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ABSTRACT 

The effective identification of herbicide-resistant kochia in sugarbeet fields is crucial for 

adopting sustainable weed management strategies. A study was conducted in a greenhouse and 

field to record hyperspectral data of dicamba-resistant, glyphosate-resistant, and glyphosate-

susceptible kochia biotypes in sugarbeet. Hyperspectral data was captured within the wavelength 

of 400-1000 nm and preprocessed with Savitzky-Golay filter and Standard Normal Variate in a 

sequential order. Recursive feature elimination-random forest feature selection algorithm was 

used to select ten important wavelength bands from 224 bands. Subsequently, the features were 

trained on a fully connected neural network to classify dicamba-resistant, glyphosate-resistant, 

glyphosate-susceptible and sugarbeet. The findings revealed that a combination of hyperspectral 

imaging and machine learning can classify sugarbeet from herbicide-resistant kochia biotypes 

under varying environmental conditions. The trained deep neural network achieved multiclass 

classification accuracies of 93.27% in the greenhouse experiment and binary classification of 

98.76% in field experiment. 
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1. INTRODUCTION 

1.1. Background 

Kochia (Bassia scoparia (L.)), a dicot weed species in the Chenopodiaceae family, is 

recognized as economically important in sugarbeet cultivation across the Great Plains of the 

United States (Geddes & Sharpe, 2022; Kumar & Jha, 2015; Nugent et al., 2018). This highly 

adaptable and invasive weed poses a substantial challenge to both agricultural production and 

environmental management. Originally native to the temperate regions of Europe, kochia was 

introduced into the Americas in the mid to late 1800s as an ornamental plant. It later spread 

worldwide thriving in arid and semi-arid environments due to dispersion by human and animal 

(Beckie et al., 2018; Sbatella et al., 2019). 

Kochia is a bushy summer annual plant that can grow up to 72 inches tall, featuring a 

deep taproot system that enables it to access water from deeper soil layers. Its stems are covered 

with fine and soft hairs, giving the plant a grayish-green appearance. The distinctive look of 

kochia is further enhanced by its narrow, lance-shaped leaves and small, greenish flowers. A 

mature kochia plant can produce up to 30,000 seeds (Kumar & Jha, 2015; Westra et al., 2019). 

The seeds are dispersed by wind, water, and animals, contributing to their rapid spread and 

invasive nature. Its ability to thrive in drought conditions and saline soils makes it a formidable 

adversary. Kochia competes aggressively with crop like sugarbeet for essential resources, 

resulting in yield loss and declined in quality (Geddes & Sharpe, 2022; Sunil, et al., 2022).  

Sugarbeet (Beta vulgaris), is a plant cultivated primarily for its high sucrose content, 

making it a valuable crop for sugar production. It is the second largest source of raw material for 

the sugar industry, following sugarcane (Babu & Adeyeye, 2023). The roots of the sugarbeet 

plant are harvested and processed to extract sucrose, which is then refined into sugar. The 
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economic importance of sugarbeet to the global sugar industry underscores the need to explore 

and implement cost-effective weed identification technologies and integrated weed management 

strategies that can identify and differentiate between kochia biotypes in sugarbeet crops.  

The infestation of kochia in sugarbeet has been controlled by methods including 

mechanical weeding and herbicide application. Conventional herbicides like glyphosate and 

dicamba are the widely used form of weed control due to their cost-effectiveness, availability, 

and ease of application. Glyphosate was widely adopted for weed control because it effectively 

controlled a wide range of weed species. (Heap & Duke, 2018). However, the indiscriminate 

application of herbicide coupled with the selection pressure on a single herbicide usage led to the 

evolution of herbicide-resistant kochia species, creating a significant weed control challenge 

especially in sugarbeet (Kumar et al., 2019). 

1.2. Problem statement 

A study by Sbatella et al., (2019) reported kochia has developed resistance to several 

herbicide modes of action in addition to glyphosate, making it increasingly difficult to control 

with single herbicide application. This necessitates the need for innovative technologies and 

integrated weed management approach that can identify and differentiate between herbicide-

resistant and susceptible kochia biotypes from crops. This approach will help with the 

development of targeted and sustainable herbicide weed control strategies (Aslan et al., 2022; 

Wang et al., 2019). 

RGB (red, green, blue) imaging has been widely used for weed identification due to its 

availability and cost effectiveness. Its application which relies on features such as shape, size, 

and color differences between weed and crop (Esposito et al., 2021; Rai et al., 2023). However, 

RGB imaging is limited when utilized to differentiate between weed species with similar size, 
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shape, and texture specifically at the early growth stage. Its efficiency necessitates significant 

geometric differences between the crop and weed species (Li et al., 2021). This makes it 

ineffective to differentiate between herbicide-resistant and susceptible kochia species which 

naturally have similar features such as shape, size, texture and color (Khan et al., 2022; López-

Granados, 2011).  

Recently, studies have demonstrated the potential of hyperspectral imaging technology 

with advanced machine learning techniques to identify herbicide-resistant and susceptible weed 

species (Huang et al., 2018; Lee et al., 2014; Nugent et al., 2018; Scherrer et al., 2019). 

Hyperspectral imaging (HSI), a remote sensing and non-destructive technology, has emerged as 

a promising technology to capture high-resolution images of crop fields to provide information 

about the spatial distribution and spectral characteristics of crops and weeds (Shirzadifar et al., 

2020a; Zhang et al., 2023). HSI uses the light reflectance properties between plants to 

differentiate them (Ram et al., 2024). The imaging system utilizes specialized advanced sensors 

to capture and analyze the spectral reflectance data across continuous wavelength bands in the 

electromagnetic spectrum (Xu et al., 2023). This allows for the detection of small variations in 

the unique absorption and reflectance characteristics of different plants at certain wavelengths. 

By analyzing the distinct spectral reflectance at different wavelengths with advanced 

chemometric methods, resistant and susceptible kochia biotypes can be identified and classified 

from crops, aiding in the development of a targeted weed control in field crops. The ability to 

distinguish between weed species through their spectral signatures is pivotal in precision 

agriculture and targeted weed management. 

Therefore, this research focused on utilizing HSI to classify herbicide-resistant and 

susceptible kochia from sugarbeet under different environmental conditions. The experiments 
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were conducted in a greenhouse and field settings to capture the unique reflectance data for 

herbicide-resistant and susceptible kochia biotypes. The outcome of these experiments would 

assist with the adoption of site-specific weed management and prevent indiscriminate herbicide 

applications. 

1.3. Objectives of the study 

The objectives of this research were to (a) capture the unique spectral reflectance of 

herbicide-resistant and susceptible kochia biotypes before and after herbicide treatments using 

hyperspectral imaging; (b) develop a machine learning algorithm to distinguish between 

dicamba-resistant, glyphosate-resistant, and glyphosate-susceptible kochia in sugarbeet crops 

under greenhouse and field conditions; and (c) utilize the spectral data to assess the effectiveness 

of herbicides and its impact on sugarbeet. 
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2. LITERATURE REVIEW 

2.1. Sugarbeet 

Sugarbeet is one of the most economically important crops cultivated for sucrose extraction. It is 

the second largest source of raw material after sugarcane, contributing about 35% to the global 

sugar industry and 55% to the U.S. sugar industry (USDA, 2023). According to projections from 

the United States Department of Agriculture (2023), sugarbeet cultivation spans Minnesota, 

Idaho, North Dakota, Michigan, Oregon, Nebraska, California, Montana, Colorado, Wyoming, 

and Washington. The Red River Valley region of Minnesota and North Dakota is a major 

production area, with favorable climate and soil conditions for growing sugarbeet. In 2023, 

national sugarbeet production in the United States was estimated at around 35.23 million tons 

with estimated total value over $2.1 billion to domestic producers. Sugarbeet significantly impact 

the U.S. economy through domestic sugar production, employment in processing facilities, and 

economic activity in rural sugarbeet growing regions. A June 2022 report by the American Sugar 

Alliance found that the U.S. sugar industry, including sugarbeet, generates over $23.3 billion in 

economic activity annually through jobs, taxes, and economic output. Therefore, controlling 

weeds like kochia is crucial for maximizing yields of high-value crops like sugarbeet, which 

support jobs and economic activity in many rural U.S. farming communities. 

2.2. Kochia 

Kochia, an annual dicot weed discovered in North Dakota in 1987 , has become a 

significant threat to agricultural productivity for sugarbeet growers (Heap, 2024). It has been 

ranked as one of the top six troublesome and competitive weed species. Kochia's ability to adapt 

to diverse environmental conditions and its competitive nature have enabled it to invade and 

establish itself in many cropping systems (Sbatella et al., 2019). Moreover, human activities, 
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such as the movement of contaminated crop seeds, hay, and soil, along with natural dispersal 

methods like wind and water have facilitated the introduction and spread of kochia. Furthermore, 

kochia adapts to different soil types, climatic conditions, and soil disturbances, allowing it to 

colonize a wide range of habitats, including agricultural fields. In agricultural production, high 

densities of kochia can cause an average yield loss in corn (68%), soybean (52%), sugarbeet 

(46%), sunflower (23%), spring canola (13%), and spring oat (7%). Among these crops, 

sugarbeet is one of the important raw materials for sugar production (Geddes & Sharpe, 2022; 

Kumar & Jha, 2015). The economic loss to crops, particularly sugarbeet, is significant, 

highlighting the need for effective weed control methods. 

2.2.1. Biology and characteristics of kochia 

Kochia is an early summer species well-adapted to invading and thriving in harsh 

environments, such as areas with hot temperatures, significant erosion, and low water infiltration. 

Adverse conditions in agricultural fields, such as limited moisture and salinity, which often 

negatively impact crop growth and development, serves as the environment that favors the 

establishment of kochia populations (Geddes & Sharpe, 2022). In the fall, mature kochia plants 

detach at the soil surface, and tumble across the landscape, dispersing seeds with each impact in 

a wind-driven process that allows seeds to spread over long distances. Kochia's biology poses 

significant challenges due to its ability to emerge in early spring, grow rapidly, and tolerate heat, 

drought, and saline soil conditions. The spread of kochia, including herbicide-resistant biotypes, 

is further enhanced by its obligate outcrossing and tumbleweed seed dispersal mechanisms.  

Kochia exhibits a unique growth pattern that enhances its competitive ability and 

persistence in agricultural systems. In the early stages of growth, it forms a low-growing rosette, 

enabling it to evade cultivation and herbicide applications. As the growing season progresses, 
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kochia transitions into a bushy, multi-branched plant that can reach heights of up to 2 meters, 

outcompeting many crops for light, water, and nutrients. The weed's C4 photosynthetic pathway, 

which is more efficient in terms of water and carbon use, provides a competitive advantage over 

C3 photosynthetic plants, particularly in hot and arid environments (Geddes & Sharpe, 2022; 

Kumar et al., 2019). This adaptation allows kochia to thrive in drought conditions and nutrient-

poor soils, where many crop plants struggle. Furthermore, kochia has prolific seed production, 

where a single mature plant can produce up to 30,000 seeds, ensuring a persistent seed bank in 

the soil (Kumar et al., 2014). These seeds can remain viable for about two years, contributing to 

the long-term persistence of kochia infestations in agricultural fields. Additionally, the seeds are 

easily dispersed by wind, water, and agricultural machinery, facilitating the spread of the weed to 

new areas. Kochia's allelopathic properties, which involve releasing chemicals that inhibit the 

growth of other plants, further enhance its competitive ability against crops and other vegetation. 

These allelochemicals can disrupt various physiological processes in neighboring plants, such as 

germination, growth, and nutrient uptake, giving kochia a competitive edge in limited resource. 

2.2.2. Herbicide-resistance in kochia 

Kochia has become a problematic weed, particularly in the Great Plains states in the 

United States. (Kumar et al., 2021; Mosqueda et al., 2020). Kochia populations have shown 

resistance to PSII herbicides in Colorado, Illinois, Indiana, Iowa, Kansas, Montana, Nebraska, 

North Dakota, and Wyoming. Populations resistant to EPSPS inhibitors have also been identified 

in Colorado, Idaho, Kansas, Montana, Nebraska, Oklahoma, Oregon, and Wyoming. 

Furthermore, Kochia populations in Colorado, Idaho, Kansas, Montana, Nebraska, and North 

Dakota have demonstrated resistance to synthetic auxins. Resistance to ALS inhibitors, another 

type of herbicide, has been reported in Michigan, New Mexico, South Dakota, Texas, Utah, 
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Wisconsin, and Washington. In addition to these specific resistances, there have been reports of 

kochia populations in several states showing resistance to herbicides that act on multiple sites. 

Notably, at least one population in Kansas has exhibited resistance to all four types of herbicides 

mentioned above (Beckie et al., 2018; Geddes & Sharpe, 2022; Kumar & Jha, 2015; Sbatella et 

al., 2019). This widespread resistance underscores the adaptability of the kochia plant and the 

challenges it poses to effective weed control. The resistance traits of kochia make it a 

challenging weed to manage. 

2.2.3. Kochia identification technologies 

Accurate weed identification in the field is crucial for implementing site specific weed 

management strategies and minimizing the spread to other areas (Sunil, et al., 2022). Several 

methods have been employed to achieve this, each with its advantages and limitations. Kochia 

can be visually identified by its characteristic features, such as narrow, hairy leaves, striped 

stems, and compact, cylindrical seed heads that turn reddish-brown at maturity. However, visual 

identification can be challenging, especially in the early growth stages or when kochia is mixed 

with other weed species. It also requires trained personnel and can be time-consuming and labor-

intensive for large-scale surveys.  

RGB imaging, a cost-effective method for weed identification, utilizes the differences in 

physical features like shape, color, and size to distinguish weeds from crops. However, it 

struggles to differentiate between spatially similar crops and weeds, especially during the early 

growth stage, a critical period for effective weed control (Graham-Ram et al., 2023). Recently, 

remote sensing technologies, particularly multispectral and hyperspectral imaging, have shown 

great potential for the identification and mapping of kochia weed. These techniques exploit the 

unique spectral signatures of kochia at different growth stages and its reflectance properties 
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across multiple wavelengths of the electromagnetic spectrum. Multispectral imaging, which 

captures data in a few broad spectral bands (e.g., red, green, blue, and near infrared), can provide 

valuable information for distinguishing kochia from other vegetation based on its spectral 

reflectance patterns. However, the limited spectral resolution may not be sufficient for accurate 

discrimination between kochia and spectrally similar species.  

HSI captures data in hundreds or even thousands of narrow, contiguous spectral bands, 

providing a detailed spectral signature for each pixel in the image. This high spectral resolution 

allows for the detection of subtle differences in the spectral responses of kochia plants, enabling 

early detection and accurate mapping of infestations, even at the seedling stage (Khan et al., 

2022). Advanced image processing and machine learning techniques have been integrated with 

hyperspectral data to improve the accuracy of kochia identification and classification. These 

algorithms can learn the complex patterns and relationships between spectral signatures and plant 

species, facilitating automated and large-scale mapping of kochia distribution in the field. 

Accurate weed identification and classification is essential for mitigating the spread and impact 

of kochia, particularly herbicide-resistant species. 

2.3. Hyperspectral imaging technology 

Hyperspectral imaging (HSI), also known as imaging spectroscopy, is an advanced 

remote sensing technique that captures information from the visible near infrared and short-wave 

infrared region of the electromagnetic spectrum (Figure 1). This technology has found 

widespread applications in various fields, including soil and crop monitoring, plant diseases 

detection, and weed identification (Graham-Ram et. al, 2023). 
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Figure 1. Illustration of hyperspectral imaging technology for weed and crop identification under 

field conditions. 

Moreover, in precision agriculture, it has shown promise in monitoring spatial-temporal 

variations of crop morphological and physiological status, supporting precision weed 

identification and management (Rai et al., 2023). HSI is particularly useful for weed 

identification in agricultural fields due to its ability to capture detailed spectral information. HSI 

uses the difference in spectral reflectance between weeds and crops to identify weeds in crop 

allowing for the application of site-specific weed management. The key components of the 

imaging system typically include a spectrometer, a detector array, and an imaging optics system. 

The spectrometer disperses the incoming light into its constituent wavelengths, while the 

detector array captures the spectral information for each spatial location within the scene. The 

imaging optics system projects the target scene onto the detector array, which then measures the 

amount of light that is reflected or emitted from the plants surface (Mishra et al., 2020; Paoletti 

et al., 2019). The sensor measures the unique reflectance also called spectral signature for each 

pixel in an image plane by raster-scanning across hundreds of wavelength bands to generate a 

three-dimensional (3D) datacube (x, y, λ). The 3D datacube contains information about the 
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intensity of light reflected at a specific wavelength (λ) at a spatial location (x, y) (Pott et al., 

2020; Chang et al., 2020; Istiak et al., 2023).  

In weed identification studies, HSI is utilized to acquire data across multiple narrow and 

contiguous spectral bands, typically ranging from visible infrared range (400-1000 nm) and near-

infrared range (900-1700 nm) of the electromagnetic spectrum (Wieme et al., 2022). The sensor 

captures high-resolution spectral information for each pixel within an image, enabling the 

identification and differentiation of objects based on their unique spectral characteristics. These 

spectral signatures provide detailed information about the chemical and physiological properties 

of both crops and weeds, allowing for discrimination between weed species and crop plants. 

Several studies have utilized hyperspectral sensors to distinguish weeds from crops in 

various environments (Diao et al., 2023; Graham Ram et al., 2023; Lauwers et al., 2020, 2022). 

Huang et al. (2018) used hyperspectral imaging to differentiate between glyphosate-resistant and 

glyphosate-susceptible Italian ryegrass (Lolium perenne), achieving a classification accuracy of 

75% to 80%. Similarly, Nugent et al. (2018) utilized hyperspectral imaging to identify dicamba-

susceptible, glyphosate-resistant, and glyphosate-susceptible kochia with accuracies of 80%, 

67%, and 76%, respectively. Scherrer et al. (2019) employed hyperspectral imaging and neural 

networks to classify herbicide-resistant weeds at different growth stages, with accuracies ranging 

from 77% to 99%. These studies underscore the significant potential of hyperspectral imaging in 

identifying and discriminating herbicide-resistant and susceptible weeds for effective weed 

management. 

Hyperspectral sensors capture over hundreds contiguous spectral bands, providing a 

detailed and continuous spectral signature for each pixel in the image. Because each plant 

species has a unique spectral signature, determined by factors such as chlorophyll content, cell 
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structure, and water content. When they are exposed to light radiation, the difference in chemical 

composition results in variation in the absorption and reflectance of light at specific wavelengths, 

which can be extracted and processed for identification and classification of plant species. 

Compared to imaging  technology such as multispectral and RGB (red, green, blue) imaging, it 

captures data in a few broad spectral bands typically between 3-10 bands or channels. 

2.3.1. Weed identification process using hyperspectral imaging 

The traditional approach to hyperspectral weed identification follows a sequential 

process. First, a hyperspectral image or spectra data is captured, which is then calibrated using 

white and dark references. This is succeeded by segmentation, spectral preprocessing, and 

feature selection. Subsequently, the data is transformed, converting a 3-dimensional image into a 

2-dimensional table filled with reflectance values that serve as input for subsequent analysis. 

This conventional preprocessing method for hyperspectral data is commonly used in numerous 

agricultural weed identification studies (Ram et al., 2024).  

A hyperspectral sensor is normally mounted on a ground or unmanned aerial platform to 

acquire spectral data across hundreds of contiguous wavelength bands in the visible and near-

infrared regions of the electromagnetic spectrum. The acquired hyperspectral data is processed 

and analyzed to identify the spectral signatures of different crop and weed species. The sensor 

captures a vast amount of data, resulting in redundancy. To tackle this, we perform feature 

selection to identify and choose the most important features, ensuring they provide 

distinguishable information for classification. This involves the application of advanced image 

processing and machine learning algorithms to classify hyperspectral data. These algorithms 

compare the spectral signatures of each pixel in the image with the spectral library, enabling the 

identification and mapping of different crops and weeds species. Subsequently, the classified 
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hyperspectral data provides spatial information about the distribution and density of weeds in the 

agricultural field. This information is then used for targeted and site-specific weed management 

strategies, such as selective herbicide application or mechanical removal, reducing the overall 

use of chemical inputs and minimizing environmental impact. 

2.3.2. Weed classification using machine learning techniques 

Weed classification techniques, a crucial aspect of hyperspectral imaging, employ several 

approaches for weed identification. These include spectral feature extraction, machine learning 

(ML), and deep learning algorithms (DL) for classification. The unique spectral responses of 

weeds and desirable plants can be distinguished using spectral reflectance properties, absorption 

features, and vegetation indices. A fundamental step in hyperspectral weed identification is 

extracting relevant spectral features from the acquired data. These features can be specific 

wavelengths or spectral bands sensitive to the chemical composition, pigments, or structural 

properties of plant species. For instance, the red and near-infrared regions of the spectrum are 

particularly useful for detecting differences in chlorophyll content and vegetation health, aiding 

in differentiating weeds from crops. Additionally, spectral absorption features associated with 

pigments like chlorophyll and carotenoids can be exploited to characterize plant species (Li et 

al., 2021). These features appear as distinct patterns or spectral signatures, enabling the 

identification of specific plant types. 

Vegetation indices are mathematical combinations of spectral bands created to highlight 

specific features of vegetation while minimizing the influence of factors like soil background or 

atmospheric effects. In hyperspectral weed identification, commonly used vegetation indices 

include the Normalized Difference Vegetation Index (NDVI). This index offers valuable insights 

into plant health, biomass, and photosynthetic activity, which help differentiate weeds from 
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crops (Vélez et. al., 2023). Classification algorithms are employed to identify and map the 

distribution of weeds after extracting the relevant spectral features and vegetation indices. 

Classification algorithms used in hyperspectral weed identification include supervised 

classification, unsupervised classification, and spectral matching techniques. 

Supervised classification involves training the algorithm with a set of known spectral 

signatures or ground-truth data for different plant species, including weeds and crops. The 

algorithm learns to recognize these patterns and can then classify new hyperspectral data based 

on the trained model. In contrast, the unsupervised classification algorithm, such as k-means 

clustering algorithm automatically groups pixels in the hyperspectral data based on their spectral 

similarities, without prior knowledge of the plant species. This approach can be useful for 

exploratory analysis or when ground-truth data is limited. Spectral matching techniques involve 

comparing the spectral signatures of each pixel in the hyperspectral data with a reference spectral 

library of known plant species. The closest match determines the classification of that pixel as a 

specific weed or crop species. 

The application of deep learning, specifically 3D convolutional neural network (3D-

CNN) has gained significant popularity in hyperspectral weed identification in recent years due 

to their ability to handle complex and high-dimensional data. Approaches such as artificial neural 

networks, support vector machines (SVM), random forests (RF), and DL algorithms have been 

applied to hyperspectral data for accurate weed classification. These machine learning models 

can be trained on labeled hyperspectral data, allowing them to learn the intricate spectral patterns 

and relationships between different plant species. Once trained, the models can effectively 

classify new hyperspectral data, identifying weeds and crops with high accuracy. Advanced 

techniques like transfer learning and data augmentation can help overcome challenges such as 
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limited training data or spectral variability caused by environmental factors. By combining 

spectral feature extraction, vegetation indices, classification algorithms, and machine learning 

techniques, researchers and practitioners can leverage the rich information provided by 

hyperspectral imaging to develop robust and accurate weed identification systems, enabling more 

targeted and sustainable weed management practices in agriculture (Li et. al., 2024). 
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3. MATERIALS AND METHODS 

3.1. Experiment site and data collection 

This research, conducted from January 2023 to July 2023, comprised two distinct 

experiments. Each experiment involved acquiring hyperspectral data for sugarbeet and kochia 

biotypes, both before and after the application of herbicides. The first experiment took place in a 

controlled greenhouse environment, while the subsequent one was carried out in a sugarbeet 

field. 

3.1.1. Greenhouse experiment setup for image acquisition 

The experiment was conducted in January 2023 at Plant Science Department greenhouse at 

North Dakota State University (NDSU), North Dakota, USA. Sugarbeet hybrid (BTS 8927 Beta 

seed, KWS Seeds, Minneapolis, MN, 2022) seeds and three different kochia biotypes [(Kochia 

2015 #2 (dicamba-resistant), NW22 2021 (glyphosate-resistant), and 2019 BASF (glyphosate-

susceptible))] were sourced from the Plant Science Department at NDSU. A Kindred silty clay 

loamy soil obtained from NDSU Casselton, ND Seed Farm was autoclaved and mixed with PRO-

MIX general purpose greenhouse media (Premier Horticulture, Inc., Quakertown, PA). An equal 

proportion was added to the 10 × 10 × 9 cm greenhouse pot to a depth of 7.5 cm. Multiple seeds 

were planted in pots, covered with soil, and gently pressed to maintain uniform soil contact. The 

samples were watered regularly to keep the soil moist, ensuring healthy plant growth and 

germination. Solar vapor lamps were used as a supplement light source to provide energy and 

generate germination conditions. The temperature was maintained at 10ºC, throughout the 

experiment. Kochia was thinned to 5 plants per pot, and sugarbeet was thinned to 1 plant per pot 

to allow for effective image collection approximately 10 days after seed emergence (Figure 3). 
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Figure 2. Experimental design in the greenhouse for kochia and Sugarbeet data collection, SB-

sugarbeet, K1-kochia (dicamba-resistant), K2-kochia (glyphosate-resistant), and K3-

kochia(glyphosate-susceptible). 

 

Figure 3. Greenhouse experiment design (left) indicating sugarbeet and kochia biotypes 3 weeks 

after planting, a) complete random design (CRD), b) glyphosate-susceptible (GS) kochia, c) 

glyphosate-resistant (GR) kochia, d) sugarbeet, and e) dicamba-resistant (DR) kochia. 

3.1.2. Herbicide treatments applied to sugarbeet and kochia in greenhouse and field 

The herbicide treatments utilized in the greenhouse experiment were trisulfuron-methyl, 

fluroxypyr-ester, florpyrauxifen-benzyl, glyphosate, glyphosate + florpyrauxifen-benzyl, and 
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acifluorfen (Appendix A). These herbicides are used by sugarbeet growers to suppress broad-

leaved weeds and kochia in sugarbeet fields in North Dakota. The herbicide treatments were 

applied to sugarbeet and kochia biotypes in the greenhouse experiment four weeks after 

planting, or when sugarbeet was at 4 to 5 leaf stage and approximately 9 cm in height. Likewise, 

kochia biotypes were at 5 to 6 leaf stage and 4 cm in height. Herbicides were applied using a 

moving-nozzle cabinet sprayer (Generation III, DeVries Manufacturing, Hollandale, MN) 

calibrated to deliver 159 Lha-1 of spray solution at a pressure of 276 kPa, moving at a speed of 

2.6 kmh-1, at a boom height of 33 cm. These conditions ensured that the herbicide was 

effectively delivered to the target plants while minimizing the risk of drift or excessive herbicide 

application. The greenhouse environment was carefully monitored during the herbicide spraying 

process to ensure optimal conditions for herbicide application. The air temperature in the 

greenhouse was 25 ºC, with a soil temperature of 28 ºC, relative humidity of 22%, and cloud 

cover of 20%. Figure 4 illustrates the effect of herbicide treatment on the kochia biotypes during 

a greenhouse experiment. 

 

Figure 4. Illustration of herbicide effects after application to sugarbeet and kochia during 

greenhouse experiment, a) plants before treatment, and b) kochia and sugarbeet after treatment. 
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3.1.3. Field experiment 

The experiment was conducted in a sugarbeet field at the Casselton Agronomy Seed 

Research Farm, North Dakota, USA (Figure 5). The experimental unit was divided into 28 

subplots, each measuring 4.8 m × 1.15 m (5.52 m2) and 1.6 m buffer between subplots.  

 

Figure 5. Plot layout for herbicide application and data collection in the field a) Agronomy Seed 

Farm, Casselton, North Dakota b) NDSU Plant Science block c) plot layout for herbicide 

(Untreated plants (t1), trisulfuron-methyl (t2), fluroxypyr-ester (t3), florpyrauxifen-benzyl (t4), 

glyphosate (t5) glyphosate + florpyrauxifen-benzyl (t6), and acifluorfen (t7). 

3.1.3.1. Kochia preparation for field planting 

Soil was collected from the experiment area and transferred to the Agricultural 

Experiment Station Greenhouse at NDSU for autoclaving. The treated soil was mixed (1:1) with 

PRO-MIX potting soil to germinate the kochia. An equal proportion was added to 10 × 10 × 

9 cm greenhouse pot to a depth of 7.5 cm. Multiple seeds were planted in the pots, covered with 

soil, and gently pressed to maintain uniform soil contact. Watering was done regularly to keep 

the soil moist, ensuring good germination. The kochia was thinned to 5 plants per pot for 
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effective image collection. The plants were then transferred to the field experiment site for 

planting. 

3.1.3.2. Field planting of sugarbeet and kochia 

Sugarbeet variety CR 793 (Crystal Sugarbeet, Moorhead, MN) was planted on June 2, 

2023, at a seeding rate of approximately 60,500 seeds per acre to a planting depth of 

approximately 4 cm, with 3 crop rows per subplot spaced approximately 56 cm apart. 

Greenhouse grown GR kochia biotypes were transplanted into the field on June 24. Poor 

emergence of DR and GS kochia prevented their used in the field experiment. Kochia seedlings 

were planted inter row throughout the experiment area to ensure a diverse mix of sugarbeet and 

kochia. Water was delivered to the sugarbeet and kochia using a truck-mounted water tank and a 

hand-held sprinkler with manual rate control until they were established. The herbicide 

treatments utilized in the field experiment are trisulfuron-methyl, fluroxypyr-ester, 

lorpyrauxifen-benzyl, glyphosate, glyphosate + florpyrauxifen-benzyl, and acifluorfen 

(Appendix B). Herbicide treatments were applied in the field with a hand-held sprayer at a 

pressure of 276 kPa, at a rate of 140 Lha-1, in conditions of 13ºC air temperature, 18ºC soil 

temperature, 76% humidity, wind velocity of 2.4 kmh-1, and about 15 % cloud cover. 

3.2. Hyperspectral weed identification workflow for greenhouse and field experiments 

The procedures for the weed identification workflow involved the collection of 

hyperspectral images of both sugarbeet and the kochia biotype. These images were then 

preprocessed to extract the most significant spectral data. The preprocessing stage involved 

several steps, including raw image calibration using white and dark reference image, 

segmentation to remove background, signal scatter correction, and the selection of sensitive 

wavelength bands for machine learning and classification. Preprocessing of hyperspectral data is 
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crucial as it enhances the quality of spectral data. It does so by extracting significant spectral 

information and ensuring that the data is in a format for machine learning. The entire weed 

identification workflow is represented in Figure 6. 

 

Figure 6. Workflow for hyperspectral weed classification of sugarbeet and kochia biotypes in 

greenhouse and field experiment. 

3.2.1. Data collection for sugarbeet and kochia in greenhouse and field   

Sugarbeet and kochia were imaged using a line scan sensor, Specim FX 10 hyperspectral 

imaging system (Finland, Oulu), with a spectral range of 393 to 1003 nm, with 224 wavelength 

bands and 5 nm spectral resolution. The sensor was mounted on an in-house fabricated scanning 

platform approximately 15 cm above the plants (Figure 7a). The scanning platform included 7 

halogen lamps (50 watts) positioned at a 30º angle from the vertical plane to serve as the 

illumination source and a white Teflon tile served as a reference to calibrate the light intensity. 
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The camera's exposure time was set to 8 msec, while the position speed of the linear stage was 

adjusted to 10.1 mm s-1. A white Teflon tile measuring 24 cm × 24 cm × 1 cm with about 99% 

reflectivity was placed beneath the hyperspectral camera to capture the white reference image. 

The camera lens was covered to capture the dark reference image for raw image calibration. The 

scanning platform steadily moved across the plants at 5.0 mm s-1, capturing high-resolution 

images. The kochia and sugarbeet were carefully scanned to ensure accuracy and eliminate 

occlusion from adjacent plant leaves. The setting of the camera's exposure time and position 

speed ensured that the data obtained was accurate. 

 

Figure 7. Field data collection (a) hyperspectral sensor mounted on a scanning platform for data 

collection of raw, white reference and dark reference image (b) raw RGB image.  

Hyperspectral image data were captured for weed identification and classification. 

Hyperspectral data were collected during the vegetative growth stage, specifically at the 6-leaf 

stage for sugarbeet and the 5-leaf stage for kochia biotypes. The raw images were calibrated, and 

the corrected intensity values were then preprocessed to remove noise and redundant information 
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captured during the image acquisition process. Table 1 details the specifications of the 

hyperspectral sensors whereas Tables 2 provides the number of images captured in the 

greenhouse and field for weed identification. 

Table 1. Specification of hyperspectral imaging system utilized to capture images. 

Parameter name Value 

Hyperspectral sensor Specim FX10 

Image size 1340 × 1024 pixels 

Wavelength 393 – 1003 nm 

Illumination 454 mA (50W) at 110 – 130V halogen lamps 

Wavelength bands 224 

 

Table 2. Number of raw images captured by the hyperspectral sensor. 

 

Sample 

Number of images captured 

by the sensor 

 

Illumination Source 

Greenhouse Field 

Sugarbeet 28 37 Direct halogen lamp 

DR 28 37 Direct halogen lamp 

GR 28 - Direct halogen lamp 

GS 28 - Direct halogen lamp 

Note: DR-dicamba-resistant kochia, GR-glyphosate-resistant kochia, and GS-glyphosate-

susceptible kochia. 

3.2.2. Calibration of hyperspectral image 

Image calibration in close-range hyperspectral imaging of plants is an essential process to 

help extract useful information from the acquired image. The geometry of plant leaves can cause 

scattering and multiple reflections of incoming light sources, resulting in irregular patterns that 

may obscure the true spectral reflectance. As a result, image calibration serves to correct these 

illumination variations, allowing for more accurate analysis and interpretation data. The raw 

intensity values from sensor were converted to reflectance values using Equation 1. 

 𝑅cal =
𝑅raw  −  𝑅dark

𝑅white −  𝑅dark
 

(1) 
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where 𝑅raw  = the original hyperspectral image 

 𝑅white  = the white reference image collected with Teflon board with 99% reflectance 

 𝑅dark  = the dark reference image 

 𝑅cal  = the corrected reflectance image 

The use of pixel calibration allows for the correction of both spatial and wavelength-

dependent variations caused by non-uniform illumination differences in sensor sensitivity. This 

combination is recommended for accurate hyperspectral image transformation from instrument 

values to reflectance values (Burger & Geladi, 2005, 2006). An image segmentation algorithm 

was used after converting the raw hyperspectral image to reflectance value to separate the pixels 

belonging to the plants from those belonging to the background. This was achieved by using K-

means clustering technique which helped to select the region of interest (sugarbeet and kochia 

biotypes) from the background.  

 

Figure 8. Illustration of hyperspectral image preprocessing of greenhouse and field images to 

extract spectral values of Sugarbeet and kochia biotypes for machine learning and classification. 

a b c d e 
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K-means clustering algorithm is one of the popular methods that groups image pixels into 

k-clusters according to the similarity of the spectral features (De Juan et al., 2014; Piqueras et al., 

2011). The algorithm groups pixels into homogeneous clusters, distinguishing between 

background and plant areas. After identifying the clusters that correspond to the plant (either 

kochia or sugarbeet), a mask is created and applied to the segmented image to isolate the plant, 

effectively removing the background (Figure 8c). The spectral values of the masked image are 

then extracted by unfolding the image, which converts the multidimensional array into a two-

dimensional table. This process removes the spatial resolution while retaining the full spectral 

resolution of 224 bands (Figures 8d & 8e). Finally, the true class label is appended to each table 

entry as a reference for machine learning training and testing. The data was saved in a standard 

comma-separated values (.csv) format to facilitate data processing. 

3.2.3. Hyperspectral data preprocessing methods for machine learning 

Hyperspectral data contain enormous amounts of information, but the quality of the raw 

measurements can be affected by high signal noise levels, instrumentation variations, and 

environmental factors like variation in solar radiation which can have an impact on the data 

interpretation. Therefore, to correct for these undesirable effects, spectra preprocessing 

techniques, namely the Savitzky-Golay (SG) smoothing method and standard normal variation 

(SNV) were used in a forward manner to correct these signal defects and eliminate any possible 

high-frequency signal noise. Preprocessing filters, SG and SNV were found to generate the best 

discriminating results, like results by Shirzadifar et al., (2018). 

SG smoothening method (Savitzky & Golay, 1951) was performed on the raw data to 

isolate important spectra features that may be partially masked by noise from scanning 

instruments. Subsequently, SNV techniques were used to help balance instrumentation variations 
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and remove the effect of scattering from the spectral data, leaving only the absorption 

characteristic. SNV scatter correction process involves two primary steps. First, it centers each 

spectrum denoted by Si, by subtracting the mean Si̅, from each spectrum. Second, it normalizes 

each mean-centered spectrum by dividing it by its standard Sstd as shown in Equation 2. 

 𝑆snv =  
𝑆𝑖− 𝑆𝑖̅ 

𝑆std
    (2) 

where 𝑆𝑖   = the spectral data 

 𝑆std  = the standard deviation of the spectral data 

 𝑆𝑖̅  = the mean of spectral data 

 𝑆snv  = the corrected spectral data 

Removing the mean value of each spectrum and dividing the result by the standard 

deviation compensates for these biases, normalizes the spectra, and adjusts the scale, effectively 

eliminating the influence of additive effects. After the SNV transformation, each spectrum will 

have a mean of 0 and a standard deviation of 1, resulting in all spectra being of equal intensity 

for machine learning. SNV is a popular chemometrics spectral scattering technique widely used 

in hyperspectral imaging technology to improve the quality of the spectral data, especially when 

used for predictive models (Mishra et al., 2020). In this study, SNV was opted for instead of 

multiplicative scatter correction (MSC) because SNV does not require any reference 

measurements compared to MSC. Additionally, SNV does not rely on additional sensor 

measurements for signal correction (De Juan et al., 2014), but focuses on correcting additive 

effects, which can introduce systematic biases and complicate accurate comparison and analysis 

of different spectra. The SG smoothing method and SNV are essential when it comes to 

hyperspectral data analysis, as the techniques significantly enhance the quality and reliability of 

data for machine learning (Shirzadifar et al., 2018). 
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3.2.4. Wavelength bands selection using recursive feature elimination 

The presence of non-informative wavelength features can introduce bias and significantly 

influence the performance of the predictive model. It can potentially affect the overall accuracy 

of the prediction results. Therefore, removing any redundant and non-informative features has 

the potential to improve the model’s performance and subsequent data analysis. The process 

known as feature selection or extraction is designed to decrease the number of input features and 

simplify the training of the predictive model. This has the benefit of enhancing prediction 

accuracy, speeding up the prediction process, and lowering the computational power and 

resource. Therefore, by limiting the features to only the most important wavelengths, the model 

becomes more efficient and robust (Kanthi et al., 2020). This is especially true when working 

with large datasets or complex models, where it is important to save computational resources by 

picking out a relevant subset of features.  

The research developed a recursive feature elimination-random forest (RFE-RF) 

algorithm to select ten informative wavelength bands. The feature selection process is illustrated 

in Figure 9. RFE is a wrapper technique that works by recursively removing less important 

wavelength bands iteratively, and then generate new models with the remaining subset of 

features and evaluate the predictive ability based on performance matrices, e.g., accuracy. The 

selection process used an equal number of preprocessed spectral data (pixels values) randomly 

selected from both greenhouse and field data. Selecting balanced samples helps to address the 

issues related to imbalanced datasets. Imbalanced datasets can introduce biases during the feature 

selection process and potentially impact the accuracy of the model’s classification results. The 

feature selection process begins by fitting all the 224 wavelength bands as features into the 

random forest (RF) classifier as the base estimator to rank the features. 
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Figure 9. Illustration of wavelength features selection process using recursive feature elimination 

method to select 10 important wavelength features to classify Sugarbeet from kochia biotypes. 

The RF classifier sequentially eliminates the least significant wavelength bands that 

exhibit lower predictive performance. The iterative process continues until the desired number of 

features (n = 10) is reached and there is no significant improvement in the performance metric, 

such as the classification accuracy. The benefit of this method is its ability to independently 

assess and assign rankings or scores to wavelength features, irrespective of the learning 

algorithm employed. Therefore, RFE-RF facilitates the rapid identification of potentially 

informative features based on their intrinsic discriminating characteristics. The selected 10 

wavelength features were randomly split into two groups, where 70% of the data was used for 

training and validation of the deep neural network and the remaining 30% used as testing 
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datasets for evaluating the performance. The total number of training and testing samples is 

presented in Table 3 and Table 4. 

Table 3. Selected spectra data for each class from greenhouse data for machine learning. 

Class Training samples 

(pixels) 

Testing samples 

(pixels) 

Total samples 

(pixels) 

Sugarbeet 35000 15000 50000 

DR 35000 15000 50000 

GR 35000 15000 50000 

GS 35000 15000 50000 

Note: DR-dicamba-resistant kochia, GR-glyphosate-resistant kochia, and GS-glyphosate-

susceptible kochia. 

Table 4. Selected spectra data for each class from field data for machine learning. 

Class Training samples 

(pixels) 

Testing samples 

(pixels) 

Total samples (pixels) 

Sugarbeet 35000 15000 50000 

GR 35000 15000 50000 

Note: GR-glyphosate-resistant kochia. 

3.2.5. Machine learning architecture and classification metrics 

A fully connected neural network (FCNN) was developed and trained on the given 

dataset using a backpropagation method. The network's architecture consists of an input layer, 

two hidden layers, and an output layer (Figure 10). The input layer (feature input) has an input 

size that matches the dimensionality of the input data, while the output layer (class output) has a 

size that corresponds to the number of classes in the classification task. Between the input layer 

and the first hidden layer, a batch normalization layer is added to stabilize and accelerate the 

training and the learning process by normalizing input weights. The first hidden layer follows, 

performing a linear transformation and then applying the Rectified Linear Unit (ReLU) 

activation function. Rectified Linear Unit (ReLU) activation function is utilized, which helps the 

model generalize better to the inputs and differentiate between output classes more effectively.  
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Figure 10. Architecture of fully connected neural network with input layer, 2 hidden layers, and 

classification output layer. 

ReLU is a nonlinear activation function that mitigates the vanishing gradient problem and 

introduces beneficial non-linearity into the model. The ReLU function (f(x) = max(0, x)) is 

applied elementwise to the output of each neuron in these layers, introducing non-linearity and 

allowing the network to learn more complex patterns. To prevent overfitting, a dropout layer is 

included after the first layer as a regularization technique to prevent overfitting by randomly 

Input layer 

Hidden layer 1 

Hidden layer 2 

Activation function 

f(x) = max(0, x) 

SoftMax layer 

Output layer 

Activation function 

f(x) = max(0, x) 

Normalization 

and dropout 

layer 
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setting a fraction of the input units to zero during training. In the  multi-class classification, the 

output layer (class output) uses a SoftMax activation to convert the raw output scores from the 

layer into a probability distribution across classes. The architecture enables the network to 

process input data through multiple layers of abstraction, gradually transforming raw input into a 

form suitable for classification while maintaining good performance and generalization 

capabilities. 

A hyperparameter search was performed to select the best number of neurons in each 

layer, learning rate, and batch size to achieve optimal performance. A repeated stratified 10-fold 

cross-validation technique was used to ensure that all training samples contributed to model 

training and validation. Finally, the test datasets were used to evaluate the performance of the 

trained model. The evaluation metrics included the overall accuracy, as well as accuracy values 

for individual classes predictions, The metrics were computed using a multiclass confusion 

matrix package from Python’s Scikit-learn libraries. Furthermore, metrics such as the f1-score, 

precision, and recall were computed and presented in a tabular format. 
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4. RESULTS AND DISCUSSIONS 

4.1. Hyperspectral image preprocessing results 

The results from preprocessing the data with SG filter and SNV normalization technique 

are presented in Figure 11. These preprocessing techniques were selected due to their superior 

ability to discriminate between sugarbeet and kochia species. Furthermore, these methods have 

demonstrated an enhancement in classification accuracies for machine learning models 

(Shirzadifar et al., 2018). Figures 11a and 11b display the raw and preprocessed spectral 

signatures, respectively, while Figures 11c and 11d present the mean of the raw and preprocessed 

spectra for both sugarbeet and kochia species. These spectral signatures indicate the presence of 

chlorophyll absorption in the range of 500 to 590 nm. 

 

Figure 11. Hyperspectral data preprocessing using Savitzky-Golay filter and standard normal 

variate (SNV) to remove noise from the data. 



 

33 

A peak, associated with red edge reflection, is noticeable in Figure 8d, starting from 695 

to 715 nm. The wavelengths spanning from 700 nm to 1000 nm correspond to the third overtone 

region, representing an excited state of molecules from their ground state (Graham Ram et al., 

2023). These regions were selected using a feature selection algorithm to identify important 

wavelength features for machine learning. The mean spectral reflectance of kochia weed 

biotypes (DR, GR, and GS) and sugarbeet crop were analyzed to identify the most informative 

wavelength bands for classification. A recursive feature elimination was performed on the 

preprocessed hyperspectral reflectance data to select the most sensitive wavelength bands to 

classify the sugarbeet crop from 3 kochia biotypes. The wavelength bands ranging from 500 to 

680 nm and 700 to 900 nm for greenhouse data, and 500 to 700 nm and 710 to 980 nm for field 

data, were identified as important spectrum regions for sugarbeet and kochia classification. 

These regions show distinct reflectance differences between sugarbeet, DR, GR, and GS kochia.  

Additionally, spectral region between 500 and 800 nm has proven to be a crucial 

wavelength region for vegetation discrimination, consistently associated with chlorophyll content 

(Li et al., 2021). The observations of light reflectance variations across these spectral range not 

only enhance our understanding of specific biotypes but also underscore the potential of spectral 

data in differentiating between these kochia biotypes and sugarbeet. 

4.1.1. Wavelength features selected using recursive feature elimination method 

The feature selection technique was also employed as a dimensionality reduction 

algorithm, reducing the wavelength bands from 224 bands to 10 bands. The RFE-RF technique 

employed selected the important wavelength features for machine learning, providing a solution 

to the high dimensionality of hyperspectral data. The technique identified the relevant 
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wavelength bands with crucial spectral features to distinguish sugarbeet crops from kochia weeds 

(Table 5). 

Table 5. Selected wavelength bands obtained using recursive feature elimination method. 

Data Wavelength Bands (nm) 

Gg 518.9 647.5 677.36 693.6 696.3 723.6 808.6 827.9 830.6 833.4 

Ff 505.6 558.9 566.9 617.9 715.4 723.6 726.3 964.4 967.2 970 

Note: Gg = Greenhouse data, Ff = Field data. 

The results of wavelength bands selection using RFE-RF technique have similar weed 

identification characteristics to those found in studies by Li et al., (2021) and Huang et al., 

(2018). Respectively, the wavelength regions from 500 to 750 nm and 400 to 900 nm were 

identified as the most informative wavelength regions for differentiating between weed species. 

The study by Li et al., (2021) used hyperspectral images of Carduus tenuiflorus Curtis (thistle), 

Setaria pumila (yellow bristle grass), Ranunculus acris (buttercup), and Anemanthele lessoniana 

(wind grass) and employed principal component analysis (PCA) to select the most significant 

wavelength bands. Their study trained a Multilayer Perceptron (MLP) on these selected 

wavelength bands and achieved a prediction accuracy of 89.1%. Huang et al., (2018) used 

Fisher’s Linear Discriminant Analysis (FLDA) to reduce dimensionality and selected 15 NIR 

wavelength bands to classify glyphosate-resistant and susceptible Italian ryegrass with a 

prediction accuracy between 75% and 80% using a maximum likelihood classifier. These 

findings, along with those from this research, support the claim that the near-infrared region has 

significant characteristics for distinguishing between crops and weeds. 

The RFE-RF wavebands selection technique utilized in our study is supported by Ram et 

al., (2023), who also employed the RFE technique with a support vector machine (SVM) as the 

feature ranking criteria. They selected 10 significant wavelength bands for classifying palmer 

amaranth in a soybean field and achieved the highest prediction accuracy of 93.95% using a 
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quadratic discriminant analysis classifier. The higher accuracy demonstrates the flexibility and 

potential of the RFE technique, and its user-friendliness compared to PCA and FLDA for 

dimensionality reduction and wavelength bands selection. This emphasizes the effectiveness of 

the RFE technique in selecting informative wavelength bands for weed species classification. It 

offers clear advantages over traditional methods such as PCA and FLDA, such as the reduction 

in dimensionality and the identification of significant wavelength bands. The results achieved in 

this research and the parallel success of similar approaches in the literature demonstrated the 

potential of weed identification using waveband features within the spectrum range of 400-900 

nm. 

4.2. Classification results for sugarbeet and kochia biotypes 

The deep neural network was used to predict the test samples after training and 

hyperparameter tuning. The prediction results from greenhouse and field experiments are shown 

in Table 6 and Table 7. The neural network achieved an overall prediction accuracy of 93.27% in 

the greenhouse experiment, with an F1-score of 0.93 (Table 6). The Cohen’s kappa statistic, 

which measures the level of agreement between the model's predictions and the actual 

classifications, revealed a significant value of 0.93, with precision of 0.93. 

Table 6. Summary of classification results on greenhouse data using the selected 

wavelength features. 

Class Classification (%) Precision Recall F1-score 

SB 97.5 0.99 0.97 0.98 

DR 91.36 0.92 0.91 0.92 

GR 87.5 0.88 0.88 0.88 

GS 96.7 0.94 0.97 0.95 

Overall Accuracy 93.27 0.93 0.93 0.93 

Note: SB-sugarbeet, DR-dicamba-resistance, GR-glyphosate-resistant, and GS-glyphosate-

susceptible. 
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The results from multiclass confusion matrices reveal that sugarbeet (SB), dicamba-

resistant (DR), glyphosate-resistant (GR), and glyphosate-susceptible (GS) kochia were correctly 

identified with a prediction accuracy of 97.5 %, 91.36 %, 87.5 %, and 96.7 %, respectively 

(Figure 12a). This percentage indicates the fraction of spectra that were predicted correctly, 

specifically, the correct predictions for each class occur along the diagonal (upper-left to bottom-

right), and incorrect predictions exist on either side of the diagonal. The neural network was 

subsequently trained on the spectral data acquired in the field.  

Table 7 presents the classification results of GR kochia and sugarbeet. The model 

achieved a prediction accuracy of 98.76 %, indicating that about 99 out of every 100 spectra 

were correctly identified. For the field data, the trained model classified GR kochia and 

sugarbeet with a prediction accuracy of 98.56% and 98.96%,  respectively.  

Table 7. Summary of classification results on field data using the selected wavelength 

features. 

Class Classification (%) 

SB 98.96 

GR 98.56 

Overall Accuracy 98.76 

Note: SB-sugarbeet, GR-glyphosate-resistant. 

The F1-score was 0.99, indicating a solid proportion of accurately predicted positive 

outcomes against the true positive spectra, with a precision of 0.99. The kappa score of 0.99 

indicates how well the neural network's predictions match up with actual classifications (Figure 

12b). The prediction results indicate a significant improvement in accuracy in distinguishing DR, 

GR, and GS compared to a study by Nugent et al., (2018) with a reported accuracy of 67%, 76%, 

and 80% for the same classification using support vector machine (SVM). 
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Figure 12. Multiclass confusion matrix (%) for sugarbeet (SB), dicamba-resistant (DR), 

glyphosate-resistant (GR) and glyphosate-susceptible (GS) kochia (a) greenhouse data (b) field 

data. 

The accuracy in our study suggests the effectiveness and robustness of the neural network 

algorithm in accurately classifying kochia based on spectral data. Additionally, the study 

discovered that the classification accuracy showed correlation with the number of spectral 

samples used for model training. The neural network achieved optimal results when trained with 

a larger dataset, which enhanced the model’s ability to generalize and accurately predict unseen 

datasets. It is important to note that the methods and order of preprocessing techniques applied to 

hyperspectral data significantly influenced the accuracy of the model’s predictions. In this study, 

preprocessing the spectral data with SNV and SG smoothing significantly improved the model's 

ability to generalize from training to testing data. Preprocessing techniques applied to data in this 

research are identical to the steps by Graham Ram et al., (2023). Applying preprocessing 

technique like SNV is noted for increasing the prediction in a study by (Shirzadifar et al., 2018). 
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4.2.1. Prediction image using the trained machine learning model on testing images of 

sugarbeet and kochia biotypes 

Hyperspectral images were randomly selected and preprocessed to remove the 

background. Subsequently, the 3D images were unfolded into a 2D array for prediction using the 

trained model. The trained model used the ten most important wavelengths selected by the 

Recursive Feature Elimination with Random Forest (RFE-RF) algorithm to predict the classes of 

the new images. The predicted 2D array was then folded back into 3D hyperspectral images 

using a logic mask developed during the image segmentation process. The prediction images 

were generated based on the predicted classes of the trained model. Figure 13 and Figure 14 

illustrate the predictions on preprocessed testing hyperspectral images from the greenhouse and 

field experiment, respectively. In Figure 13, which shows the greenhouse predicted image using 

the trained model, it can be observed that some spectral pixels of DR kochia were misclassified 

as either GR or GS kochia.  

 

Figure 13. Prediction image generated by the trained model on greenhouse images, (a) raw image 

and (b) predicted image with color code indicating the spectra pixels that were classified as 

kochia or sugarbeet. 
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Additionally, there were instances where GR and GS kochia pixels were incorrectly classified as 

sugarbeet. This highlights the challenge in accurately distinguishing between the different classes 

in a multiclass classification task, where the model was trained to differentiate between 

sugarbeet, DR kochia, GR kochia, and GS kochia. 

Likewise, Figure 14 presents the prediction results on field images to classify between 

sugarbeet and GR kochia. The results indicate that spectra pixels for sugarbeet were correctly 

classified by the model, demonstrating a high level of accuracy. However, it is noteworthy that a 

few pixels corresponding to background soil and dead plants leaves were misclassified as GR 

kochia.  

 

Figure14. Prediction image generated by the model on field images. (a) raw image (b) predicted 

image. 

The distinction in the classification challenges between the greenhouse and field 

experiments is important to note. The greenhouse experiment required the model to perform 

multiclass classification, whereas the field experiment involved a simpler binary classification.  
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The predicted images highlight the potential of combining hyperspectral imaging with machine 

learning to effectively distinguish between resistant and susceptible kochia in sugarbeet, using 

distinct spectral signatures. Although there are some misclassifications between sugarbeet and 

kochia biotype pixels, the model's ability to accurately classify most pixels in both experimental 

settings demonstrate the potential and effectiveness in precision agricultural applications. This 

technology can be used to generate a prescription map to assist farmers in adopting herbicides 

for targeted weed management. 

4.3. Assessment of herbicides on the reflectance of sugarbeet and kochia weed biotypes 

The reflectance responses for DR, GR, and GS are illustrated Figure 15b, 15c, and 15d, 

respectively. The analysis of post-herbicide treatments provides a significant insight into the 

spectral reflectance patterns of sugarbeet, DR, GR, and GS kochia biotypes. The recorded 

variations in reflectance responses among individual kochia biotypes, particularly after treatment 

with acifluorfen and trisulfuron-methyl, underscore the differential susceptibility of these 

biotypes to herbicides. The lower reflectivity exhibited by DR kochia post acifluorfen treatment, 

a pattern also noted between GR and GS kochia, suggests potential differences in the 

physiological responses of these biotypes to this specific herbicide. Similarly, the distinct 

reflectance patterns in the near-infrared region (750-1000 nm) following trisulfuron-methyl 

treatment indicate differential herbicide uptake or metabolic responses among the biotypes. The 

results presented in Figure 15b reveal significant differences in the reflectance patterns of DR 

following various treatments. Specifically, all treated DR kochia exhibited significantly lower 

reflectance compared to the untreated group. This suggests that the applied treatments may have 

induced physiological changes in the DR kochia, leading to decreased reflectance. In contrast, 

the reflectance patterns for GR and GS kochia showed a different trend. 
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Figure 15. Mean reflectance spectra for sugarbeet and kochia biotypes after herbicide treatment 

in the greenhouse experiment a) DR, GR, and GS kochia b) GR after treatment c) DR after 

treatment d) GS after treatment. 

For GR kochia, treatments with trisulfuron-methyl, fluroxypyr-ester, and glyphosate 

resulted in higher reflectance than the untreated GR group (Figure 15c). Similarly, for GS 

kochia, treatments with trisulfuron-methyl and glyphosate + florpyrauxifen-benzyl led to 

significantly higher reflectance than the untreated GS group (Figure 15d). These observations 

indicate that these treatments may have caused different physiological responses in the GR and 

GS kochia biotypes, resulting in increased reflectance.  

These findings highlight the potential utilization of the spectral reflectance properties in 

assessing herbicide efficacy and the susceptibility of specific kochia biotypes to herbicide 



 

42 

applications. By leveraging these reflectance characteristics, more targeted and effective 

herbicide management strategies can be developed. This could aid in the creation of prescription 

maps for precise herbicide application, potentially improving weed control outcomes while 

minimizing herbicide use and associated environmental impacts. However, further research is 

needed to fully understand the underlying mechanisms driving these observed spectral 

reflectance variations post-herbicide treatment. Additionally, the practical implementation of 

these findings in real-world agricultural settings would require the development of suitable 

spectral imaging technologies and data interpretation algorithms. Nonetheless, this study 

represents a promising step towards more sustainable and effective weed management strategies.  

The study further assessed the effectiveness of six different herbicides to control and kill 

DR, GR, and GS kochia weed biotypes in a sugarbeet field. The results of this study provide 

valuable insights into the effectiveness of different herbicides in controlling and managing DR, 

GR, and GS kochia weed biotypes in a sugarbeet field. It was observed that all three kochia 

biotypes showed resistance to trisulfuron-methyl, fluroxypyr-ester, and florpyrauxifen-benzyl, 

which indicates that these treatments were less ineffective to control or kill the kochia (Figure 

16b, 16c, 16d, and Fig 17b, 17d, 17c). This suggests that while these treatments can control 

broad-leaf weeds in sugarbeet crops, they are ineffective in controlling the kochia biotypes and 

could potentially lead to the emergence of more resistant biotypes. 

This suggests that while these treatments can control broad-leaf weeds in sugarbeet crops, 

they are ineffective in controlling the kochia biotypes and could potentially lead to the 

emergence of more resistant biotypes. Interestingly, the application of fluroxypyr-ester and 

acifluorfen had a negative impact on the sugarbeet, causing leaf shrinkage, stunted growth 

(Figure 16c & 17c), significant leaf burns, and bronzing (Figure 16g & 17g).  
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Figure 16. Treatments effects on kochia and sugarbeet during greenhouse experiment a) 

Untreated group b) trisulfuron-methyl c) fluroxypyr-ester d) florpyrauxifen-benzyl e) glyphosate 

f) glyphosate + florpyrauxifen-benzyl g) acifluorfen. 

 

Figure 17. Herbicide treatments on kochia and sugarbeet and their effect a) Untreated plants b) 

trisulfuron-methyl c) fluroxypyr-ester d) florpyrauxifen-benzyl e) glyphosate f) glyphosate + 

florpyrauxifen-benzyl g) acifluorfen. 



 

44 

The negative impact of fluroxypyr-ester and acifluorfen on sugarbeet crops highlights the 

importance of selectivity in herbicide application. Conversely, treatments with glyphosate and a 

combination of glyphosate and florpyrauxifen-benzyl were found to be effective in controlling 

all kochia biotypes, without causing any physical harm or damage to the sugarbeet (Fig 16e, 16f, 

17e, and 17f). The results highlight the potential of a synergistic combination of glyphosate and 

florpyrauxifen-benzyl in quickly and effectively controlling DR, GR, and GS kochia weeds. This 

strategy of combining more than two herbicides with more than one mode of action could 

potentially address the ongoing issue of herbicide-resistant weeds and underscores the 

importance of integrated weed management in controlling herbicide-resistant weed (Kumar & 

Jha, 2015). However, the implementation of this strategy requires careful planning and 

management, such as the timing of herbicide application, the specific weeds present in the field. 

The findings of the herbicide treatment experiment demonstrate that strategic planning and 

integrated herbicide application strategies are vital for successful weed management, ensuring 

sustainable crop production while minimizing the risk of herbicide resistance. However, further 

research is needed to validate these findings in different environmental conditions and to explore 

other potential strategies for effective weed management. 

4.3.1. Limitations of the research 

There were some limitations and challenges during planting, data collection and imaging 

processing. In both greenhouse and field experiments, the number of scanned kochia and 

sugarbeet plants was constrained due to weather conditions and the shorter growing season for 

sugarbeet planting. Additionally, the field experiment was restricted to using only glyphosate-

resistant kochia, as dicamba-resistant and glyphosate-susceptible kochia had poor germination 

rates. This limitation precluded comparative analysis and contributed to variations in overall 
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classification of the trained model. Moreover, the data collection platform was semi-automated, 

necessitating manual movement to each data collection point, which further limited the number 

of images captured. Automating this process could potentially increase images captured, thereby 

increasing the datasets for training classification in future studies. To mitigate these challenges, 

extending the study period and automating data collection are recommended strategies to 

improve the number of images captured for machine learning. 
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5. CONCLUSIONS 

Early weed detection of herbicide-resistant and susceptible kochia has been a challenging 

task due to the similarities of leaves shape and size. Kochia's efficient seed production and 

spread make it adaptable to herbicides, leading to herbicide-resistant populations, posing a 

significant challenge for effective weed control strategies. The field and greenhouse experiments 

demonstrate the potential of hyperspectral imaging technology and a deep neural network to 

differentiate herbicide-resistant and susceptible kochia in sugarbeet. Although herbicide-resistant 

and susceptible kochia have similar physiological features during early growth stage but this 

research showed that dicamba-resistant, glyphosate-resistant, and glyphosate-susceptible kochia 

weeds have distinguishable spectral reflectance characteristics from sugarbeet crops.  

The experiments revealed that sugarbeet reflects more light in the visible and infrared 

regions of the electromagnetic spectrum compared to kochia weed. The experiments identified 

the spectrum region from 500-680 nm and 700-980 nm as the wavelength bands containing the 

most relevant spectral information for discriminating between kochia biotypes and sugarbeet. 

The identified wavelength features in this research used to distinguish between herbicide-

resistant and susceptible kochia in sugarbeet are supported by literature. This indicates that 

spectral features in the 400-1000 nm wavelength region are particularly significant for weed and 

crop identification.  

The fully connected neural network classified sugarbeet and kochia biotypes based on 

spectral reflectance characteristics, achieving a prediction accuracy of 93.27% in greenhouse 

experiment and 98.76% for field data. It was observed that the features selected wavelength 

bands significantly influenced the prediction accuracy of the model. That is selecting the 

important wavelength features to train a model will result in higher prediction accuracy. This 
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highlights the need for future studies to identify significant wavelength bands for model training, 

especially for weed detection. The study further showed that RFE-RF is an effective method for 

reducing the high dimensionality of hyperspectral data and more importantly a technique for 

selecting important spectral features for classification.  

The herbicide assessment indicates that combining more than one herbicide mode of 

action presents an effective strategy to control resistant kochia weeds in sugarbeet. This 

highlights the importance of implementing integrated herbicide weed management strategies to 

mitigate the emergence of herbicide-resistant species. The findings can assist weed control in 

sugarbeet by applying herbicides based on the unique spectral reflectance of identified kochia 

and this approach will prevent the emergence of resistant kochia biotypes. 

Future research should focus on developing automated data acquisition and image 

processing technologies to identify and manage kochia in sugarbeet. By leveraging the unique 

spectral signature, these advancements can enhance the identification and control of herbicide-

resistant kochia in sugarbeet. 
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APPENDIX A: SUGARBEET, KOCHIA, AND HERBICIDES UTILIZED FOR THE 

EXPERIMENT 

Table A1. Sugarbeet kochia varieties for greenhouse and field experiments.  

Experiment Sugarbeet variety 

Greenhouse Sugarbeet hybrid (BTS 8927 Betaseed, KWS Seeds, Minneapolis, MN, 2022) 

Field Sugarbeet variety CR 793 (Crystal Sugarbeet, Moorhead, MN) 

 

Table A2. Kochia biotypes and their resistant characteristics.  

Kochia weed species Trait 

DR Dicamba-resistant 

GR Glyphosate-resistant 

GS Glyphosate-susceptible 

Note: DR-dicamba-resistant, GR-glyphosate-resistant, and GS-glyphosate-susceptible kochia 

 

Table A3. Herbicides applied to sugarbeet and kochia.  

Common names Trade name Mode of action/group 

Trisulfuron-methyl Upbeet ALS/ Group 2 

Fluroxypyr-ester Comet Synthetic auxins/ Group 4 

Florpyrauxifen-benzyl   Rinksor  Synthetic auxins/ Group 4 

Glyphosate Roundup PowerMax3 Inhibition of EPSP/ Group 9 

Glyphosate + 

florpyrauxifen-benzyl   

Roundup PowerMax3 + 

Rinksor 

Synthetic auxins + Inhibition of 

EPSP 

Acifluorfen Ultra Blazer PPO / Group 14 

Note: ALS-Acetolactate synthase, ESPS-Inhibits 5-enopyruvylshikimae-3-phosphaste, and PPO-

Protoporphyrinogen Oxidase. 
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APPENDIX B: PLANTING, DATA COLLECTION AND IMAGE PREPROCESSING OF 

KOCHIA AND SUGARBEET 

 

Figure B1. Casselton agronomy seed research field utilized for planting sugarbeet and kochia. 

 

Figure B2. Illustration of sugarbeet planted in rows on the field for effective data collection. 
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Figure B3. Planting kochia in greenhouse pots for greenhouse experiment. 

 

Figure B4. Kochia and sugarbeet 3 weeks old prior to data collection in the greenhouse. 
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Figure B5. Hyperspectral sensor (Specim FX10) mounted on data collection platform utilized to 

record images in greenhouse and field. 

 

Figure B6. Capturing white reference image and raw image with the sensor with tarp covering 

the platform to minimize external effects like wind and sunlight. 
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Figure B7. Calibrated RGB image using white and dark reference images. 

 

Figure B8. Application of k-means clustering algorithm (number of clusters = 2) to remove soil 

background from calibrated image. 
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Figure B9. Visualization of false color image of calibrated image. 

 

Figure B10. Soil background removed to help extract spectra values for kochia and sugarbeet. 

 


