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Abstract
Complement. The classical receptive fields of simple cells in mammalian
primary visual cortex demonstrate three cardinal response properties: 1)
they do not respond to stimuli which are spatially homogeneous; 2) they
respond best to stimuli in a preferred orientation (direction); and 3) they
do not respond to stimuli in other, non-preferred orientations (directions).
We refer to these as the Balanced Field Property, the Maximum Re-
sponse Direction Property, and the Zero Response Direction Property,
respectively. These empirically-determined response properties are used
to derive a complete characterization of elementary receptive field func-
tions defined as products of a circularly symmetric weight function and a
simple periodic carrier. Two disjoint classes of elementary receptive field
functions result: the balanced Gabor class, a generalization of the tra-
ditional Gabor filter, and a bandlimited class whose Fourier transforms
have compact support (i.e., are zero-valued outside of a bounded range).
The detailed specification of these two classes of receptive field functions
from empirically-based postulates may prove useful to neurophysiologists
seeking to test alternative theories of simple cell receptive field structure,
and to computational neuroscientists seeking basis functions with which
to model human vision.
Supplement. This Supplement provides detailed proofs of the main re-
sults of the complementary paper. Lemmas 1, 2, 3 and Theorems A.1,
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A.2, and B.1 are stated in the paper. Appendix A proves Theorems A.1
and A.2. Appendix B proves Theorem B.1. Appendix C proves several
miscellaneous results mentioned in the paper. Equation numbering con-
tinues the numbering of the paper.

Keywords. Bandlimited, Bessel function, Fourier transform, Gabor filter, Han-
kel transform, receptive fields, simple cells, visual cortex
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We denote the following frequently occurring expressions by:

s±(ω, x) :=
√

(sin(ω))2 + (x± cos(ω))2

=
√

1± 2 cos(ω)x + x2 (73)

Appendix A. Proofs for Lemma A and Theorems
A.1 and A.2.

This Appendix states and proves a key result, Lemma A, and applies it to prove
Theorems A.1 and A.2 (Section 4).

It will be useful to extend the domain of Hq(ρ) to the whole real line and
rephrase Lemma 2. Since q(r) satisfies (12), the Hankel transform Hq(ρ), defined
by (14), exists for all real ρ and is even because J0(x) is even. Properties (15)
become

Hq(ρ) is C(−∞, +∞),Hq(0) = 1, and Hq(±∞) = 0 (74)

With respect to Lemma 2, we can assume αZR − αR is restricted to [0, +π/2]
because conditions (25, 26) are unchanged when αZR − αR is translated by ±π
and the cosine is even. Conditions (25, 26) are also unchanged when x = λR/λP

is replaced by −x (and hold at x = 0 by continuity). Lemma 2 can therefore be
restated as:

Lemma 2′. Let the receptive field function R
(

⇀
x

)
be given by (11). Let

q(r) satisfy (12) (in which case the Hankel transform Hq(ρ) exists and satisfies

(74)). Then R
(

⇀
x

)
has the ZRD Property if and only if there exists a value βR,

0 ≤ βR ≤ π/2, such that the following relations hold for −∞ < x < +∞:

cos (φR) [Hq (s−(βR, x)) + Hq (s+(βR, x))] = 2bRHq(x) (75)

sin (φR) [Hq (s−(βR, x))−Hq (s+(βR, x))] = 0 (76)

bR = cos (φR) Hq(1) (77)
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In such a case, αZR = αR + βR is a zero response direction.

We now state the main lemma and apply it to prove Theorems A.1 and A.2.
The remainder of the Appendix is the proof of the lemma.

Lemma A. Let φ0, β0 be given with 0 ≤ β0 ≤ π
2 . Consider the following

three conditions on a function h(x):

(A1) h(x) is even and continuous on the real line with h(0) = 1 and h(±∞) = 0.

(A2) cos (φ0) [h (s−(β0, x)) + h (s+(β0, x))− 2h(1)h(x)] = 0 for all x.

(A3) sin (φ0) [h (s−(β0, x))− h (s+(β0, x))] = 0 for all x.

Then:

(1a) Assume β0 = π
2 and cos (φ0) = 0. Then h(x) satisfies all three conditions

iff it satisfies the first, that is, (A1).

(1b) Assume β0 = π
2 and cos (φ0) 6= 0. Then:

1. h(x) satisfies the three conditions with h(1) > 0 iff h(x) = h(1)x2
F

(
x2

)
where F (y) is C[0,+∞), F (0) = 1, F (y + 1) = F (y) for y ≥ 0, and
0 < h(1) < 1.

2. h(x) satisfies the three conditions with h(1) = 0 iff h(x) = 0 for
|x| ≥ 1 with h(x) even and continuous on the real line and h(0) = 1.

3. h(x) satisfies the three conditions with h(1) < 0 iff
h(x) = (−h(1))x2

F
(
x2

)
where F (y) is C[0,+∞), F (0) = 1,

F (y + 1) = −F (y) for y ≥ 0, and −1 < h(1) < 0.

(2a) Assume 0 < β0 < π
2 and cos (φ0) 6= ±1. Then h(x) satisfies the three

conditions iff h(x) = 0 for |x| ≥ sin (β0) with h(x) even and continuous on
the real line and h(0) = 1.

(2b) Assume 0 < β0 < π
2 and cos (φ0) = ±1. Then:

1. If h(1) = 0, then h(x) satisfies the three conditions iff h(x) = 0 for
|x| ≥ sin (β0) with h(x) even and continuous on the real line and
h(0) = 1.

2. If 0 < |h(1)| < 1, then h(x) satisfies the three conditions iff h(x)
satisfies (A1) and (A2).

3. If |h(1)| ≥ 1, then no h(x) satisfies the three conditions.

(3) Assume β0 = 0. Then no h(x) satisfies the three conditions.
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Proof of Theorem A.1. Assume R
(

⇀
x

)
has the ZRD Property with a ZRD

αZR. Apply Lemma 2′ with βR = αZR − αR. Then the Hankel transform,
extended to the real line as an even function Hq(x), satisfies hypothesis (A1)
of Lemma A and satisfies the following relations for all x, corresponding to
hypotheses (A2) and (A3) of Lemma A:

cos (φR) [Hq (s−(βR, x)) + Hq (s+(βR, x))− 2Hq(1)Hq(x)] = 0 (78)

sin (φR) [Hq (s−(βR, x))−Hq (s+(βR, x))] = 0 (79)

Apply Lemma A. Since cos (φR) 6= 0, conclusion (1a) of Lemma A does not
occur. By conclusion (3) of Lemma A, βR = 0 does not occur, so 0 < βR ≤ π/2.

Assume 0 < βR < π/2 occurs. Then either conclusion (2a) or (2b) of Lemma
A occurs. Assume conclusion (2a) occurs. Then Hq(x) satisfies Hq(x) = 0 for
|x| ≥ sin (βR), where we already know that αZR = αR + βR is a ZRD. Notice
that, for each β′R with βR ≤ β′R ≤ π/2, (78) and (79) are still satisfied for
Hq(x), hence α′ZR = αR + β′R is also a ZRD by Lemma 2′, giving a sector
of ZRDs. Result (3) of Theorem A.1 follows by extending the interval where
Hq(x) vanishes to its maximum extent. Now assume conclusion (2b) of Lemma
A occurs. By (2b.3), |Hq(1)| ≥ 1 does not occur. Then either Hq(1) 6= 0, in
which case (2b.2) occurs and gives result (4) of Theorem A.1, or Hq(1) = 0
occurs, in which case (2b.1) occurs and gives result (3) of Theorem A.1 (after
repeating the analysis for conclusion (2a)).

We can now assume (78) and (79) hold for βR = π/2 and for no other value
of βR (otherwise, we return to the previous case). Since (78) and (79) hold only
for this value, Lemma 2′ implies the ZRD is the unique value αZR = αR + π/2.
Only conclusion (1b) of Lemma A applies, and its subcases (1b.1,2,3) give results
(1), (2), (3) of Theorem A.1.

Conversely, assume a receptive field function R
(

⇀
x

)
is given such that (11)

and (12) hold and let the resulting Hankel transform Hq(ρ) be extended to the
real line as an even function. We wish to show that the field function has the
ZRD Property.

Assume result (1) of Theorem A.1 holds, so that αZR = αR + π/2 is a ZRD.
Apply Lemma 2′ with βR = αZR − αR and bR defined by (77). Then direct
substitution shows that (75) and (76) are satisfied, so the ZRD Property holds.
Similarly, by direct substitution into the conditions of Lemma 2′, results (2),
(3), (4) of Theorem A.1 also imply the ZRD Property, noting that results (3)
and (4), although stated for ρ ≥ 0, are preserved for even extensions of Hq(ρ)
to the real line. Theorem A.1 is proved.

Proof of Theorem A.2. A receptive field function R
(

⇀
x

)
is given such that

(11) and (12) hold. Let the Hankel transform be extended to the real line as an
even function Hq(x). We wish to determine the ZRDs (if any). By Lemma 2′,
each ZRD αZR determines a corresponding βR = αZR−αR for which equations
(75,76,77) are satisfied. That is, Hq(x) necessarily satisfies hypothesis (A1) of
Lemma A and equations (75,76) correspond to hypotheses (A2) and (A3) of
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Lemma A. We can now apply Lemma A to determine the values βR. Since
cos (φR) = 0, only conclusions (1a), (2a), and (3) of Lemma A can occur. By
conclusion (3), βR = 0 does not occur, so 0 < βR ≤ π/2.

Assume βR = π/2. Then conclusion (1a) of Lemma A occurs, and equations
(75,76) are automatically satisfied because they are vacuous. That is, there is
always a ZRD, namely, αZR = αR + π/2, proving result (1) of Theorem A.2.

Assume 0 < βR < π/2. Then conclusion (2a) of Lemma A occurs, and Hq(x)
satisfies Hq(x) = 0 for |x| ≥ sin (βR). We can therefore form equations (75,76)
not only for βR but for each β′R with βR ≤ β′R ≤ π/2 as well. By Lemma 2′,
there is a sector of ZRDs, namely, α′ZR = αR + β′R.

We have now shown that there is always at least one ZRD, corresponding
to βR = π/2, and that if there is more than one ZRD, the ZRDs must occur
as a sector, corresponding to βR ≤ β′R ≤ π/2 (and thus including π/2). Fur-
thermore, we have shown that if more than one ZRD occurs, then Hq(x) must
satisfy Hq(x) = 0 for |x| ≥ s0 for some 0 < s0 < 1 and that, when Hq(x)
satisfies such a condition, a sector of ZRDs is implied. Altogether, this proves
result (2) of Theorem A.2 and completes the proof.

Proof of Lemma A.
Case (1a). Assume β0 = π

2 and cos (φ0) = 0. Then (A2) and (A3) are vacuous.
Hence h(x) satisfies the three conditions iff it satisfies (A1).
Case (1b). Assume β0 = π

2 and cos (φ0) 6= 0. Notice (A3) is vacuous, and (A2)
reduces to h

(√
1 + x2

)
= h(1)h(x) for all x.

If h(1) = 0, it follows that h(x) = 0 for |x| ≥ 1. That is, (A1,2,3) and
h(1) = 0 give the conclusion of (1b.2), and the converse follows directly.

If h(1) > 0, define F (y):=h(1)−yh
(√

y
)

for y ≥ 0. Then F (y) is C[0, +∞),
F (0) = 1, and the reduced form of (A2) gives F (y + 1) = F (y). Then h(x) =
h(1)x2

F
(
x2

)
. Using h(±∞) = 0 from (A1) gives 0 < h(1) < 1. This proves the

representation (1b.1) for h(x), and the converse follows directly.
If h(1) < 0, define F (y):=|h(1)|−yh

(√
y
)

for y ≥ 0. Proceeding as for
h(1) > 0 proves the representation (1b.3), and the converse follows directly.
Case (2a). Assume 0 < β0 < π

2 and cos (φ0) 6= ±1. Then, since sin (φ0) 6= 0,
(A3) implies

h (s+(β0, x)) = h (s−(β0, x)) for all x

The function h
(√

sin (β0) 2 + x2
)

is then periodic with period 2 cos(β0) and,
by h(±∞) = 0 from (A1), must be identically zero. Thus, h(x) = 0 for |x| ≥
sin (β0). In particular, h(1) = 0, so (A2) is necessarily satisfied whatever the
value of cos (φ0). Representation (2a) follows. The converse is direct.
Case (2b). Assume 0 < β0 < π

2 and cos (φ0) = ±1. Then sin (φ0) = 0 and (A3)
is vacuous.

If h(1) = 0, then (A2) reduces to

h (s+(β0, x)) = −h (s−(β0, x)) for all x

The function h
(√

sin (β0) 2 + x2
)

is therefore periodic with period 4 cos (β0)
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and, by h(±∞) = 0 from (A1), must be identically zero. Thus, h(x) = 0 for
|x| ≥ sin (β0). Representation (2b.1) follows, and the converse is direct.

If 0 < |h(1)| < 1, then the stated result (2b.2) is immediate.
For |h(1)| ≥ 1, first consider h(1) ≥ 1. Notice (A2) becomes

1
2

[h (s−(β0, x)) + h (s+(β0, x))] = h(1)h(x) for all x

By (A1), h(x) must attain an absolute maximum M = h (x0) ≥ h(1) ≥ 1.
Applying (A2) with x = x0 forces

h (s−(β0, x0)) = h (s+(β0, x0)) = M and h(1) = 1

Thus, h(x) also attains the absolute maximum M at x1 = s+(β0, x0) > x0 +
cos (β0). Repeating the argument at x1 gives an absolute maximum at x2 =
s+(β0, x1) > x0 + 2 cos (β0), and so on, giving a sequence of points xn → +∞
with h (xn) = M ≥ 1, contradicting h(±∞) = 0 in (A1).

Now consider h(1) ≤ −1. By (A1), h(x) must attain an absolute maximum
M ≥ h(0) = 1, and h(x) must have an absolute minimum m ≤ h(1) ≤ −1.
Assume M ≥ −m. Let h (x0) = M . Applying (A2) with x = x0 gives

1
2

[h (s−(β0, x0)) + h (s+(β0, x0))] = h(1)h(x0) ≤ −M ≤ m

This forces m = −M and h(1) = −1 and

h (s−(β0, x0)) = h (s+(β0, x0)) = m

Thus, h(x) attains the absolute minimum m at x1/2 = s+(β0, x0) > x0+cos (β0).
Repeating the argument at x = x1/2 gives

1
2

[
h

(
s−(β0, x1/2)

)
+ h

(
s+(β0, x1/2)

)]
= h(1)h(x1/2) = −m = M

forcing h (x1) = M at x1 = s+(β0, x1/2) > x0 + 2 cos (β0). Repeat to construct
a sequence xn → +∞ such that h (xn) = M ≥ 1, contradicting h(±∞) = 0 in
(A1). Now assume M < −m. Let h (x0) = m. Applying (A2) with x = x0 gives

1
2

[h (s−(β0, x0)) + h (s+(β0, x0))] = h(1)h(x0) ≥ −m > M

But h (s±(β0, x0)) ≤ M , contradiction. This proves (2b.3).
Case (3). Assume β0 = 0. Then s±(β0, x) = |1± x|. If sin (φ0) 6= 0, then (A3)
implies h(x) is periodic, forcing a contradiction by the argument of case (2a).
If sin (φ0) = 0, then, since h(x) is even, (A2) becomes an ordinary difference
equation, namely, h(x− 1) + h(x + 1) = 2h(1)h(x). If |h(1)| > 1, there are two
real characteristic roots with one root greater than one. If |h(1)| = 1, there is
a double root, either +1 or −1. If |h(1)| < 1, there are two complex conjugate
roots with modulus one. Picking arbitrary starting points x0, x0 + 1, it can
be shown by explicit solution that, for all these cases, h(±∞) = 0 holds iff
h (x0) = h (x0 + 1) = 0, forcing h(x) = 0 for all x and thus contradicting (A1).
This completes the proof of Lemma A.
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Appendix B. Proof for Theorem B.1.

This appendix proves Theorems B.1, the characterization theorem for elemen-
tary receptive field functions with the MRD Property. The following lemma is
used in the proof of Theorem B.1.

Lemma B. The following are equivalent:

(1) h(x) is C[0, +∞) and satisfies h
(√

1 + x2
)

= h(1)h(x) for x ≥ 0 with
h(1) 6= 0.

(2) h(x) = e−cx2
f

(
x2

)
where f(y) is C[0, +∞), f(1) = ±1, and f(y + 1) =

f(1)f(y) for y ≥ 0.

In case (1), h(0) = 1 necessarily holds. In case (2), f(0) = 1 necessarily holds.

Proof of Lemma B. Assume (1) holds. Define f(y):=ecyh
(√

y
)

for y ≥ 0,
where e−c = |h(1)| > 0. Then f(y) is C[0, +∞), f(1) = h(1)/|h(1)| = ±1,
and f(y + 1) = f(1)f(y) follows using the recursion relation in (1). Assume (2)
holds. Then h(x) is C[0, +∞), h(1) = e−cf(1) 6= 0, and h

(√
1 + x2

)
= h(1)h(x)

follows by substitution. The lemma is proved.

Proof of Theorem B.1. It may be helpful to outline the structure of the
proof. We first assume R

(
⇀
x

)
has the MRD Property. Then, as noted in Sec-

tion 2, it has the ZRD Property and, since cos (φR) 6= 0, Theorem A.1 applies.
We consider the four cases of Theorem A.1 in reverse order:

• case (4), which will be shown inconsistent with the MRD Property;

• case (3), which will imply result (2) of Theorem B.1;

• cases (1) and (2) together, where case (2) will be shown inconsistent with
the MRD Property and case (1) will imply result (1) of Theorem B.1.

Having derived cases (1) and (2) of Theorem B.1, we will then prove the con-
verse, that each of these cases implies the MRD Property.

Assume R
(

⇀
x

)
has the MRD Property. Then, as noted at the end of Sec-

tion 3, R
(

⇀
x

)
has the ZRD Property, Theorem A.1 applies, and we will work

through its four cases.

Assume case (4) of Theorem A.1 holds. Then cos (φR) = ±1 and the Han-
kel transform Hq(ρ) satisfies

Hq (s−(ζ0, ρ)) + Hq (s+(ζ0, ρ)) = 2Hq(1)Hq(ρ) for ρ ≥ 0

with 0 < |Hq(1)| < 1, where ζ0 is some fixed value with 0 < ζ0 < π
2 , and where

ZRDs are given by αZR−αR = ±ζ0. The MRD Property then implies that there
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must be a sector of ZRDs, |αZR − αR| ≥ ζ0. Consequently, applying Lemma 2
with cos (φR) = ±1 yields, for ρ > 0,

Hq (s−(α, ρ)) + Hq (s+(α, ρ)) = 2Hq(1)Hq(ρ) for ζ0 ≤ α ≤ π

2
(80)

Taking α = π
2 and using the fact that Hq(ρ) is C[0,∞) gives

Hq

(√
1 + ρ2

)
= Hq(1)Hq(ρ) for ρ ≥ 0 (81)

Since Hq(1) 6= 0, Lemma B applies to give Hq(ρ) = e−cρ2
f

(
ρ2

)
for ρ ≥ 0 with

corresponding conditions on f(y). Since f(y) is already periodic (with period 2)
on the half-line, it can be extended to the whole line and the extended function
will be useful below. So the representation can be summarized as

Hq(ρ) = e−cρ2
f

(
ρ2

)
for ρ ≥ 0

where f(y) is C(−∞, +∞), f(1) = ±1,

and f(y + 1) = f(1)f(y) for all y. (82)

Notice c > 0 because Hq(+∞) = 0. Combining this representation with (B.1)
gives, for each ρ > 0,

e+2c cos(α)ρf
(
1− 2ρ cos(α) + ρ2

)
+ e−2c cos(α)ρf

(
1 + 2ρ cos(α) + ρ2

)

= 2f(1)f
(
ρ2

)
for ζ0 ≤ α ≤ π

2
(83)

Setting x = 2 cos(α)ρ and using the symmetry of the expression gives, for each
ρ > 0,

e+cxf
(
1− x + ρ2

)
+ e−cxf

(
1 + x + ρ2

)
= 2f(1)f

(
ρ2

)
for |x| ≤ 2 cos (ζ0) ρ

(84)
Setting ρ = 2N , where N is a positive integer, and using the properties of f
gives

e+cxf(−x) + e−cxf(x) = 2 for |x| ≤ 4 cos (ζ0)N (85)

Letting N →∞ gives

e+cxf(−x) + e−cxf(x) = 2 for all x (86)

However, dividing by e+cx and taking a limit, implies f(−∞) = 0, a contradic-
tion since f is periodic and f(0) = 1. Consequently, case (4) of Theorem A.1
cannot occur.

Assume case (3) of Theorem A.1 holds. The Hankel transform Hq(ρ) is then
zero on an interval of the form 0 < sin (ζR) ≤ ρ < +∞, the largest such interval
on which Hq(ρ) vanishes. In particular, Hq(ρ) = 0 for ρ ≥ 1, which implies,
writing α = αP − αR,

bR = cos (φR)Hq(1) = 0

Hq (s+(α, λR/λP )) = 0 for 0 ≤ α ≤ π

2
(87)
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Consequently, (3.9a) simplifies to

N (αP , λP ) = |Hq (s−(α, λR/λP ))| for 0 ≤ α ≤ π

2
(88)

which becomes, for λP = λR,

N (αP , λR) =
∣∣∣Hq

(√
2− 2 cos(α)

)∣∣∣ for 0 ≤ α ≤ π

2
(89)

Then the MRD Property says that N must strictly decrease from its maximum
|Hq(0)| (at α = 0) until it reaches zero (at 2 − 2 cos(α) = sin (ζR) 2) and then
remains zero (as α increases to π/2). Thus, Hq(ρ) must strictly decrease from
its maximum of one at ρ = 0 to zero at ρ = sin (ζR), in particular, Hq(ρ) ≥ 0.
This proves that the condition of result (2) of Theorem B.1 is necessary for the
MRD Property. Observation (a), that the MRD is given by αMR = αR, is a
general result noted in the discussion of Lemma 3, and observation (b) on the
sector of ZRDs follows from Theorem A.1.

Assume case (1) or case (2) of Theorem A.1 holds. Then in both cases the
Hankel transform can be written as Hq(ρ) = e−cρ2

F
(
ρ2

)
, where e−c = |Hq(1)|

with c > 0 and F (y) is periodic with period 2 on the half-line. The periodic
extension of F (y) to the whole line will be useful, and the representation can
be summarized as

Hq(ρ) = e−cρ2
F

(
ρ2

)
for ρ ≥ 0

where F (y) is C(−∞, +∞), F (0) = 1, F (1) = ±1,

and F (y + 1) = F (1)F (y) (90)

where F (1) = +1 corresponds to case (1) and F (1) = −1 to case (2) of Theorem
A.1. Combining this representation with (23) and writing α = αP − αR and
r = λR/λP gives

N (αP , λP )2 = e−c(1+r2) ·N1(α, r)2 (91)

where N1(α, r) > 0 is given by

N1(α, r)2 :=

cos (φR)2 [ e−2c cos(α)rF
(
1 + 2 cos(α)r + r2

)
+

e+2c cos(α)rF
(
1− 2 cos(α)r + r2

) −2F (1)F
(
r2

)]2
+

sin (φR)2 [ e−2c cos(α)rF
(
1 + 2 cos(α)r + r2

)−
e+2c cos(α)rF

(
1− 2 cos(α)r + r2

)
]2 (92)

The MRD Property implies that, for each r > 0, N1(α, r) is either identically
zero or is initially positive and then strictly decreasing to zero (and remains
zero) as α increases from 0 to π/2. Set y = 2 cos(α)r and notice the resulting
expression for N1 is even in y. Then, for each r > 0 and for |y| ≤ 2r,

N2
1 = cos (φR)2

(
e−cyF

(
1 + y + r2

)
+ e+cyF

(
1− y + r2

)− 2F (1)F
(
r2

))2
+

sin (φR)2
(
e−cyF

(
1 + y + r2

)− e+cyF
(
1− y + r2

))2
(93)
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where N1 is either zero on the whole interval |y| ≤ 2r or is initially zero and
then strictly increasing as |y| increases to 2r. Setting r2 = a + 2N , where a is
an arbitrary real value and N is a sufficiently large positive integer, and using
the properties of F from (90) gives, for |y| ≤ 2

√
a + 2N ,

N2
1 = cos (φR)2

(
e−cyF (a + y) + e+cyF (a− y)− 2F (a)

)2 +

sin (φR)2
(
e−cyF (a + y)− e+cyF (a− y)

)2 (94)

Let N → +∞. Then, for each real a, the expression TF , defined by

TF (φR, c, a; y) :=

cos (φR)2
(
ecyF (a− y) + e−cyF (a + y)− 2F (a)

)2 +

sin (φR)2
(
ecyF (a− y)− e−cyF (a + y)

)2 (95)

is either zero for all |y| or is initially zero and then strictly increasing as |y|
increases indefinitely. In particular, TF (y) is nondecreasing on y ≥ 0.
CLAIM 1. e2cyF (−y)2 is nondecreasing on −∞ < y < +∞.
PROOF. Let a = 0 and y = x+2N for positive integer N in (95) with 0 ≤ x ≤ 2.
Then

e−4NcTF (x + 2N) =

(cos (φR))2
(
ecxF (−x) + e−cx−4NcF (x)− 2e−2NcF (a)

)2
+

(sin (φR))2
(
ecxF (−x)− e−cx−4NcF (x)

)2
(96)

is a sequence of nondecreasing functions converging uniformly on 0 ≤ x ≤ 2
to (ecxF (−x))2. The limit function is then nondecreasing on 0 ≤ x ≤ 2
and, since shifting by 2 simply multiplies the function by a constant, that is,(
ec(x+2)F (−(x + 2))

)2
= e4c (ecxF (−x))2, the function must be nondecreasing

on the entire line.
CLAIM 2. ecyF (−y) is positive and nondecreasing on −∞ < y < +∞.
PROOF. If this function was zero at some value y = y0, then e2cyF (−y)2 would,
by Claim 1, be zero on y ≤ y0 and, by periodicity of F , be identically zero. But
it has the value 1 at y = 0. Consequently, ecyF (−y) is nonzero and thus does
not change sign and is necessarily positive. It is then nondecreasing since its
square is nondecreasing by Claim 1.
CLAIM 3. Case (2) of Theorem A.1 does not hold.
PROOF. In case (2), F (y) satisfies F (y + 1) = −F (y). Thus, F (0) = 1 and
F (1) = −1, contradicting Claim 2.

As a result of Claim 3, only case (1) of Theorem A.1 holds, which implies
that F (y) is periodic with period 1. This proves the initial part of result (1) of
Theorem B.1.
CLAIM 4. For each real a, TF (φR, c, a; y) is nondecreasing on 0 ≤ y ≤ δa and
is strictly increasing on δa ≤ y < +∞, where 0 ≤ δa < 1.
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PROOF. As noted in connection with (95), TF (y) is either (a) zero for all y ≥ 0
or (b) initially zero and then strictly increasing. Since F (y) has period 1 and is
nonzero, we have

TF (1) =
(
cos (φR)2

(
ec + e−c − 2

)2 + sin (φR)2
(
ec − e−c

)2
)

F (a)2 > 0 (97)

Alternative (b) must hold, and TF (y) is in the strictly increasing regime at
y = 1, so δa < 1.
CLAIM 5. ecyF (−y) is positive and strictly increasing on −∞ < y < +∞.
PROOF. By Claim 2, the function is positive and nondecreasing. Assume it is
not strictly increasing. Then it must be constant on some interval:

e+cxF (−x) = e+cbF (−b) on |x− b| < δ (98)

which implies
e−cxF (+x) = e+cbF (−b) on |x + b| < δ (99)

Consider Claim 4 with a = −b and y = z + N for integers N >> 1 and |z| < δ:

TF (φR, c,−b; y)

= cos (φR)2
(
ec(z+N)F (−b− z) + e−c(z+N)F (−b + z)− 2F (−b)

)2

+

sin (φR)2
(
ec(z+N)F (−b− z)− e−c(z+N)F (−b + z)

)2

=
(
cos (φR)2

(
ecN + e−cN − 2

)2
+ sin (φR)2

(
ecN − e−cN

)2
)

F (−b)2

That is, TF (y) is constant on subintervals |y −N | < δ for sufficiently large N ,
contradicting Claim 4.

Note that Claim 5 implies the functions ecyF (a − y) = ecaec(y−a)F (a − y)
are strictly increasing and the functions e−cyF (a+y) are strictly decreasing. In
particular, Claim 5 gives (c) under result (1) of Theorem B.1.
CLAIM 6. Assume cos (φR) 6= ±1. Then, for each real a, TF (φR, c, a; y) is
strictly increasing on 0 ≤ y < +∞.
PROOF. By Claim 4, for each a, TF (φR, c, a; y) must be initially zero, then
strictly increasing. We show that the initially zero interval must always reduce
to a single point. Assume it does not. Then, for some a0, TF (a0; y) = 0 on
some interval |y| ≤ δ0 with δ0 > 0. Since sin (φR) 6= 0, TF (a0; y) = 0 gives two
equations

e−cyF (a0 + y) + e+cyF (a0 − y) = 2F (a0) and
e−cyF (a0 + y)− e+cyF (a0 − y) = 0 on |y| ≤ δ0

which can be solved to give e−cyF (a0 + y) = F (a0) and e+cyF (a0 − y) =
F (a0) on |y| ≤ δ0. Set x = y + N for positive integers N with |y| ≤ δ0 and
combine these expressions with the periodicity of F to obtain

TF (a0;x) =
F (a0)

2
(
cos (φR)2

(
e+cN + e−cN − 2

)2 + sin (φR)2
(
e+cN − e−cN

)2
) (100)
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This is a contradiction because it shows TF (a0;x) to be constant on the intervals
|x −N | = |y| ≤ δ0, but TF (a0; x) must be strictly increasing on such intervals
for sufficiently large N by Claim 4.

Claim 6 proves part (**) of result (1) for Theorem B.1.
CLAIM 7. Assume cos (φR) = ±1. Then:

(7a) For each a, the function f(a; y) = ecyF (a− y) + e−cyF (a + y)− 2F (a) is
initially zero on 0 ≤ y ≤ δa and strictly increasing on δa ≤ y < +∞. (The
value δa satisfies the bound 0 ≤ δa < 1.)

(7b) In (7a), δa > 0 if and only if the value a satisfies
e−cyF (y) = e−caF (a) − K(a)(y − a) on |y − a| ≤ δa for some constant
K(a) > 0.

PROOF. Since sin (φR) = 0, the even function TF (a; y) in (95) reduces to
TF (a; y) = f(a; y)2, which is nondecreasing for y ≥ 0 by Claim 4. Since
f(a; 0) = 0 and f(a; y) is eventually positive due to the growth of the term
e+cyF (a− y), we have f(a; y) ≥ 0 and nondecreasing. Combining this behavior
with the general behavior of TF (a; y) given by Claim 4, which also gives δa < 1,
proves Claim (7a).

For Claim (7b), it will be convenient to use the fact that f(a; y) is an even
function of y. Let a0 be a value such that f (a0; y) = 0 on |y| ≤ δ0 for some
positive δ0, that is,

e+cyF (a0 − y) + e−cyF (a0 + y)− 2F (a0) = 0 on |y| ≤ δ0 (101)

This equation can be solved for e+cy:

e+cyF (a0 − y) = F (a0)
(
1±

√
1−K0(y)

)
for |y| ≤ δ0 (102)

where K0(y) = F (a0 + y)F (a0 − y) /F (a0) 2 is even, K0(0) = 1, and K0(y) ≤ 1
for |y| ≤ δ0. By Claim 5, e+cyF (a0 − y) is strictly increasing, which forces

e+cyF (a0 − y)
= F (a0)

(
1 +

√
1−K0(y)

)
for 0 ≤ y ≤ δ0

= F (a0)
(
1−

√
1−K0(y)

)
for − δ0 ≤ y ≤ 0

(103)

with the even function K0(y) strictly decreasing as |y| increases. Now consider
f(a; y) with a = a0 + ε, where |ε| ≤ δ0/ 2, which is an even function of y. Thus,
for |ε| ≤ δ0/ 2 and |y| ≤ δ0/ 2,

f (a0 + ε; y) = e+cyF (a0 + ε− y) + e−cyF (a0 + ε + y)− 2F (a0 + ε)
= e+cεF (a0)

[
sgn(y − ε)

√
1−K0(y − ε)− sgn(y + ε)

√
1−K0(y + ε)+

2 sgn(ε)
√

1−K0(ε)
]

(104)
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Consider the two cases ε = ±ε0 with ε0 > 0. In each case set y = ε0 and use
f(a; y) ≥ 0 to obtain

f (a0 + ε0; ε0) = e+cε0F (a0)
[
0−

√
1−K0 (2ε0) + 2

√
1−K0 (ε0)

]
≥ 0 (105)

f (a0 − ε0; ε0) = e−cε0F (a0)
[
+

√
1−K0 (2ε0)− 0− 2

√
1−K0 (ε0)

]
≥ 0

(106)
Consequently,

√
1−K0(2ε) = 2

√
1−K0(ε) for |ε| ≤ δ0/2 (107)

Setting z(ε) =
√

1−K0(ε), note that continuous solutions to the functional
equation z(2ε) = 2z(ε) on intervals 0 ≤ ε < ε0 must be given by z(ε) = k0ε for
constants k0. (Use the functional equation to derive this formula for a dense
set and note a continuous function is determined by its values on a dense set.)
Consequently, since

√
1−K0(ε) is a strictly increasing function of |ε|,

√
1−K0(x) = k0|x| for some k0 > 0 and for |x| ≤ δ0 (108)

Equation (103) now becomes

e+cyF (a0 − y) = F (a0) (1 + k0y) for some k0 > 0 and |y| ≤ δ0 (109)

that is,
e−cyF (y) = e−ca0F (a0)−K1 (y − a0)

for some constant K1 > 0 and |y − a0| ≤ δ0
(110)

which is precisely the “only if” part of Claim (7b).
To obtain the “if” part of Claim (7b), start with (B.18b), obtain expres-

sions for e−cyF (a0 + y) and e+cyF (a0 − y), and observe that f (a0; y) = 0 for
|y| ≤ δ0.

Claim 7 proves part (*) of result (1) of Theorem B.1, including the stated
condition on the existence of nontrivial initially zero intervals. Altogether,
Claims 1-7 complete the proof that the conditions in result (1) of Theorem
B.1 are necessary for the MRD Property. Observation (a), that the MRD is
given by αMR = αR, is a general result noted in the discussion of Lemma 3;
observation (b) on the unique ZRD follows from Theorem A.1; and observation
(c) was established by Claim 5.

To prove the converse: We wish to show that results (1) and (2) of Theorem
B.1 are sufficient conditions, that is, that they imply the MRD Property. For
each result, we calculate N (αP , λP ), given by (23), and show that it satisfies
the criteria of Lemma 3. Notice that the ZRD Property holds for each case,
so the Balanced Field Property also holds and bR = cos (φR) Hq(1) in (23) for
both cases. Similarly, αMR = αR in both cases.

Assume result (1) of Theorem B.1 holds. Then Hq(ρ) = e−cρ2
F

(
ρ2

)
with

c > 0 and the stated conditions on F (y) hold. Substituting into (23) gives

N (αP , λP )2 = exp
(
−c

(
1 +

λ2
R

λ2
P

))
· TF

(
φR, c,

λ2
R

λ2
P

; 2 cos (αP − αR)
λR

λP

)

(111)
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where TF (φR, c, a; y) is given by (95) and we note the particular case
TF (±π, c, a; y) = f(a; y)2. Since TF (φR, c, a; y) is strictly increasing on y ≥ 0
for arbitrary real a or (in the particular case φR = ±π) may be initially zero
and then strictly increasing, it immediately follows that, for each fixed λP , N is
strictly decreasing to zero as cos (αP − αR) decreases, that is, as |αP − αR|
increases, and either reaches zero at the ZRD |αP − αR| = π/2 or (in the
particular case φR = ±π) may reach zero before then and remains zero un-
til |αP − αR| = π/2. The conditions of Lemma 3 are satisfied.

Assume result (2) of Theorem B.1 holds. Then Hq(ρ) = 0 on
sin (ζR) ≤ ρ < +∞ and is positive and strictly decreasing on 0 ≤ ρ < sin (ζR),
so bR = 0 and the expression for N reduces to the single term

N (αP , λP ) = Hq (s−(αP − αR, λR/λP ))
for − π

2 ≤ αP − αR ≤ +π
2

(112)

It immediately follows that, for each fixed λP , N is strictly decreasing to zero,
and remains zero, as cos (αP − αR) decreases, that is, as |αP − αR| increases.
The conditions of Lemma 3 are satisfied. The proof of Theorem B.1 is now
complete.

Appendix C. Miscellaneous Derivations.

Section 3. Derivation of eqn. (18): Fourier transform of elementary
receptive field function in terms of Hankel transforms.

We wish to derive eqn. (18), the representation of the Fourier transform of
an elementary receptive field function (11) in terms of the Hankel transform
Hq(ρ) of the weight function q(r). By elementary properties of the Fourier
transform (as defined by eqn. (4)), the Fourier transform of the elementary re-
ceptive field function R (x1, x2) can be reduced to the Fourier transform of the
weight function p (x1, x2):

R
(

⇀
x

)
= 2π

λ2
R

q
(

2π
λR

∣∣∣⇀x
∣∣∣
) (

cos
(

2π
λR

⇀

d (αR) ·⇀
x − φR

)
− bR

)

= 2π
λ2

R
p

(
2π
λR

x1,
2π
λR

x2

) (
cos

(
2π
λR

⇀

d (αR) ·⇀
x − φR

)
− bR

) (113)

which has the Fourier transform

FR (s1, s2) = 1
4π

(
e+iφRFp

(
λR

2π

(
s1 + 1

λR
cos (αR)

)
, λR

2π

(
s2 + 1

λR
sin (αR)

))

+ e−iφRFp

(
λR

2π

(
s1 − 1

λR
cos (αR)

)
, λR

2π

(
s2 − 1

λR
sin (αR)

)))

− bR

2π Fp

(
λR

2π s1,
λR

2π s2

)
(114)

The 2D-Fourier transform of a circularly symmetric function can be expressed
as the Hankel transform (defined by eqn. (14)) of the radial form:

p (x1, x2) = q(r) (115)

14



which has the Hankel transform

Fp (s1, s2) = 2πHq(2πρ) where ρ =
√

s2
1 + s2

2 (116)

Combining (114) and (116) gives (18).

Section 5a. Derivation of part (2) of the Closure Lemma for bal-
anced Gabor weights.

We wish to prove part (2) of the Closure Lemma for balanced Gabor weights.
It is sufficient to prove the following:
CLAIM. Given 0 < γ1 < γ2 and G(y) continuous on the real line with e−γ1yG(y)
strictly decreasing and positive and an arbitrary real a. If

eγ1yG(a− y) + e−γ1yG(a + y) is increasing for y ≥ 0, (117)

then

eγ2yG(a− y) + e−γ2yG(a + y) is strictly increasing for y > 0. (118)

PROOF. Note e−γ1yG(y) is strictly decreasing and positive implies

e−γ1yG(a + y) and e−γ2yG(a + y) are strictly decreasing and positive (119)

e+γ1yG(a− y) and e+γ2yG(a− y) are strictly increasing and positive (120)

By hypothesis, for 0 < y1 < y2,

eγ1y2G (a− y2) + e−γ1y2G (a + y2) ≥
eγ1y1G (a− y1) + e−γ1y1G (a + y1)

(121)

We will show
eγ2y2G (a− y2) + e−γ2y2G (a + y2) >
eγ2y1G (a− y1) + e−γ2y1G (a + y1)

(122)

Multiply (121) by e(γ2−γ1)y2 to obtain

eγ2y2G (a− y2) + e(γ2−2γ1)y2G (a + y2) ≥
eγ2y2eγ1(−y2+y1)G (a− y1) + eγ2y2e−γ1(y2+y1)G (a + y1)

(123)

eγ2y2G (a− y2) + e−γ2y2G (a + y2)
−eγ2y1G (a− y1)− e−γ2y1G (a + y1) ≥
+e−γ2y2G (a + y2)− e(γ2−2γ1)y2G (a + y2)
+eγ2y2eγ1(−y2+y1)G (a− y1) + eγ2y2e−γ1(y2+y1)G (a + y1)
−eγ2y1G (a− y1)− e−γ2y1G (a + y1)

(124)

The desired result (122) follows if we can show the right side R is positive. We
have

R = − (
e2(γ2−γ1)y2 − 1

)
e−γ2y2G (a + y2)

+
(
eγ2y2eγ1(−y2+y1) − eγ2y1

)
G (a− y1)

+
(
eγ2y2e−γ1(y2+y1) − e−γ2y1

)
G (a + y1)

(125)
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As noted, 0 < e−γ2y2G (a + y2) < e−γ2y1G (a + y1), so

R > − (
e2(γ2−γ1)y2 − 1

)
e−γ2y1G (a + y1)

+
(
eγ2y2eγ1(−y2+y1) − eγ2y1

)
G (a− y1)

+
(
eγ2y2e−γ1(y2+y1) − e−γ2y1

)
G (a + y1)

=
(
e(γ2−γ1)(y2+y1) − e2(γ2−γ1)y2

)
e−γ2y1G (a + y1)

+
(
eγ2y2eγ1(−y2+y1) − eγ2y1

)
G (a− y1)

=
(
e(γ2−γ1)(y2−y1) − 1

)
eγ2y1G (a− y1)

+e(γ2−γ1)y2
(
e(γ2−γ1)y1 − e(γ2−γ1)y2

)
e−γ2y1G (a + y1) > 0

(126)

The claim is proved.

Section 5a. Derivation of eqn. (55): Condition determining balanced
Gabor weights of order 1.

Balanced Gabor weights of order 1 have Hankel transforms Hg(ρ) = e−γRρ2
G

(
ρ2

)

where G(y):= 1+cR cos(2πy−ψR)
1+cR cos(ψR) and G(y) must satisfy the conditions (a), (b), (c),

(d) of the balanced Gabor definition at the beginning of Section 5a. We will
derive eqn. (55), a characterization of these conditions in terms of the parame-
ters γR, cR, ψR for the order 1 case. As noted in the discussion following (55),
condition (d) is vacuous here.

Condition (a): Hq(ρ) = e−cρ2
F

(
ρ2

)
where F (y) is continuous and positive

on the real line, F (0) = 1, F (y + 1) = F (y). Clearly G(y) satisfies this require-
ment iff |cR| < 1.

Condition (b): e−cyF (y) is strictly decreasing on the real line, that is, d
dy (e−cyF (y)) ≤

0 (with equality at most at isolated points).

CLAIM. G(y) satisfies condition (b) iff cR
2 ≤ γR

2

4π2+γR
2 .

PROOF. The condition can be restated as G′(y)
G(y) ≤ c. Then G′(y)

G(y) = −2πcR sin(2πy−ψR)
1+cR cos(2πy−ψR)

has min-max values ±2πcR√
1−cR

2 (occurring at cos (2πy − ψR) = −cR), that is, max-

value 2π|cR|√
1−cR

2 . Take 2π|cR|√
1−cR

2 = γR, or cR
2 ≤ γR

2

4π2+γR
2 .

Condition (c): For each real a, TF (c, a; y):=ecyF (a−y)+e−cyF (a+y) is strictly
increasing for y ≥ 0. That is, taking a derivative and expanding: for each real
a, (F ′(a − y)− cF (a− y))− e−2cy(F ′(a + y)− cF (a + y)) ≤ 0 for y ≥ 0 (with
equality at most at isolated points).

CLAIM. G(y) satisfies condition (c) iff |cR| ≤ γR
2

γR
2+4π2 .

PROOF. Set G1(y):=1 + cR cos (2πy − ψR). The problem is to determine the
range of c for which the inequality

(G′1(a− y)− cG1(a− y))− e−2cy (G′1(a + y)− cG1(a + y)) ≤ 0
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holds on y ≥ 0 for all real a. Notice

G′1(y)− cG1(y) = −2πcR sin (2πy − ψR)− c (1 + cR cos (2πy − ψR))

The problem is now to determine the range of c such that, for y ≥ 0,

[−2πcR sin (2π(a− y)− ψR)− c (1 + cR cos (2π(a− y)− ψR))]
−e−2cy [−2πcR sin (2π(a + y)− ψR)− c (1 + cR cos (2π(a + y)− ψR))] ≤ 0

Writing C1 = cos (2πa− ψR), S1 = sin (2πa− ψR), this inequality is equivalent
to

cRC1

[(
1 + e−2cy

)
2π sin(2πy)− (

1− e−2cy
)
c cos(2πy)

]
+cRS1

[− (
1− e−2cy

)
2π cos(2πy)− (

1 + e−2cy
)
c sin(2πy)

]
≤ c

(
1− e−2cy

)

for y ≥ 0. Setting

A1(c, y) := coth(cy)2π sin(2πy)− c cos(2πy)
B1(c, y) := 2π cos(2πy) + coth(cy)c sin(2πy)

gives, for y > 0,
cR (C1A1(c, y)− S1B1(c, y)) ≤ c

The expression on the left (given C1, S1 = cos (2πa− ψR) , sin (2πa− ψR)) has,
for y > 0, the precise upper bound over all a:

|cR|
√

A1(c, y)2 + B1(c, y)2 ≤ c

That is, for each y > 0, the left side is simply the amplitude at y as a varies
of the preceding expression and will be attained for infinitely many values of
a. Hence the inequality is necessary and sufficient to insure that the preceding
inequalities are maintained at each y > 0. It can be rewritten as

(
cos(2πy)2 + coth(cy)2 sin(2πy)2

) (
4π2 + c2

)
cR

2 ≤ c2 (127)

for y > 0.
CLAIM. f(y):= cos(2πy)2 + coth(cy)2 sin(2πy)2 ≤ 1 + 4π2

c2 for y ≥ 0.
PROOF. Note f(0) = 1 + 4π2

c2 and f(y) = 1 + (csch(cy) sin(2πy))2. Consider
g(y) := csch(cy) sin(2πy) for y > 0 and notice

g′(y) = sinh(cy)(2π cos(2πy))−sin(2πy)c cosh(cy)
sinh(cy)2

= (positive term)(tanh(cy)(2π cos(2πy))− sin(2πy)c

Hence critical points satisfy tanh(cy) = tan(2πy) c
2π . That is, at critical points,

csch(cy)2 =
1− tanh(cy)2

tanh(cy)2
=

1− tan(2πy)2
(

c
2π

)2

tan(2πy)2
(

c
2π

)2
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in which case

f(y) = 1 + csch(cy)2 sin(2πy)2 = cos(2πy)2
(

1 +
4π2

c2

)

Hence f(y) ≤ 1 + 4π2

c2 for y ≥ 0. The claim is proved.
Now observe that (127) implies the bound

c2
R ≤

(
c2

4π2 + c2

)2

which is (55), and conversely, the claim shows that this bound implies that (127)
holds. Thus (55) characterizes the parameter range for balanced Gabor weights
of order 1.
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Figure Captions for Figures 13 - 16.

Figure 13. Log-log plot of Fig. 3. Left panels illustrate orientation max-
response functions (in degrees) and right panels plot spatial frequency max-
response functions for simple balanced Gabor receptive field functions as they
vary with carrier spatial phase: 0 deg (cosine-type, dashed), 45 deg (mixed-type,
dotted) and 90 deg (sine-type, solid). Response curves for γR = 0.75, 1.5, 3.0,
6.0 are illustrated. Note that as exponent γR increases max-response curves
become independent of carrier spatial phase φR and that sine-type fields always
give larger responses than cosine-type fields with corresponding parameters.
The cosine-type spatial frequency max-response matches the Fourier transform
of Fig. 2 (differing only by a scale factor).

Figure 14. Log-log plot of Fig. 6. Four pairs of plots showing orientation
max-response functions in degrees (left) and spatial frequency max-response
functions (right) for nonsimple balanced Gabor receptive field functions as they
vary with cR for four exponents, γR = 0.75, 1.5, 3.0, 6.0 (with ψR = 0), where
cR = 0 (simple balanced Gabor, dashed) and cR = ±γ2

R/
(
γ2

R + 4π2
)
, corre-

sponding to the max (solid) and min (dotted) boundary values of this coeffi-
cient. For each value of cR there is plotted a triplet of curves corresponding
to receptive field phase, φR = 0 deg (cosine-type), 45 deg (mixed-type) and 90
deg (sine-type). Note that as γR increases the dependence of both orientation
and spatial frequency response on receptive field phase φR, (holding cR fixed)
steadily decreases, becoming virtually independent of receptive field phase φR at
γR = 6.0. For each value of γR, the cosine-type spatial frequency max-response
function matches the Fourier transform of Fig. 5 (differing only by a scale fac-
tor). In particular, the plot for γR = 6.0 matches the corresponding plot for
Fig. 5 because virtually no variation with carrier phase occurs here.

Figure 15. Log-log plot of Fig. 9. Four pairs of plots showing orientation
max-response functions in degrees (left) and spatial frequency max-response
functions (right) for nonsimple balanced Gabor receptive field functions as they
vary with cR for four exponents, γR = 0.75, 1.5, 3.0, 6.0 (with ψR = π/2), where
cR = 0 (simple balanced Gabor, dashed) and cR = ±γ2

R/
(
γ2

R + 4π2
)
, corre-

sponding to the max (solid) and min (dotted) boundary values of this coeffi-
cient. For each value of cR there is plotted a triplet of curves corresponding
to receptive field phase, φR = 0 deg (cosine-type), 45 deg (mixed-type) and 90
deg (sine-type). Note that as γR increases the dependence of both orientation
and spatial frequency response on receptive field phase φR (holding cR fixed)
steadily decreases, becoming virtually independent of receptive field phase φR at
γR = 6.0. For each value of γR, the cosine-type spatial frequency max-response
function matches the Fourier transform of Fig. 7 (differing only by a scale fac-
tor). In particular, the plot for γR = 6.0 matches the corresponding plot for
Fig. 7 because virtually no variation with carrier phase occurs here.

Figure 16. Log-log plot of Fig. 12. Four pairs of plots showing orientation
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max-response functions in degrees (left) and spatial frequency max-response
functions (right) for bandlimited Bessel receptive field functions as they vary
with sR = 1.0, 0.85, 0.7, 0.5, and νR = 2.0 (dotted), 3.5 (dashed), and 5.0 (solid).
Unlike balanced Gabor receptive field functions, the max-response of bandlim-
ited receptive field functions is independent of the receptive field phase φR. As
support parameter sR values decrease the receptive field function narrows in
effective bandwidth. For a particular support parameter value, as the order of
the Bessel weight νR increases the receptive field function narrows in effective
bandwidth.
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