWh) 

2692 (85.00) 107.60 (2.82) (0.15) 2.75 0.08 8.54 

 

A Boxplot with outliers for Indiana Hub Price Change ($/MWh) is illustrated in Figure 

12. The Boxplot shows the mean, minimum/maximum, outliers, and number of IQR for Indiana 

Hub Price Change ($/MWh). The outliers fall below the minimum and above the maximum. 

Outlier (1) indicates one and half IQR and outliers (2) indicates 3IQRs.  
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Figure 11. Box plot (Indiana Hub Price Change ($/MWh)) 

 

 

4.2.3. PJM West Hub 

The PJM Interconnection is a regional transmission organization (RTO) that manages the 

transmission grid and operates the wholesale electricity market in 13 states and the District of 

Columbia in the Eastern United States. The PJM Interconnection is the largest power grid in 

North America, serving more than 65 million people and covering an area of over 243,000 

square miles. PJM operates several wholesale electricity markets, including a day-ahead market, 

a real-time market, and a capacity market. The day-ahead market allows market participants to 

purchase electricity for delivery the following day, while the real-time market allows for the 

purchase and sale of electricity in real-time to address changes in supply and demand. The series 

was sourced from Energy Information Agency, U.S. Department of Energy. It is reported by 

PJM WH Real Time Peak Price in $ per megawatt hour (MWh), volume weighted average for 

next day delivery. It is a daily price change from 1/3/2001 to 10/4/2022. The time series graph 
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for PJM West Hub price change ($/MWh) is presented in Figure 13. The series is stable across 

the period with extreme prices during certain peak periods. For example, price increased to 

$194.10, and price was as low as $ (287.48) during the height of covid-19 in 2020. 

 
Figure 12. Time series (PJM West Hub Price Change ($/MWh)) 

 

The series was also tested for stationarity using the ADF stationarity test statistics. The 

null hypothesis Ho states that there is a unit root for the series and the alternative hypothesis Ha 

is that there is no unit root for the series at 5% significance level. As the computed p-value is 

lower than the significance level, we reject the null hypothesis Ho, and accept the alternative 

hypothesis, Ha.  We conclude that there is no unit root, and PJM West Hub price change 
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$(287.48) and $194.10 respectively with a mean value of $0.11 and standard deviation of $12.76. 
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The descriptive statistic summary for PJM West Hub price change ($/MWh) is presented in 

Table 3.  

Table 3. PJM West Hub Price Change ($/MWh) Descriptive Statistic Summary  
Statistic Nbr. of 

obs 

Min Max 1st 

Quartile 

Median 3rd 

Quartile 

Mean Standard 

deviation 

(n-1) 

PJM West 

Hub Price 

Change 

($/MWh) 

5249 (287.48) 194.1 (3.42) (0.11) 3.56 0.03 12.76 

 

A Boxplot with outliers for PJM West Hub Price Change ($/MW h) is illustrated in 

Figure 14. The Boxplot shows the mean, minimum/maximum, outliers, and number of IQR for 

Indiana Hub Price Change ($/MWh). The outliers fall below the minimum and above the 

maximum. Outlier (1) indicates one and half IQR and outliers (2) indicates 3IQRs.  

 
Figure 13. Box plot (PJM West Hub Price Change ($/MWh)) 
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4.2.4. NEPOOL Hub 

The NEPOOL is a regional transmission organization that manages the transmission grid 

and operates the wholesale electricity market in the New England region of the United States. 

The NEPOOL Peak Electricity is a market index that tracks the price of electricity at the 

NEPOOL peak load hours. Market players use the NEPOOL Peak Electricity index as a 

benchmark for pricing electricity futures and options contracts as well as for risk management 

and hedging. The series was sourced from the Energy Information Agency, U.S. Department of 

Energy. It is reported by NEPOOL MH DA LMP Peak Price in $ per megawatt-hour (MWh), 

volume weighted average for next-day delivery. It is a daily price change from 1/8/2001 to 

10/4/2022. The time series graph for NEPOOL Hub price change ($/MWh) is presented in 

Figure 15. The series is stable across the period, with extreme prices during certain peak periods. 

For example, the price increased to $206.94, and the price was as low as $ (162.06) during the 

height of covid-19 in 2020. 

 
Figure 14. Time series (NEPOOL Hub Price Change ($/MWh)) 
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The series was also tested for stationarity using the ADF stationarity test statistics. The 

null hypothesis, Ho, states that there is a unit root for the series, and the alternative hypothesis, 

Ha is that there is no unit root for the series at a 5% significance level. As the computed p-value 

is lower than the significance level, we reject the null hypothesis, Ho, and accept the alternative 

hypothesis, Ha.  We conclude that there is no unit root, and NEPOOL Hub Price Change 

($/MWh) series is stationary at first differencing. There were 4855 NEPOOL Hub Price Change 

($/MWh) time series observations for the period. The minimum and maximum values are 

$(162.06) and $206.94, respectively, with a mean value of $0.03 and a standard deviation of 

$14.38. The descriptive statistic summary for NEPOOL Hub Price Change ($/MWh) is presented 

in Table 4.  

Table 4. NEPOOL Hub Price Change ($/MWh)  Descriptive Summary Statistics 
Statistic Nbr of 

obs 

Min Max 1st 

Quartile 

Median 3rd 

Quartile 

Mean Standa

rd 

deviati

on (n-

1) 

NEPOOL Hub 

Price Change 

($/MWh) 

4855 (162.06) 
206.9

4 
(3.28) (0.19) 3.14 0.03 14.38 

 

A Boxplot with outliers for NEPOOL Hub Price Change ($/MWh) is illustrated in Figure 

16. The Boxplot shows the mean, minimum/maximum, outliers, and number of IQR for Indiana 

Hub Price Change ($/MWh). The outliers fall below the minimum and above the maximum. 

Outlier (1) indicates one and a half IQR, and outliers (2) indicate 3IQRs.  
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Figure 15. Box plot (NEPOOL Hub Price Change ($/MWh)) 
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For futures price and spread daily changes, we sourced Nearby Chicago Oats Futures, 

KC-Chicago Nearby Wheat Futures Spread and Chicago Nearby Intermonth Wheat Spread time 

series data from DTN ProphetX. Nearby Chicago Oats Futures is a daily change in Chicago oats 

futures price quoted in cents per bushel. The code that was used to extract the Oats futures daily 

price is @O@C. Daily differencing was applied to the extracted price. Oats futures daily price is 

based on the price difference per bushel for delivery in the future. That is, the value of an oats 

futures is calculated by multiplying the price of oats per bushel by the number of bushels in the 

contract. The daily oats futures prices are daily observations from January 2010 to September 

2022. KC-Chicago Nearby Wheat Futures Spread is a daily intermarket nearby price spread 

between Kansas City and Chicago wheat futures quoted in cents per bushel (cents/bu). The code 

that was used to extract Wheat Futures Spread is @W@C2 - @W@C1. KC-Chicago Nearby 

Wheat Futures Spread is reported daily from January 2010 to September 2022. The spread is 

calculated by subtracting the price of the KC wheat futures contract from the price of the 

Chicago wheat futures contract. A positive spread indicates that the price of the Chicago contract 

is higher than the price of the KC contract, while a negative spread indicates the opposite. Grain 

Futures and Transportation Market Prices and Spreads. Chicago Nearby Intermonth Wheat 

Spread is a daily Chicago wheat nearby intermonth futures spread priced in cents per bushel 

(cents/bu). It is reported daily from January 2010 to September 2022 and is quoted in U.S. cents 

per bushel (cents/bu). The code that was used to extract Chicago Nearby Intermonth Wheat 

Spread is @KW@C - @W@C. The spread is calculated by subtracting the price of the wheat 

futures contract for the nearby contract from the price of the wheat futures deferred contract. A 

positive spread indicates that the price of the farther-out delivery month is higher than the price 

of the nearby delivery month, while a negative spread indicates the opposite. 
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Futures Price and Spread Daily Changes are interesting because of the volatility in 

commodity trading. The price of futures can fluctuate daily based on a variety of factors, 

including demand and supply, geopolitical events, and market sentiment. The Chicago Nearby 

Intermonth Wheat Spread is an important futures trading strategy in the wheat market, providing 

a tool to stakeholders, farmers, traders, investors, and analyst for managing risk and potentially 

profiting from price differentials between related contracts with different delivery months. In 

addition, traders can adjust their trading strategies to take advantage of potential profit or manage 

risk exposure. 

4.3.2. Nearby Chicago Oats Futures 

The time series graph for Nearby Chicago Oats Futures is presented in Figure 17. The 

series is stable across the period with extreme values presenting potential outliers.   

 
Figure 16. Time series (Change in Nearby Oats Futures (cents/bu)): 
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The series was also tested for stationarity using the ADF stationarity test statistics. The 

null hypothesis Ho states that there is a unit root for the series and the alternative hypothesis Ha 

is that there is no unit root for the series at 5% significance level. As the computed p-value is 

lower than the significance level, we reject the null hypothesis Ho, and accept the alternative 

hypothesis, Ha.  We conclude that there is no unit root, and Nearby Chicago Oats Futures price 

(cents/bu)) series is stationary at first differencing. There were 3143 Nearby Chicago Oats 

Futures time series observations from 1/4/2010 to 9/23/2022. The minimum and maximum value 

are (-40) and 79.75 respectively with a mean value of 0.25 and standard deviation of 7.53. The 

descriptive statistic summary for Nearby Chicago Oats Futures (cents/bu) is presented in Table 5. 

Table 5. Nearby Chicago Oats Futures Descriptive Statistic Summary  
Statistic Nbr. of 

obs 

Min Max 1st 

Quartile 

Median 3rd 

Quartile 

Mean Standard 

deviation 

(n-1) 

Change in Nearby 

Oats Futures 

(cents/bu) 

3143 (40.00) 79.75 (3.25) - 3.75 0.25 7.53 

 

A Boxplot with outliers for Nearby Chicago Oats Futures is illustrated in Figure 18. The 

Boxplot shows the mean, minimum/maximum, outliers, and number of IQR for Nearby Chicago 

Oats Futures (cents/bu). The outliers fall below the minimum and above the maximum. Outlier 

(1) indicates one and half IQR and outliers (2) indicates 3IQRs.  
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Figure 17. Box plot Change in Nearby Oats Futures (cents/bu) 

 

4.3.3. Chicago Nearby Wheat Futures Spread 

Figure 19 shows the time series graph for Chicago Nearby Wheat Futures Spread is 
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Figure 18. KC-Chicago Nearby Wheat Futures Spread 
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series observations from 1/4/2010 to 9/23/22. The minimum and maximum value are (187.5) and 

177.25 respectively with a mean value of 12.25 and standard deviation of 51.71. The descriptive 

statistic summary for Chicago Nearby Wheat Futures Spread (cents/bu) is presented in Table 6. 
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Table 6. Chicago Nearby Wheat Futures Spread Summary Descriptive Statistics 
Statistic Nbr. of 

obs 

Min Max 1st 

Quartile 

Median 3rd 

Quartile 

Mean Standard 

deviation 

(n-1) 

@W@C2 - 

@W@C1 
3207 (187.50) 177.25 (13.50) 12.25 48.88 15.07 51.71 

 

A Boxplot with outliers for Chicago Wheat Spread is illustrated in Figure 20. The 

Boxplot shows the mean, minimum/maximum, outliers, and number of IQR for Nearby Chicago 

Oats Futures (cents/bu). The outliers fall below the minimum and above the maximum. Outlier 

(1) indicates one and half IQR and outliers (2) indicates 3IQRs.  

 
Figure 19. Box plot (Change in KC - Chicago Wheat Spread (cents/bu)) 
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4.3.4. Chicago Nearby Intermonth Wheat Spread 

The time series graph for Chicago Nearby Intermonth Wheat Spread in Figure 21. The 

series is stable across the period with extreme values presenting potential outliers. 

 
Figure 20. Chicago Nearby Intermonth Wheat Spread Time Series 
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is that there is no unit root for the series at 5% significance level. As the computed p-value is 

lower than the significance level, we reject the null hypothesis H0, and accept the alternative 

hypothesis, Ha. We cannot conclude that there is no unit root, and Chicago Nearby Intermonth 

Wheat Spread (cents/bu)) series is not stationary at first differencing. There were 3207 Chicago 

Nearby Intermonth Wheat Spread series observations from 1/4/2010 to 9/23/22. The minimum 

and maximum values are (155) and 50 respectively with a mean value of 11.79 and standard 

-200

-150

-100

-50

0

50

100

1/4/2010 9/30/2012 6/27/2015 3/23/2018 12/17/2020

C
h
a
n
g
e
 i
n

 C
h
ic

a
g
o
 W

h
e
a
t 
F

u
tu

re
s
 N

e
a
rb

y
 I

n
te

rm
o
n
th

 
S

p
re

a
d
 (

c
e
n
ts

/b
u
)

DAILY



 

64 

deviation of 11.54. The descriptive statistic summary for Chicago Nearby Intermonth Wheat 

Spread (cents/bu) is presented in Table 7. 

Table 7. Chicago Nearby Intermonth Wheat Spread Descriptive Summary Statistics 

Statistic Nbr. of 

obs 

Min Max 1st 

Quartile 

Median 3rd 

Quartile 

Mean Standard 

deviation 

(n-1) 

@KW@C - 

@W@C 
3207 (155.00) 50.00 5.25 10.75 16.75 11.79 11.54 

 

A Boxplot with outliers for Chicago Wheat Futures Nearby Intermonth is illustrated in 

Figure 22. The Boxplot shows the mean, minimum/maximum, outliers, and number of IQR for 

Nearby Chicago Oats Futures (cents/bu). The outliers fall below the minimum and above the 

maximum. Outlier (1) indicates one and half IQR and outliers (2) indicates 3IQRs.  

 
Figure 21. Box plot (Change in Chicago Wheat Futures Nearby Intermonth Spread (cents/bu)) 
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5. EMPIRICAL RESULTS AND DISCUSSION 

This chapter presents the empirical results and discussion of the result. The chapter 

begins with the discussion analysis and results of each of the alternative procedures. The chapter 

concludes with general observations.  

5.1. Analysis and Results 

5.1.1. Daily Car Values (DCV) 

The first step of the research procedure was to confirm the presence of outliers in the 

dataset series. Grubb’s test for DCV ($/car) showed that the G-Scores on maximum values are 

6.012, 6.130, and 6.254 while the G-Scores on minimum values are 4.053 and 4.116 

respectively. Again, Grubb’s test identified the presence of 37 outliers in DCV series. Thus, we 

conclude that the G-Scores on maximum and minimum values confirmed the presence of outliers 

in DCV dataset. 

There are two labeled subgroups for DCV ($/car), that is, base and upper labeled dataset. 

The result for Modified Z-Score showed that there are 878 and 89 number of observations in 

base and upper labeled subgroups, and a mean of 260.82 ($/MWh) and standard deviation of 

788.24 ($/MWh) respectively. The minimum observed value in base subgroup is -750 ($/MWh) 

and the maximum observed value is 1200 ($/MWh). The mean and the standard deviation for 

base using the Modified Z-Score technique are 53.32 ($/MWh) and 354.30 ($/MWh). For upper 

subgroup, the minimum observed value is 1250 ($/MWh) and the maximum observed value is 

5000 ($/MWh). The mean and the standard deviation for upper using the Modified Z-Score 

technique are 2288.99 ($/MWh) and 984.56 ($/MWh). The result for Tukey IQR labeling 

showed that there are 867 and 97 number of observations in base and upper labeled subgroups 

with a mean of 260.82 ($/MWh) and standard deviation of 788.24 ($/MWh) respectively. The 
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minimum observed value in base subgroup is -750 ($/MWh) and the maximum observed value is 

1100. The mean and the standard deviation for base using the Tukey IQR technique are 43.96 

and 11.49. For upper subgroup, the minimum observed value is 1200 and the maximum observed 

value is $5000. The mean and the standard deviation for upper using the Tukey IQR technique 

are 2199.18 and 100.48.  For k-Means clustering, the shadow scores for cluster 1 and 2 are 

0.8131 and 0.4570. Also, there are 861 and 103 number of observations in base and upside 

labeled subgroups, and a mean of 260.82 and standard deviation of 788.24 respectively. The 

minimum observed value in base subgroup is -750 and the maximum observed value is 1050. 

The mean and the standard deviation for base using the k-Means clustering technique are 36.60 

and 11.17. For upper subgroup, the minimum observed value is 1100 and the maximum observed 

value is $5000. The mean and the standard deviation for upper using the k-Means clustering 

technique are 2160.90 and 108.67.  

The distribution fitting results here show the output analysis for the full dataset (ignore 

outliers), truncated dataset (remove outliers), Bayesian Averaging with modified Z-Score, 

Bayesian Averaging with Tukey IQR, Bayesian Averaging with k-Means Clustering, and 

comparison of goodness-of-fit with original data. The distribution fitting results followed the 

same hypothesis. The null hypothesis, H0, of the two-sample Kolmogorov test is that the two 

samples follow the same distribution. The alternative hypothesis, Ha, is that the distributions of 

the two samples are different.  

For DCV full dataset, the computed p-value is greater than the significance level at 5%, 

we cannot reject the null hypothesis H0 (refer to Table A1 and Figure A1) Hence, we conclude 

that the two samples follow the same distribution. However, we reject the null hypothesis H0 and 

accept the alternate hypothesis H0 since the computed p-value is lower than the significance 
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level at 5% (Refer to Table A1 and Figure A2). Therefore, we conclude that the distributions of 

the two samples are different. The KS statistical test results for Z-Score Bayesian Averaging 

showed that the computed p-value is lower than the significance level at 5%, hence we reject the 

null hypothesis H0, and accept the alternative hypothesis Ha. We conclude that the two samples 

follow the same distribution (refer to Table A2 and Figure A3). The KS statistical test results for 

Tukey IQR Bayesian Averaging showed that the computed p-value is lower than the significance 

level at 5%, hence we reject the null hypothesis H0, and accept the alternative hypothesis Ha. 

We conclude that the distributions of two samples are different (refer to Table A2 and Figure 

A4). Similarly, The KS statistical test results for k-Means Bayesian Averaging showed that the 

computed p-value is lower than the significance level at 5%, hence we the reject null hypothesis 

H0, and accept the alternative hypothesis Ha. We conclude that the two samples do not follow 

the same distribution (refer to Table A2 and Figure A5).  

In the final step of the research procedure, we compared the Goodness-of-Fit to the actual 

dataset by using the Two-Sample KS and AD Tests. Both the KS and AD test statistic indicated 

the p-value is greater than the significance level 5%, hence, we accept the null hypothesis and 

reject the alternative Ha (refer to Table 8). Hence, we conclude that Full dataset model is a 

perfect fit to the actual data. 

Table 8. Summary Results of DCV Goodness-of-Fit Test 

Statistical Test Ignore 

Outliers 

Drop 

Outliers 

Z-Score Tukey 

IQR 

k-Means 

Kolgomorov-

Smirnov (KS) 

Statistic 0.0488 0.3911 0.3994 0.3932 0.3932 

p-value 

(Two-tailed) 

0.2020 <0.0001 <0.0001 <0.0001 <0.0001 

Anderson-

Darling (AD) 

Statistic 1.0806 135.1767 144.3072 139.0969 138.4067 

p-value 

(Two-tailed) 

0.3176 <0.0001 <0.0001 <0.0001 <0.0001 
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5.1.2. Indiana Hub Electricity Prices 

The first step of the research procedure was to confirm the presence of outliers in the 

dataset series. Grubb’s test for Indiana Hub Electricity Prices showed that the G-Scores on 

maximum value is 12.597 while the G-Score on minimum value is 10.27. Again, Grubb’s test 

identified the presence of 45 outliers in Indiana Hub Electricity Prices. Thus, we conclude that 

the G-Scores on maximum and minimum values confirmed the presence of outliers in Indiana 

Hub Electricity Prices ($/MWh). 

The three labeling techniques employed in this study were used to divide the datasets. 

There are two labeled subgroups for Indiana Hub Electricity Prices ($/MWh) series was divided 

into the base and contaminants labeled upper and lower datasets. The result for Modified Z-

Score showed that there are 2513, 97 and 82 number of observations in base, upper and lower 

labeled subgroups. The mean of the original dataset is 0.80 and standard deviation 8.54 

respectively. The minimum observed daily price for Indiana Hub Electricity in the base dataset 

is -14.64 ($/MWh) and the maximum observed daily price is 14.28 ($/MWh). The mean and the 

standard deviation for base using the Modified Z-Score technique are -0.06 ($/MWh) and 4.74 

($/MWh). For upper, the minimum observed daily price is 14.4 ($/MWh) and the maximum 

observed value is 107.6 ($/MW/h). The mean and the standard deviation for upper using the 

Modified Z-Score technique are 24.72 and 12.54 ($/MWh) respectively. In the lower dataset, the 

minimum observed daily price is -85 and the maximum observed daily price is -14.72 ($/MWh). 

The mean and the standard deviation for lower labeled dataset are -24.83 and 13.45 ($/MWh). 

The result for the Tukey IQR procedure showed that there are 2425, 149 and 118 number of 

observations in base, upper and lower labeled datasets. The mean of the original Indiana Hub 

Electricity dataset is 0.80 and standard deviation 8.54 respectively. The minimum observed daily 
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price for base labeled dataset is -11.16 and the maximum observed value is 11 ($/MWh). The 

mean and the standard deviation for base dataset using the Tukey IQR technique are -0.14 and 

4.18 ($/MWh).  

For upper labeled dataset, the minimum observed daily price is 12.76 and the maximum 

observed daily price is 206.94 ($/MWh). The mean and the standard deviation for upper labeled 

data using the Tukey IQR technique are 28.70 and 21.99 ($/MWh). In the lower 12.91 ($/MWh). 

The mean and the standard deviation for lower labeled dataset are -29.91 and 22.76 ($/MWh).  

Using the k-Means clustering procedure, we identified 5 clusters. The shadow scores for these 

clusters 1, 2, 3, 4 and 5 are 0.457, 0.690, 0.469, 0.395 and 0.574. Also, there are 2211, 213 and 

268 number of observations in base, upper and lower labeled datasets. The minimum observed 

daily price in base labeled dataset is -19.49 and the maximum observed daily price is 17.74 

($/MWh). The mean and the standard deviation for base labeled dataset using the k-Means 

clustering technique are -0.19 and 5.87. For upper labeled dataset, the minimum observed daily 

price is 17.9 and the maximum daily price is 206.94 ($/MWh). The mean and the standard 

deviation for upper labeled dataset using the k-Means clustering technique are 38.88 and 24.15 

($/MWh). In the lower labeled dataset, the minimum observed dataset is -162.06 and the 

maximum observed daily price is -19.67 ($/MWh). The mean and standard deviation are -39.14 

and 25.34 ($/MWh) respectively. 

We then combined each of the labeled dataset using the Bayesian Averaging Procedure. 

Following the Bayesian Averaging Procedure, we used the KS and AD test statistics to compare 

the Bestfit for each of the labeled dataset. The distribution fitting results here show the output 

analysis for the full dataset (ignore outliers), truncated dataset (remove outliers), Bayesian 

Averaging with modified Z-Score, Bayesian Averaging with Tukey IQR, Bayesian Averaging 
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with k-Means Clustering, and comparison of goodness-of-fit with original data. The distribution 

fitting results followed the same hypothesis. The null hypothesis, H0, of the two-sample 

Kolmogorov test is that the two samples follow the same distribution. The alternative hypothesis, 

Ha, is that the distributions of the two samples are different.  

For Indiana Hub Electricity full dataset, the computed p-value is greater than the 

significance level at 5%, we cannot reject the null hypothesis H0 (refer to Table A1 and Figure 

A6). Hence, we conclude that the two samples follow the same distribution. However, we reject 

the null hypothesis H0 and accept the alternate hypothesis Ha since the computed p-value is lower 

than the significance level at 5% for the truncated labeled dataset. (refer to Table A1 and Figure 

A7). Therefore, we conclude that the distributions of the two samples are different. The KS 

statistical test results for Z-Score Bayesian Averaging showed that the computed p-value is 

greater than the significance level at 5%, hence we fail to reject the null hypothesis H0, and reject 

the alternative hypothesis, Ha. We conclude that the two samples follow the same distribution 

(refer to Table A2 and Figure A8). The KS statistical test results for Tukey IQR Bayesian 

Averaging showed that the computed p-value is greater than the significance level at 5%, hence 

we fail reject the null hypothesis H0, and reject the alternative hypothesis, Ha, and conclude that 

the distributions of two samples follow the same distribution (refer to Table A2 and Figure A9). 

Similarly, The KS statistical test results for k-Means Bayesian Averaging showed that the 

computed p-value is greater than the significance level at 5%, hence we fail to reject null 

hypothesis H0, and reject the alternative hypothesis, Ha. We conclude that the two samples 

follow the same distribution (refer to Table A2 and Figure A10).  

In the final step of the research procedure, we compared the Goodness-of-Fit of each 

procedure or model to the actual dataset by using the Two-Sample KS and AD Tests. Both the 
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KS and AD test statistics indicated that the p-value is greater than the significance level at 5% 

for k-Means clustering model. Hence, we accept the null hypothesis and reject the alternative 

hypothesis, Ha (refer to Table 9) and conclude that k-Means is a perfect fit to the actual data.  

Table 9. Summary Results of Indiana Hub Electricity Prices Goodness-of-Fit Test 

Statistical Test Ignore 

Outliers 

Drop 

Outliers 

Z-

Score 

Tukey 

IQR 

k-

means 

Kolmogorov-

Smirnov (KS) 

Statistic 0.0331 0.0468 0.0178 0.0160 0.0115 

p-value (Two-

tailed) 

0.1055 0.0055 0.7855 0.8822 0.9941 

Anderson-Darling 

(AD) 

Statistic 4.7167 9.4931 0.4942 0.5202 0.2389 

p-value (Two-

tailed) 

0.0039 0.0000 0.7529 0.7264 0.9761 

 

5.1.3. NEPOOL Hub Electricity Prices 

The first step of the research procedure was to confirm the presence of outliers in the 

dataset series. Grubb’s test for NEPOOL Hub Electricity prices showed that the G-Scores on 

maximum value is 11.74 while the G-Score on minimum value is 14.385. Again, Grubb’s test 

identified the presence of 117 outliers in NEPOOL Hub Electricity Prices. Thus, we conclude 

that the G-Scores on maximum and minimum values confirmed the presence of outliers in 

NEPOOL Hub Electricity Prices ($/MWh). 

The three labeling techniques employed in this study were used to divide the datasets. 

There are two labeled subgroups for NEPOOL Hub Electricity Prices ($/MWh) series was 

divided into the base and contaminants labeled upper and lower datasets. The mean of the 

original dataset is 0.034 and standard deviation standard is 14.383. The result for Modified Z-

Score showed that there are 4316, 259 and 235 number of observations in base, upper and lower 

labeled subgroups.  The minimum observed daily price for NEPOOL Hub Electricity in the base 

dataset is -16.87 ($/MWh) and the maximum observed daily price is 16.51 ($/MWh). The mean 

and the standard deviation for base using the Modified Z-Score technique are -0.09 ($/MWh) 
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and 5.47 ($/MWh). For upper, the minimum observed daily price is 16.55 ($/MWh) and the 

maximum observed value is 206.94 ($/MW/h). The mean and the standard deviation for upper 

using the Modified Z-Score technique are 34.15 and 23.63 ($/MWh) respectively. In the lower 

dataset, the minimum observed daily price is -162.06 and the maximum observed daily price is -

16.92 ($/MWh). The mean and the standard deviation for lower labeled dataset are -35.13 and 

24.23 ($/MWh). The result for the Tukey IQR procedure showed that there are 4183, 357 and 

315 number of observations in base, upper and lower labeled datasets. The minimum observed 

daily price for base labeled dataset is -12.82 and the maximum observed value is 12.75 

($/MWh). The mean and the standard deviation for base dataset using the Tukey IQR technique 

are -0.16 and 4.72 ($/MWh). For upper labeled dataset, the minimum observed daily price is 

12.76 and the maximum observed daily price is 206.94 ($/MWh). The mean and the standard 

deviation for upper labeled data using the Tukey IQR technique are 28.70 and 21.99 ($/MWh). 

In the lower dataset, the minimum observed daily price is -162.06 and the maximum observed 

daily price is -12.91 ($/MWh). The mean and the standard deviation for lower labeled dataset are 

-29.91 and 22.76 ($/MWh). Using the k-Means clustering procedure, we identified 5 clusters. 

The shadow scores for these clusters 1, 2, 3, 4 and 5 are 0.457, 0.690, 0.469, 0.395 and 0.574. 

Also, there are 4430, 235 and 190 number of observations in base, upper and lower labeled 

datasets. The minimum observed daily price in base labeled dataset is -19.49 and the maximum 

observed daily price is 17.74 ($/MWh). The mean and the standard deviation for base labeled 

dataset using the k-Means clustering technique are -0.19 and 5.87. For upper labeled dataset, the 

minimum observed daily price is 17.9 and the maximum daily price is 206.94 ($/MWh). The 

mean and the standard deviation for upper labeled dataset using the k-Means clustering 

technique are 35.88 and 24.15 ($/MWh). In the lower labeled dataset, the minimum observed 
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dataset is -162.06 and the maximum observed daily price is -19.67 ($/MWh). The mean and 

standard deviation are -39.14 and 25.34 ($/MWh) respectively. 

We then combined each of the labeled dataset using the Bayesian Averaging Procedure. 

Following the Bayesian Averaging Procedure, we used the KS and AD test statistics to compare 

the Bestfit for each of the labeled dataset. The distribution fitting results here show the output 

analysis for the full dataset (ignore outliers), truncated dataset (remove outliers), Bayesian 

Averaging with modified Z-Score, Bayesian Averaging with Tukey IQR, Bayesian Averaging 

with k-Means Clustering, and comparison of goodness-of-fit with original data. The distribution 

fitting results followed the same hypothesis. The null hypothesis, H0, of the two-sample 

Kolmogorov test is that the two samples follow the same distribution. The alternative hypothesis, 

Ha, is that the distributions of the two samples are different.  

For NEPOOL Hub Electricity full dataset, the computed p-value is greater than the 

significance level at 5%, we cannot reject the null hypothesis H0 (refer to Table A1 and Figure 

A11). Hence, we conclude that the two samples follow the same distribution. However, we reject 

the null hypothesis H0 and accept the alternate hypothesis Ha since the computed p-value is lower 

than the significance level at 5% for the truncated labeled dataset. (refer to Table A1 and Figure 

A12). Therefore, we conclude that the distributions of the two samples are different. The KS 

statistical test results for Z-Score Bayesian Averaging showed that the computed p-value is 

greater than the significance level at 5%, hence we fail to reject the null hypothesis H0, and 

reject the alternative hypothesis, Ha. We conclude that the two samples follow the same 

distribution (refer to Table A2 and Figure A13). The KS statistical test results for Tukey IQR 

Bayesian Averaging showed that the computed p-value is greater than the significance level at 

5%, hence we fail reject the null hypothesis H0, and reject the alternative hypothesis, Ha, and 
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conclude that the distributions of two samples follow the same distribution (refer to Table A2 

and Figure A14). Similarly, The KS statistical test results for k-Means Bayesian Averaging 

showed that the computed p-value is greater than the significance level at 5%, hence we fail to 

reject null hypothesis H0, and reject the alternative hypothesis, Ha. We conclude that the two 

samples follow the same distribution (refer to Table A2 and Figure A15).  

In the final step of the research procedure, we compared the Goodness-of-Fit of each 

procedure or model to the actual dataset by using the Two-Sample KS and AD Tests. Both the 

KS and AD test statistics indicated that the p-value is greater than the significance level at 5% 

for k-Means clustering model. Hence, we accept the null hypothesis and reject the alternative 

hypothesis, Ha (refer to Table 10) and conclude that Z-Score model is a perfect fit to the actual 

data. 

Table 10. Summary Results of NEPOOL Hub Electricity Goodness-of-Fit Test  
Statistical Test Ignore 

Outliers 

Drop 

Outliers 

Z-Score Tukey 

IQR 

k-means 

Kolmogorov-

Smirnov (KS) 

Statistic 0.0152 0.0614 0.0109 0.0177 0.0142 

p-value (Two-tailed) 0.6255 <0.0001 0.9345 0.4314 0.7109 

Anderson-

Darling (AD) 

Statistic 2.7422 32.2602 0.4281 0.8452 0.5776 

p-value (Two-tailed) 0.0371 <0.0001 0.8205 0.4496 0.6695 

 

5.1.4. PJM West Hub Electricity Prices 

Grubb’s test for PJM West Hub Electricity prices showed that the G-Scores on maximum 

value is 16 while the G-Score on minimum value is 22.53 Again, Grubb’s test identified the 

presence of 107 outliers in PJM West Hub Electricity Prices. Thus, we conclude that the G-

Scores on maximum and minimum values confirmed the presence of outliers in NEPOOL Hub 

Electricity Prices ($/MWh). 

The three labeling techniques employed in this study were used to divide the datasets into 

three labeled subgroups for PJM West Hub Electricity Prices ($/MWh) series was namely base 
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and contaminants labeled upper and lower datasets. The mean of the original dataset is 0.03 and 

standard deviation standard is 12.76. The result for Modified Z-Score showed that there are 

4887, 191 and 171 number of observations in base, upper and lower labeled subgroups. The 

minimum observed daily price for PJM West Hub Electricity in the base dataset is -18.05 

($/MWh) and the maximum observed daily price is 17.94 ($/MWh). The mean and the standard 

deviation for base using the Modified Z-Score technique are 0.01 ($/MWh) and 5.93 ($/MWh). 

For upper, the minimum observed daily price is 18.01 ($/MWh) and the maximum observed 

value is 194.1 ($/MW/h). The mean and the standard deviation for upper using the Modified Z-

Score technique are 33.44 and 20.47 ($/MWh) respectively. In the lower dataset, the minimum 

observed daily price is -287.48 and the maximum observed daily price is -18.3 ($/MWh). The 

mean and the standard deviation for lower labeled dataset are -36.58 and 30.76 ($/MWh). The 

result for the Tukey IQR procedure showed that there are 4701, 281 and 264 number of 

observations in base, upper and lower labeled datasets. The minimum observed daily price for 

base labeled dataset is -12.82 and the maximum observed value is 12.75 ($/MWh). The mean 

and the standard deviation for base dataset using the Tukey IQR technique are -0.13 and 5.18 

($/MWh). For upper labeled dataset, the minimum observed daily price is 14.08 and the 

maximum observed daily price is 194.1 ($/MWh). The mean and the standard deviation for 

upper labeled data using the Tukey IQR technique are 27.77 and 18.79 ($/MWh). In the lower 

dataset, the minimum observed daily price is -287.48 and the maximum observed daily price is -

13.97 ($/MWh) while the mean and standard deviation are -29.19 and 26.70 ($/MWh).  

Using the k-Means clustering procedure, we identified 5 clusters. The shadow scores for 

these clusters 1, 2, 3, 4 and 5 are 0.626, 0.452, 0.416, 0.454 and 0.524. Also, there are 4740, 390 

and 119 number of observations in base, upper and lower labeled datasets. The minimum 
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observed daily price in base labeled dataset is -21.96 and the maximum observed daily price is 

11.29 ($/MWh). The mean and the standard deviation for base labeled dataset using the k-Means 

clustering technique are -0.8 and 5.61. For upper labeled dataset, the minimum observed daily 

price is 11.42 and the maximum daily price is 194.1 ($/MWh). The mean and the standard 

deviation for upper labeled dataset using the k-Means clustering technique are 23.54 and 17.34 

($/MWh). In the lower labeled dataset, the minimum observed dataset is -287.48 and the 

maximum observed daily price is -22.38 ($/MWh). The mean and standard deviation are -43.90 

and 34.42 ($/MWh) respectively. 

We then combined each of the labeled dataset using the Bayesian Averaging Procedure. 

Following the Bayesian Averaging Procedure, we used the KS and AD test statistics to compare 

the Bestfit for each of the labeled dataset. The distribution fitting results here show the output 

analysis for the full dataset (ignore outliers), truncated dataset (remove outliers), Bayesian 

Averaging with modified Z-Score, Bayesian Averaging with Tukey IQR, Bayesian Averaging 

with k-Means Clustering, and comparison of goodness-of-fit with original data. The distribution 

fitting results followed the same hypothesis. The null hypothesis, H0, of the two-sample 

Kolmogorov test is that the two samples follow the same distribution. The alternative hypothesis, 

Ha, is that the distributions of the two samples are different.  

For PJM Hub Electricity full dataset, the computed p-value is lower than the significance 

level at 5%, we reject the null hypothesis H0 (refer to Table A1 and Figure A16). Hence, we 

conclude that the two samples do not follow the same distribution. Also, we reject the null 

hypothesis H0 and accept the alternate hypothesis Ha since the computed p-value is lower than 

the significance level at 5% for the truncated labeled dataset. (refer to Table A1 and Figure A17). 

Therefore, we conclude that the distributions of the two samples are different. The KS - Z-Score 
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Bayesian Averaging results showed that the computed p-value is greater than the significance 

level at 5%. Hence we fail to reject the null hypothesis H0 and reject the alternative hypothesis, 

Ha. We conclude that the two samples follow the same distribution (refer to Table A2 and Figure 

A18). The KS - Tukey IQR Bayesian Averaging results showed that the computed p-value is 

greater than the significance level at 5%, hence we accept the null hypothesis H0, and reject the 

alternative hypothesis, Ha, and conclude that the distributions of two samples follow the same 

distribution (refer to Table A2 and Figure A19). Similarly, The KS - k-Means Bayesian 

Averaging showed that the computed p-value is less than the significance level at 5%, hence we 

reject the null hypothesis H0, and accept the alternative hypothesis, Ha. We conclude that the two 

samples do not follow the same distribution (refer to Table A2 and Figure A20).  

In the final step of the research procedure, we compared the Goodness-of-Fit of each 

procedure or model to the actual dataset by using the Two-Sample KS and AD Tests. Both the 

KS and AD test statistics indicated that the p-value is greater than the significance level at 5% 

for k-Means clustering model. Hence, we accept the null hypothesis and reject the alternative 

hypothesis, Ha (refer to Table 11) and conclude that Z-Score model is a perfect fit to the actual 

data. 

Table 11. Summary Results of PJM West Hub Electricity Goodness-of-Fit Test  
Statistical Test Ignore 

Outliers 

Drop 

Outliers 

Z-

Score 

Tukey 

IQR 

k-

means 

 

Statistic 0.0533 0.0455 0.0173 0.0164 0.0402 

p-value 

(Two-tailed) 

<0.0001 <0.0001 0.4093 0.4816 0.0004 

Anderson-

Darling (AD) 

Statistic 14.9585 19.7970 1.1995 0.9388 4.0837 

p-value 

(Two-tailed) 

<0.0001 <0.0001 0.2677 0.3910 0.0079 

 

Kolmogorov-
Smirnov (KS)
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5.1.5. Chicago Oats Futures Prices 

Grubb’s test for Chicago Oats Futures prices (Chng_O (cents/bu)) showed that the G-

Scores on maximum value is 10.564 while the G-Scores on minimum value is 5.516 

respectively. Again, Grubb’s test identified the presence of 21 outliers in Chng_O. Thus, we 

conclude that the G-Scores on maximum and minimum values confirmed the presence of outliers 

in Chng_O. 

Chng_O, was divided into base, upper and lower labeled dataset. The result for Modified 

Z-Score analysis showed that there are 3023, 66, and 54 number of observations in base, upper 

and lower labeled subgroups, and a mean of 0.25 and standard deviation of 7.53 (cents/bu) 

respectively. The minimum observed value in base subgroup is -18 (cents/bu) and the maximum 

observed value is 18 (cents/bu). The mean and the standard deviation for base using the 

Modified Z-Score technique are 0.12 (cents/bu) and 5.68 (cents/bu). For upper, the minimum 

value is 18.25 (cents/bu) and the maximum observed value is 79.75 (cents/bu). The mean and the 

standard deviation for upper using are 25.42 (cents/bu) and 9.51 (cents/bu). In lower subgroup, 

the minimum value is -40 while the maximum value is -18.5. The mean is -23.73 with a standard 

deviation of 5.46 (cents/bu). The results of Tukey IQR labeling analysis showed that there are 

2940, 104, and 99 number of observations in base, upper and lower labeled subgroups 

respectively. The minimum observed value in base is -18 (cents/bu) and the maximum observed 

value is 18 (cents/bu). The mean and the standard deviation for base using the Tukey IQR 

technique are 0.12 and 5.68 (cents/bu). For upper, the minimum observed value is 18.25 and the 

maximum observed value is $79.75 (cents/bu). In lower subgroup, the minimum value is -40 

while the maximum value is -18.5 The mean and the standard deviation for upper using the 

Tukey IQR technique are 25.42 and 9.51 (cents/bu). In lower subgroup, the minimum value is -
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40 while the maximum value is -18.5. The mean is -23.73 with a standard deviation of 5.46 

(cents/bu). The mean is -23.73 with a standard deviation of 5.46 (cents/bu).  For k-Means 

clustering analysis, there were four clusters. The shadow scores for these clusters are 0.527, 

0.553, 0.440 and 0.483. There are 2089, 518 and 536 number of observations in base, upper and 

lower labeled datasets. The minimum observed daily price in base labeled dataset is -4.75 and 

the maximum observed daily price is 5.5 (cents/bu). The mean and the standard deviation for 

base labeled dataset using the k-Means clustering technique are 0.20 and 2.71. For upper 

labeled dataset, the minimum observed daily price is 5.75 and the maximum daily price is 79.75 

(cents/bu). The mean and the standard deviation for upper labeled dataset using the k-Means 

clustering technique are 11.15 and 7.02 (cents/bu). In the lower labeled dataset, the minimum 

observed dataset is -40 and the maximum observed daily price is -5 (cents/bu). The mean and 

standard deviation are -10.13 and 5.76 (cents/bu) respectively. 

The distribution fitting results here show the output analysis for the full dataset (ignore 

outliers), truncated dataset (remove outliers), Bayesian Averaging with modified Z-Score, 

Bayesian Averaging with Tukey IQR, Bayesian Averaging with k-Means Clustering, and 

comparison of goodness-of-fit with original data. The distribution fitting results followed the 

same hypothesis. The null hypothesis, H0, of the two-sample Kolmogorov test is that the two 

samples follow the same distribution. The alternative hypothesis, Ha, is that the distributions of 

the two samples are different.  

For Chng_O full dataset, the computed p-value is greater than the significance level at 

5%, we cannot reject the null hypothesis H0 (refer to Table A1 and Figure A21) Hence, we 

conclude that the two samples follow the same distribution. Also, we accept the null hypothesis 

H0 and reject the alternate hypothesis H0 since the computed p-value is greater than the 
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significance level at 5% (Refer to Table A1 and Figure A22) for Chng_O truncated dataset. 

Therefore, we conclude that the two samples follow the same distribution. The Z-Score Bayesian 

Averaging results showed that the computed p-value is greater than the significance level at 5%, 

hence we accept the null hypothesis H0, and reject the alternative hypothesis Ha. We conclude 

that the two samples do not follow the same distribution (refer to Table A2 and Figure A23). KS 

Tukey IQR Bayesian Averaging results showed that the computed p-value is lower than the 

significance level at 5%, hence we reject the null hypothesis H0, and accept the alternative 

hypothesis Ha. We conclude that the distributions of two samples are different (refer to Table A2 

and Figure A24). Similarly, The KS k-Means Bayesian Averaging showed that the computed p-

value is lower than the significance level at 5%, hence we the reject null hypothesis H0, and 

accept the alternative hypothesis Ha. We conclude that the two samples do not follow the same 

distribution (refer to Table A2 and Figure A25).  

In the final step of the research procedure, we compared the Goodness-of-Fit to the actual 

dataset by using the Two-Sample KS and AD Tests. Both the KS and AD test statistic indicated 

the p-value is greater than the significance level 5%, hence, we accept the null hypothesis and 

reject the alternative Ha (refer to Table 12). Hence, we conclude that alternate procedure, 

Modified Z-Score model is a perfect fit to the actual data.  

Table 12. Results of Oats Futures Price Goodness-of-Fit Test 

Statistical Test Ignore 

Outliers 

Drop 

Outliers 

Z-

Score 

Tukey 

IQR 

k-Means 

Kolmogorov-Smirnov (KS) Statistic 0.0286 0.0283 0.0175 0.0655 0.1995 

p-value 

(Two-

tailed) 

0.1519 0.1608 0.7217 <0.0001 <0.0001 

Anderson-Darling (AD) Statistic 1.1884 4.1352 0.3837 20.9727 207.7736 

p-value 

(Two-

tailed) 

0.2720 0.0075 0.8649 <0.0001 <0.0001 
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5.1.6. KC - Chicago Wheat Intermarket Spread 

Grubb’s test for Chicago Wheat Intermarket Spread (KW-W (cents/bu)) showed that p-

value is greater than the significance level alpha=0.05 and hence we cannot reject the null 

hypothesis. Thus, we conclude that Grubb’s test did not confirm the presence of outliers in KW-

W dataset. 

However, the results of the Modified Z-Score analysis showed that there are outliers in 

the series. There are 3204 price observations in base, while there is 1 observed outlier in the 

upper and 2 observed outliers in the lower labeled subgroups respectively. The mean for KW-W 

series is 15.07 and standard deviation of 51.71 (cents/bu) respectively. The minimum observed 

value in base subgroup is -147.25 (cents/bu) and the maximum observed value is 168.5 

(cents/bu). The mean and the standard deviation for base using the Modified Z-Score technique 

are 15.13 (cents/bu) and 51.54 (cents/bu). In lower subgroup, the minimum value is -40 while 

the maximum value is -18.5. The mean is -23.73 with a standard deviation of 5.46 (cents/bu). 

The results of the Tukey IQR labeling analysis showed that there are 3180, 14, and 13 number of 

observations in base, upper and lower labeled subgroups respectively. The minimum observed 

value in base is -106 (cents/bu) and the maximum observed value is 141.25 (cents/bu). The mean 

and the standard deviation for base using the Tukey IQR technique are 15.08 and 50.28 

(cents/bu). For upper, the minimum observed value is 143.5 and the maximum observed value is 

177.25 (cents/bu). In lower subgroup, the minimum value is -187.5 while the maximum value is 

-108. The mean and the standard deviation for upper using the Tukey IQR technique are -124.40 

and 23.24 (cents/bu). For k-Means clustering analysis, there were three clusters. The shadow 

scores for these clusters are 0.599, 0.565, and 00.565. There are 1889, 1318 and 657 number of 

observations in base, upper and lower labeled datasets. The minimum observed daily price in 
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base labeled dataset is -187.5 and the maximum observed daily price is 45.5 (cents/bu). The 

mean and the standard deviation for base labeled dataset using the k-Means clustering technique 

are 8.32 and 21.03 (cents/bu). For upper labeled dataset, the minimum observed daily price is 

22.5 and the maximum daily price is 28.58 (cents/bu). The mean and the standard deviation for 

upper labeled dataset using the k-Means clustering technique are 73.98 and 28.58 (cents/bu). In 

the lower labeled dataset, the minimum observed dataset is -187.5 and the maximum observed 

daily price is -108 (cents/bu). The mean and standard deviation are -124.40 and 23.24 (cents/bu) 

respectively. 

For KW-W full dataset, the computed p-value is lower than the significance level at 5%, 

and reject the null hypothesis H0 (refer to Table A1 and Figure A26) Hence, we conclude that the 

two samples do not follow the same distribution. Also, we reject the null hypothesis H0 and 

accept the alternate hypothesis H0 since the computed p-value is greater than the significance 

level at 5% (Refer to Table A1 and Figure A27) for KW-W truncated dataset. Therefore, we 

conclude that the two samples do not follow the same distribution. The Z-Score Bayesian 

Averaging results showed that the computed p-value is greater than the significance level at 5%, 

hence we accept the null hypothesis H0, and reject the alternative hypothesis Ha. We conclude 

that the two samples do not follow the same distribution (refer to Table A2 and Figure A28). KS 

Tukey IQR Bayesian Averaging results showed that the computed p-value is lower than the 

significance level at 5%, hence we reject the null hypothesis H0, and accept the alternative 

hypothesis Ha. We conclude that the distributions of two samples are different (refer to Table A2 

and Figure A29). Similarly, The KS k-Means Bayesian Averaging showed that the computed p-

value is lower than the significance level at 5%, hence we the reject null hypothesis H0, and 
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accept the alternative hypothesis Ha. We conclude that the two samples do not follow the same 

distribution (refer to Table A2 and Figure A30).  

In the final step of the research procedure, we compared the Goodness-of-Fit to the actual 

dataset by using the Two-Sample KS and AD Tests. The KS test statistic indicated the alternate 

procedure, Tukey IQR as the perfect fit to the actual data while the AD test statistic indicated the 

traditional approach of ignoring outliers to be the best fit model to the actual dataset (refer to 

Table 13). 

Table 13. Results of  KC - Chicago Wheat Intermarket Spread Goodness-of-Fit Test  
Statistical Test Ignore 

Outliers 

Drop 

Outliers 

Z-

Score 

Tukey 

IQR 

k-

Means 

Kolmogorov-

Smirnov (KS) 

Statistic 0.0362 0.0355 0.0362 0.0340 0.0493 

p-value (Two-

tailed) 

0.0301 0.0348 0.0301 0.0492 0.0008 

Anderson-

Darling (AD) 

Statistic 3.4524 3.4827 3.4576 3.6372 7.7783 

p-value (Two-

tailed) 

0.0162 0.0157 0.0161 0.0131 0.0001 

 

5.1.7. Chicago Wheat Intermonth Spread 

Grubb’s test for Chicago Oats Futures prices (W (cents/bu)) showed that the G-Scores on 

maximum value is -131.25 while the G-Scores on minimum value is -155 respectively. Again, 

Grubb’s test identified the presence of 3 outliers in W. Thus, we conclude that the G-Scores on 

maximum and minimum values confirmed the presence of outliers in W. 

W, was divided into base, upper and lower labeled dataset. The result for Modified Z-

Score analysis showed that there are 3162, 64, and 11 number of observations in base, upper 

and lower labeled subgroups, The actual W dataset had a mean of 0.25 and standard deviation of 

7.53 (cents/bu). The minimum observed value in base subgroup is -19 (cents/bu) and the 

maximum observed value is 40.5 (cents/bu). The mean and the standard deviation for base using 

the Modified Z-Score technique are 11.67 (cents/bu) and 9.87 (cents/bu) respectively. For upper, 
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the minimum value is 40.75 (cents/bu) and the maximum observed value is 50 (cents/bu). The 

mean and the standard deviation for upper are 44.87 (cents/bu) and .85 (cents/bu). In lower 

subgroup, the minimum value is -155 while the maximum value is -20. The mean is -56.18 with 

a standard deviation of 55.27 (cents/bu). The results of Tukey IQR labeling analysis showed that 

there are 3027, 155, and 25 number of observations in base, upper and lower labeled subgroups 

respectively. The minimum observed value in base is -12 (cents/bu) and the maximum observed 

value is 34 (cents/bu). The mean and the standard deviation for base using the Tukey IQR 

technique are 10.78 and 8.48 (cents/bu). For upper, the minimum observed value is 34.25 and 

the maximum observed value is $50 (cents/bu). The mean and the standard deviation for upper 

using the Tukey IQR technique are 38.67 and 3.93 (cents/bu). In lower subgroup, the minimum 

value is -155 while the maximum value is -12.25. The mean is -33.06 while the standard 

deviation 41.39 (cents/bu). For k-Means clustering analysis, there are five clusters. The shadow 

scores for these clusters are 0.576, 0.470, 0.604, 0.286, and 0.530. There are 1434, 430 and 1343 

number of observations in base, upper and lower labeled datasets. The minimum observed daily 

price in base labeled dataset is 8.5 and the maximum observed daily price is 23 (cents/bu). The 

mean and the standard deviation for base labeled dataset using the k-Means clustering technique 

are 14.14 and 3.61. For upper labeled dataset, the minimum observed daily price is 23.25 and 

the maximum daily price is 50 (cents/bu). The mean and the standard deviation for upper 

labeled dataset using the k-Means clustering technique are 32.20 and 5.93 (cents/bu). In the 

lower labeled dataset, the minimum observed dataset is -155 and the maximum observed daily 

price is 8.25 (cents/bu). The mean and standard deviation are 2.74 and 8.44 (cents/bu) 

respectively. 
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The distribution fitting results here show the output analysis for the full dataset (ignore 

outliers), truncated dataset (remove outliers), Bayesian Averaging with modified Z-Score, 

Bayesian Averaging with Tukey IQR, Bayesian Averaging with k-Means Clustering, and 

comparison of goodness-of-fit with original data. The distribution fitting results followed the 

same hypothesis. The null hypothesis, H0, of the two-sample Kolmogorov test is that the two 

samples follow the same distribution. The alternative hypothesis, Ha, is that the distributions of 

the two samples are different.  

For W full dataset, the computed p-value is lower than the significance level at 5%, we 

reject the null hypothesis H0 (refer to Table A1 and Figure A31) Hence, we conclude that the two 

samples do not follow the same distribution. Also, we reject the null hypothesis H0 and accept 

the alternate hypothesis Ha since the computed p-value is lower than the significance level at 5% 

(Refer to Table A1 and Figure A32) for W truncated dataset. Therefore, we conclude that the two 

samples do not follow the same distribution. The Z-Score Bayesian Averaging results showed 

that the computed p-value is lower than the significance level at 5%, hence we reject the null 

hypothesis H0, and accept the alternative hypothesis Ha. We conclude that the two samples do 

not follow the same distribution (refer to Table A2 and Figure A33). KS Tukey IQR Bayesian 

Averaging results showed that the computed p-value is greater than the significance level at 5%, 

hence we accept the null hypothesis H0, and reject the alternative hypothesis Ha. We conclude 

that the distributions of two samples follow the same distribution (refer to Table A2 and Figure 

A34). Similarly, The KS k-Means Bayesian Averaging showed that the computed p-value is 

greater than the significance level at 5%, hence we the accept null hypothesis H0, and reject the 

alternative hypothesis Ha. We conclude that the two samples follow the same distribution (refer 

to Table A2 and Figure A35).  
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In the final step of the research procedure, we compared the Goodness-of-Fit to the actual 

dataset by using the Two-Sample KS and AD Tests. Both the KS and AD test statistics indicated 

the k-means model as the perfect fit to the actual data (refer to Table 14).  

Table 14. Results of  KC - Chicago Wheat Intermonth Spread Goodness-of-Fit Test 
Statistical Test Ignore 

Outliers 

Drop 

Outliers 

Z-

Score 

Tukey 

IQR 

k-

Means 

Kolmogorov-

Smirnov (KS) 

Statistic 0.2831 0.0477 0.0418 0.0324 0.0187 

p-value (Two-

tailed) 

<0.0001 0.0014 0.0074 0.0686 0.6285 

Anderson-Darling 

(AD) 

Statistic 301.3086 4.2461 2.6923 1.5325 0.5314 

p-value (Two-

tailed) 

<0.0001 0.0066 0.0393 0.1689 0.7152 

 

5.2. General Observations 

The alternative procedures proved to be better fit to the historical data compared to 

traditional method. Among the alternative procedures, the k-Means model was a better fit when 

applied to Indiana Hub Electricity Prices, NEPOOL Hub Electricity Prices, and KC Intermonth 

Spread. This was followed by the Tukey IQR model in the case of PJM West Hub and KC 

Intermarket Spreads. However, the KS test statistic results show that Tukey IQR model provided 

a better fit to KC Intermarket Spread while the AD test statistic results showed that ignoring the 

outlier proved to be a better fit to KC Intermarket Spread. Interestingly, ignoring the outliers in 

DCV data series proved to be a better fit compared to the alternative models. This could be due 

to the fact the outliers were only upward bound. 
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6. SUMMARY AND CONCLUSIONS 

6.1. Summary of Problem 

Outliers are problematic for many statistical analyses especially when using distribution 

fitting procedures in @risk Monte Carlo Simulation software because they can cause tests to 

miss significant findings or distort real results. This usually occurs with the traditional approach 

of ignoring or removing outlier observations which overlooks important information in an 

observation. Thus, the actual stochastic process is undermined. This study seeks to develop and 

evaluate a more effective approach for fitting statistical distributions to real-world data in the 

presence of outlier observations and compared to traditional approach using the Kolmogorov-

Smirnov and Anderson-Darling test statistics. 

6.2. Summary of Methodology 

In this study, we used the Grubbs test to detect the outliers in all seven (7) candidate data 

series; DCV, wholesale electricity prices, oats futures prices and wheat spreads. After detecting 

outlier, we used nonparametric labeling procedures that is, Z-Score, Tukey IQR and k-Means 

clustering to divide the datasets into base and contaminating subsets. The contaminating subsets 

were labeled upper and lower outlier datasets. The Bestfit procedure in @Risk was then used to 

determine the best-fitting statistical distributions for each subset. The best-fitting procedures for 

each of the subsets were then combined for simulation by using the Bayesian Averaging 

technique to generate stochastic probabilities for each subset based on their observed frequency 

in the actual datasets. We used beta distributions in the case of two distributions to generate 

random probabilities and multivariate beta in the case of three distributions. Finally, we 

compared the actual sample data to the Monte Carlo Simulated data for each alternate approach 

by estimating the Kolmogorov-Smirnov and Anderson-Darling test statistics. The lower values 
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of the KS and AD test statistics indicated a stronger goodness-of-fit between the actual and 

candidate data distributions. We also compared and evaluated the overall utility of the procedure 

by applying the Bestfit to the total original dataset. Finally, we compared the traditional 

approaches to the labeling approaches for each of the datasets to determine the best the bestfit. 

6.3. Study Results 

The Grubbs test was estimated to identify outliers in the datasets. The results for the 

estimated Grubb’s test confirmed the presence of outliers in all the datasets used in the study. 

The labeling procedures; modified Z-Score, Tukey IQR, and K-means further confirmed outliers 

in the datasets. We labeled the contaminants as lower and upper outliers. In the case of DCV, the 

modified Z-Score, Tukey IQR and k-Means labeled outliers as upper outliers only. In the case of 

wholesale electricity prices, oats futures price, and wheat spreads, the modified Z-Score, Tukey 

IQR and k-Means categorized outliers into upper and lower outliers.  

After combining the labeled dataset using the Bayesian Averaging Procedure, the KS test 

statistic was estimated to find the best fit for each subset. For DCV series, the KS test statistic 

results showed the two samples followed the same distribution for full dataset. The two samples 

did not follow the same distribution for truncated data series. The KS test results showed that the 

samples did not follow the same distribution for Z-Score Bayesian Averaging, Tukey IQR 

Bayesian Averaging and k-Means Bayesian Averaging. Ignoring the outliers was identified as 

the better fit to the actual dataset compared to the alternative procedures.  

For Indiana Hub Electricity Price series, the KS test statistic results showed the two 

samples followed the same distribution for full datasets series, truncated data series, Z-Score 

Bayesian Averaging, Tukey IQR Bayesian Averaging and k-Means Bayesian Averaging. Both 

the KS and AD goodness-of-fit test selected k-Means procedure as the best. This was followed 
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by Tukey IQR and Z-Score. This indicated that the alternative procedures outperformed 

traditional procedures in the case of Indiana Hub Electricity prices. 

For NEPOOL Hub Electricity Price series, the KS test statistic results showed the two 

samples followed the same distribution for full datasets series, Z-Score Bayesian Averaging, 

Tukey IQR Bayesian Averaging and k-Means Bayesian Averaging except truncated data series 

Both the KS and AD goodness-of-fit test selected k-Means procedure as the bestfit. This was 

followed by Z-Score and Tukey IQR. This indicated that the alternative procedures outperformed 

traditional procedures in the case of NEPOOL Hub Electricity prices.   

For PJM West Hub Electricity Price series, the KS test statistic results showed the two 

samples did not follow the same distribution for full datasets series, truncated data series, and k-

Means Bayesian Averaging. On the hand, the two samples followed the same distribution for Z-

Score and Tukey IQR Bayesian Averaging. Both the KS and AD goodness-of-fit test selected 

Tukey IQR procedure as the bestfit. This was followed by Z-Score and k-Means. This indicated 

that the alternative procedures outperformed traditional procedures in the case of PJM West Hub 

Electricity prices. 

For Chng_0, the KS test statistic results showed the two samples followed the same 

distribution for full datasets series, truncated data series, and Z-Score Bayesian Averaging. On 

the hand, the two samples followed the same distribution for Tukey IQR and k-Means Bayesian 

Averaging. Both the KS and AD goodness-of-fit test selected Z-Score procedure as the bestfit. 

This indicated that the alternative procedures outperformed traditional procedures in the case of 

Chicago Oats Futures Prices. 

For KW-W, the KS test statistic results showed the two samples followed the same 

distribution for truncated data series, and Z-Score Bayesian Averaging. On the hand, the two 
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samples followed the same distribution for full data series, Tukey IQR Bayesian Averaging and 

k-Means Bayesian Averaging. The KS goodness-of-fit test selected Tukey IQR procedure as the 

bestfit. Comparably, the AD goodness-of-fit test indicated that ignoring outliers in Chicago 

Wheat Intermarket Spread was a better fit.  

For W, the KS test statistic results showed the two samples followed the same 

distribution for full data series, truncated data series, and Z-Score Bayesian Averaging. On the 

hand, the two samples followed the same distribution for Tukey IQR Bayesian Averaging and k-

Means Bayesian Averaging. Both the KS and AD goodness-of-fit tests selected the k-Means 

procedure as the bestfit. This indicated that the alternative procedures outperformed traditional 

procedures in the case of Chicago Intermonth Spread.  

6.4. Major Observations 

Results from the sample datasets indicate, for the most part, that our procedures have 

improved fits than traditional approaches of handling outliers with two exceptions. Firstly, the 

labeling procedures tend to fit better when the distributions are two-tails rather than one-tail. 

Secondly, labeling procedures provide significant goodness-of-fit results compared to traditional 

approaches. Lastly, no one improved procedure was dominant in all the samples.  

One of the major observations in this study was that the labeling procedures worked best 

when they were two-tailed outliers, that is, upper and lower outliers. Most distributions are 

adequate for fitting upper tails or where there is a wide range of upper skewed distributions. 

There is only one low-tailed distribution, that is, the extreme minimum. Thus, by flipping the 

lower tail and fitting a wide range of upper tails, we provide a better fit. The benefit of using the 

labeling approaches is particularly in the case where we have upper and lower tails. For example, 

the DCV was one tail and was more amendable to just the traditional approaches. While the AD 
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test indicated that the traditional approach (ignoring outliers) provided a better fit for KW-W, the 

labeling approach was also significant. For example, the Z-score identified only one (lower) and 

two (upper) outliers for KW-W, respectively, which were not enough outliers to fit well. So, we 

used real sample distribution to fit them. Tukey IQR and k-Means, on the other hand, identified 

adequate outliers. While Tukey IQR identified 13 (lower) and 14 (upper) outliers, k-Means 

identified 657 (downside) and 1318 (upper) outliers. However, Tukey IQR produced better 

results and better fit compared to k-Means.  

We can therefore observe that the two tests sometimes do not agree. While the Anderson-

Darling test fits the whole CDF, that is, gives more weight to the tails of the distribution by 

considering the squared difference between the observed EDF and expected CDF, the KS test 

looks at the maximum absolute difference between the EDF sample and CDF of the 

hypothesized distribution. Additionally, it is important to note that both tests require the selection 

of a significant level to determine the threshold for rejecting the null hypothesis. Finally, the 

performance and suitability of each test depend on the unique characteristics of the data and the 

research question. Thus, these differences between AD and KS tests may sometimes cause 

discrepancies in the goodness-of-fit test. 

 Additionally, we observed that the labeling procedures provided better fitting results for 

the stationary series compared to the traditional approaches. For example, since the KW-W 

series was non-stationary from a difference one different perspective, the labeling procedures 

were ineffective.  As evidenced by the one non-stationary series, the fitting procedure did not 

work. The fitting procedures tend to work best with stationary series, as evidenced by all the 

series except the KW-W series. Hence, the labeling procedures provide improved fitting 

compared to the traditional approaches.  
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Finally, none of the improved procedures was dominant across all the sample datasets. 

For example, K-Means provided better fitting results for the samples, NEPOOL Hub, Indiana 

Hub, and W. Tukey IQR procedure was a better fit for PJM Hub, while Z-Score procedure was a 

better fit for Chng_O. This shows that having multiple labeling procedures will provide better 

results than only one.  

6.5. Contributions to Existing Literature 

Outlier detection methods are important for many applications. Traditional methods of 

ignoring or discarding outliers are mostly used to detect and treat outliers. In this study, we 

developed and evaluated improved procedures, labeling techniques, and Bayesian Averaging 

Modeling for fitting distribution to data in the presence of outliers. These improved procedures 

help to select the best model for fitting statistical distribution parameters to data in the presence 

of outliers by combining multiple models, each with different assumptions and parameter 

estimates. For example, one model can assume a heavy-tailed distribution to accommodate 

extreme outliers, while another model may assume a more normal distribution for most of the 

data.  Our procedure, in many cases, was superior to traditional approaches. Thus, our procedure 

improved performance in the presence of outliers. That is, it helped to capture different types of 

outliers by considering models with different assumptions and allowing for the possibility of 

including models that specifically account for such types of outliers, leading to improved fitting 

performance. Therefore, the improved procedure we used in the study improves estimation and 

interpretation while enhancing the utilization of resources. 

6.6. Study Implications for Risk Researchers and Practitioners 

This study will improve the work of researchers and practitioners, particularly those who 

employ Monte-Carlo modeling, and they can find better-improved fitting of distributions, 
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particularly when outliers are present using labeling and Bayesian averaging. This can be used in 

risk modeling where there is high volatility, especially wholesale electricity prices, which are 

problematic in predicting day-to-day fluctuations in electricity prices. It gives you an idea of how 

bad things could get and how frequently, thereby enhancing decision-making. Bayesian 

averaging allows researchers to integrate diverse estimates or predictions, giving each estimate 

an appropriate weight based on its performance. The aggregate estimates provided a more robust 

and reliable basis for decision-making, as was the case in this study. By using the labeling and 

Bayesian averaging technique, we were able to select the best distribution-fitting model for each 

case study. In addition, this study will improve the work of researchers and practitioners by 

providing them the flexibility in modeling outliers. The flexibility of Bayesian averaging gives 

room for understanding outliers and their influence on risk assessment by capturing uncertainty 

associated with extreme values upward bound outliers, resulting in more accurate risk and 

parameter estimates for DCV prices. It gives risk practitioners who use Monte Carlo an idea 

about potential outcomes of DCV prices that helps to assess the likelihood of different DCV 

price levels, evaluate downside risks, and determine appropriate risk management strategies.   

6.7. Avenues for Future Study 

Although this thesis developed and evaluated improved procedures for fitting statistical 

distributions to historical data in the presence of "contaminating" outlier distributions, there are 

many topics that remain unexplored. The following sections address the selected topics for 

further studies.  

First, this study focused on evaluating improved procedures for fitting distributions to 

only time series data in the presence of outliers. These alternative procedures were specifically 

developed to deal with outliers present in time series data but not cross-sectional data. Cross-
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sectional data will be useful to understand the impact of Covid-19, the Russia-Ukraine war, price 

volatility, weather, demand, and supply, among other factors, on distribution fitting, risk analysis 

and assessment, and sensitivity analysis at a particular point in time. For example, given a 20% 

outlier contamination rate in the DCV and wheat futures market because of the Russian-Ukraine 

war, we can develop and evaluate improved procedures for fitting distributions to the datasets. 

More improved procedures can be developed for cross-sectional data analysis.  

Second, other labeling procedures such as Dixon, Local Outlier Factor (LOF), k-Nearest 

Neighbor, Isolation Forest, and Generalized ESD remain unexplored in this study. The idea is to 

develop a more robust model tailored for each specific database, which would imply that the 

best-ranked procedure will provide a better distributional fit for further analysis. Given the 

multiple procedures and the different types of datasets, the BMA will help to select the most 

suitable procedure or model datasets in the presence of outliers. Thus, the question is, “whether 

the many labeling procedures are more convenient and more efficient than analyzing outliers 

using selected or few procedures?” 

Third, applications in time series regression modeling and non-stationary series will be 

novel for future research. Regression models can assist in identifying outliers in time series. By 

modeling the relationship between the dependent variable and independent variables, regression 

models can identify observations that do not conform to the established relationship, thus aiding 

in outlier detection and data quality assessment. Also, regression models, such as linear or 

polynomial regression, can help to estimate and quantify the underlying behavior and facilitate 

trend analysis and forecasting. For example, the impact of covid-19 and the Russia-Ukraine war 

on wholesale electricity, futures, and DCV can be modeled to validate and evaluate the improved 

alternative procedures, forecasting, and sensibility analysis.  
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Lastly, outlier detection becomes challenging when dealing with huge volumes of data. 

Traditional methods of detecting outliers do not work effectively on big data. Machine learning 

algorithms offer advanced techniques to detect outliers by learning patterns and relationships 

from data. Techniques like clustering, density estimation, and deep learning-based anomaly 

detection can effectively identify anomalies in various data types and dimensions. In addition, 

ensemble methods, such as voting, averaging, or stacking, provide a robust framework for 

integrating multiple perspectives and enhancing overall outlier detection performance. Hence 

combining these methods will help improve the alternative procedures.  
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APPENDIX A. SUPPLEMENTARY TABLES 

Table A1. Two-sample KS test - Ignore Outlier 

Variable  p-value alpha D 

PJM 0.0001*** 0.05 0.0533 

Indiana 0.1055 0.05 0.0331 

NEPOOL 0.6255 0.05 0.0614 

Oats Futures 0.1519 0.05 0.0286 

W Nearby Daily Intermonth Spread 0.0001*** 0.05 0.2831 

KW-W Daily Intermarket Spread 0.0301* 0.05 0.0362 

DCV($/car) 0.2020 0.05 0.0488 

Signification codes: 0 < "***" < 0.001 < "**" < 0.01 < "*" < 0.05 < "." < 0.1 < " " < 1 

Table A2. Two-sample KS test - Drop Outlier 

Variable  p-value alpha D 

PJM 0.0001*** 0.05 0.0455 

Indiana 0.0055** 0.05 0.0468 

NEPOOL 0.0001*** 0.05 0.0614 

Oats Futures 0.1608 0.05 0.0283 

W Nearby Daily Intermonth Spread 0.0014** 0.05 0.0477 

KW-W Daily Intermarket Spread 0.0348* 0.05 0.0355 

DCV($/car) 0.0001*** 0.05 0.3911 

Signification codes: 0 < "***" < 0.001 < "**" < 0.01 < "*" < 0.05 < "." < 0.1 < " " < 1 

Table A3. Two-sample KS test - Z-Score Bayesian Averaging 

Variable  p-value alpha D 

PJM 0.4093 0.05 0.0173 

Indiana 0.7855 0.05 0.0178 

NEPOOL 0.9345 0.05 0.0109 

Oats Futures 0.7217 0.05 0.0175 

W Nearby Daily Intermonth Spread 0.0074** 0.05 0.0418 

KW-W Daily Intermarket Spread 0.0301* 0.05 0.0362 

DCV($/car) 0.0001*** 0.05 0.3994 

Signification codes: 0 < "***" < 0.001 < "**" < 0.01 < "*" < 0.05 < "." < 0.1 < " " < 1 
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Table A4. Two-sample KS test Tukey IQR Bayesian Averaging 

Variable  p-value alpha D 

PJM 0.4816 0.05 0.0164 

Indiana 0.8822 0.05 0.0160 

NEPOOL 0.9345 0.05 0.0109 

Oats Futures 0.0001*** 0.05 0.0655 

W Nearby Daily Intermonth Spread 0.0686 0.05 0.0324 

KW-W Daily Intermarket Spread 0.0492* 0.05 0.0340 

DCV($/car) 0.0001*** 0.05 0.3932 

Signification codes: 0 < "***" < 0.001 < "**" < 0.01 < "*" < 0.05 < "." < 0.1 < " " < 1 

Table A5. Two-sample KS test K-means IQR Bayesian Averaging 

Variable  p-value alpha D 

PJM 0.0004*** 0.05 0.0402 

Indiana 0.9941 0.05 0.0115 

NEPOOL 0.7109 0.05 0.0142 

Oats Futures 0.0001*** 0.05 0.1995 

W Nearby Daily Intermonth Spread 0.6285 0.05 0.0187 

KW-W Daily Intermarket Spread 0.0008*** 0.05 0.0493 

DCV($/car) 0.0001*** 0.05 0.3932 

Signification codes: 0 < "***" < 0.001 < "**" < 0.01 < "*" < 0.05 < "." < 0.1 < " " < 1 
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APPENDIX B. SUPPLEMENTARY FIGURES 

 
Figure A1. DCV KS-Ignore Outlier Cumulative Distribution Comparison. 

 

 

 
Figure A2. DCV KS-Drop Outlier Cumulative Distribution Comparison. 
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Figure A3. DCV KS-Z-Score Bayesian Averaging Cumulative Distribution Comparison. 

 

 
Figure A4. DCV KS-Tukey IQR Bayesian Averaging Cumulative Distribution Comparison. 
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Figure A5. DCV KS-k-Means Bayesian Averaging Cumulative Distribution Comparison. 

 

 

 
Figure A6. Indiana Hub KS-Ignore Outlier Bayesian Averaging Cumulative Distribution 

Comparison. 
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Figure A7. Indiana Hub KS-Drop Outlier Bayesian Averaging Cumulative Distribution 

Comparison. 

 

 

 
Figure A8. Indiana Hub KS-Z-Score Bayesian Averaging Cumulative Distribution Comparison 
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Figure A9. Indiana Hub KS-Tukey IQR Bayesian Averaging Cumulative Distribution 

Comparison 

 

 

 
Figure A10. Indiana Hub KS-k-Means Bayesian Averaging Cumulative Distribution Comparison 
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Figure A11. NEPOOL Hub KS-Ignore Outlier Cumulative Distribution Comparison. 

 

 

 
Figure A12. NEPOOL Hub KS-Drop Outlier Cumulative Distribution Comparison. 
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Figure A13. NEPOOL Hub KS-Z-Score Bayesian Averaging Cumulative Distribution 

Comparison. 

 

 

 
Figure A14. NEPOOL Hub KS-Tukey IQR Bayesian Averaging Cumulative Distribution 

Comparison 
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Figure A15. NEPOOL Hub KS-k-Means Bayesian Averaging Cumulative Distribution 

Comparison 

 

 

 
Figure A16. PJM West Hub KS-Ignore Outliers Cumulative Distribution Comparison 
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Figure A17. PJM West Hub KS-Drop Outliers Cumulative Distribution Comparison 

 

 

 
Figure A18. PJM West Hub KS-Z-Score Bayesian Averaging Cumulative Distribution 

Comparison 
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Figure A19. PJM West Hub KS-Tukey IQR Bayesian Averaging Cumulative Distribution 

Comparison 

 

 

 
Figure A20. PJM West Hub KS-k-Means Bayesian Averaging Cumulative Distribution 

Comparison 
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Figure A21. Chng_O KS-Ignore Outliers Cumulative Distribution Comparison 

 

 

 
Figure A22. Chng_O KS-Drop Outliers Cumulative Distribution Comparison 
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Figure A23. Chng_O KS-Z-Score Bayesian Averaging Cumulative Distribution Comparison 

 

 

 
Figure A24. Chng_O KS-Tukey IQR Bayesian Averaging Cumulative Distribution Comparison 
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Figure A25. Chng_O KS-k-Means Bayesian Averaging Cumulative Distribution Comparison 

 

 

 
Figure A26. KW-W KS-Ignore Outliers Cumulative Distribution Comparison 
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Figure A27. KW-W KS-Drop Outliers Cumulative Distribution Comparison 

 

 

 
Figure A28. KW-W KS-Z-Score Bayesian Averaging Cumulative Distribution Comparison 
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Figure A29. KW-W KS-Tukey IQR Bayesian Averaging Cumulative Distribution Comparison 

 

 

 
Figure A30. KW-W KS-k-Means Bayesian Averaging Cumulative Distribution Comparison 
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Figure A31. W KS- Ignore Outliers Cumulative Distribution Comparison 

 

 

 
Figure A32. W KS- Drop Outliers Cumulative Distribution Comparison 
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Figure A33. W KS-Z-Score Bayesian Averaging Cumulative Distribution Comparison 

 

 

 
Figure A34. W KS-Tukey IQR Bayesian Averaging Cumulative Distribution Comparison 
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Figure A35. W KS-k-Means Bayesian Averaging Cumulative Distribution Comparison. 
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