LIBRARY CATALOGUE SLIPS.

United States. *Department of the interior. (U. S. geological survey.)*

Department of the interior | — | Monographs | of the | United States geological survey | Volume XXV | [Seal of the department] | Washington | government printing office | 1895

Second title: United States geological survey | Charles D. Walcott, director | — | The | glacial lake Agassiz | by | Warren Upham | [Vignette] | Washington | government printing office | 1895

4°. xxiv, 658 pp. 38 pl.

Upham (Warren).

4°. xxiv, 658 pp. 38 pl.

[UNITED STATES. *Department of the interior. (U. S. geological survey.)* Monograph XXV.]

4°. xxiv, 658 pp. 38 pl.

[UNITED STATES. *Department of the interior. (U. S. geological survey.)* Monograph XXV.]

Title for subject entry.
ADVERTISEMENT.

[Monograph XXV.]

The publications of the United States Geological Survey are issued in accordance with the statute approved March 3, 1870, which declares that—

"The publications of the Geological Survey shall consist of the annual report of operations, geological and economic maps illustrating the resources and classification of the lands, and reports upon general and economic geology and paleontology. The annual report of operations of the Geological Survey shall accompany the annual report of the Secretary of the Interior. All special memoirs and reports of said Survey shall be issued in uniform quarto series if deemed necessary by the Director, but otherwise in ordinary octavo. Three thousand copies of each shall be published for scientific exchanges and for sale at the price of publication; and all literary and cartographic materials received in exchange shall be the property of the United States and form a part of the library of the organization; and the money resulting from the sale of such publications shall be covered into the Treasury of the United States."

The following joint resolution, referring to all government publications, was passed by Congress July 7, 1882:

"That whenever any document or report shall be ordered printed by Congress, there shall be printed, in addition to the number in each case stated, the 'usual number' (1,900) of copies for binding and distribution among those entitled to receive them."

Except in those cases in which an extra number of any publication has been supplied to the Survey by special resolution of Congress or has been ordered by the Secretary of the Interior, this office has no copies for gratuitous distribution.

ANNUAL REPORTS.

ADVERTISEMET.

MONOGRAPHS.

I. Lake Bonneville, by Grove Karl Gilbert. 1890. 4°. xx, 438 pp. 51 pl. 1 map. Price $1.50.

V. The Copper-Bearing Rocks of Lake Superior, by Roland Duer Irving. 1883. 4°. xvi, 464 pp. 15 l. 29 pl. and maps. Price $1.50.

VI. Contributions to the Knowledge of the Older Mesozoic Flora of Virginia, by William Morris Fontaine. 1883. 4°. xi, 144 pp. 54 l. 54 pl. Price $1.65.

XI. Geological History of Lake Lahontan, a Quaternary Lake of Northwestern Nevada, by Israel Capron. 1886. 4°. xiv, 288 pp. 48 pl. and maps. Price $1.75.

XIII. Geology of the Quicksilver Deposits of the Pacific Slope, with atlas, by George F. Becker. 1886. 4°. xiv, 480 pp. 7 pl. and atlas of 14 sheets folio. Price $2.00.

XX. Geology of the Eureka District, Nevada, with an atlas, by Arnold Hugue. 1892. 4°. xvii, 419 pp. 9 pl. Price $5.25.

XXII. A Manual of Topographic Methods, by Henry Gannett, chief topographer. 1893. 4°. xiv, 300 pp. 18 pl. Price $1.00.

XXVI. Flora of the Amboy Clays, by John Strong Newberry; a posthumous work, edited by Arthur Hollick.

In preparation:

—The Geology of Franklin, Hampshire, and Hampden counties, Massachusetts, by Benjamin Kendall Emerson.
—Sauropoda, by O. C. Marsh.
—Stegosauria, by O. C. Marsh.
—Brontotheriidae, by O. C. Marsh.

BULLETINS.

2. Gold and Silver Conversion Tables, giving the coining values of troy ounces of fine metal, etc., computed by Albert Williams, jr. 1885. 8°. 8 pp. Price 5 cents.

3. On the Fossil Faunas of the Upper Devonian, along the meridian of 76° 30', from Tompkins County, N. Y., to Bradford County, Pa., by Henry S. Williams. 1884. 8°. 36 pp. Price 5 cents.

ADVERTISEMENI.

7. Mapoteca Geologica Americana. A Catalogue of Geological Maps of America (North and
South), 1752-1881, in geographic and chronologic order, by Jules Marcou and John Belknap Marcou.
9. A report of work done in the Washington Laboratory during the fiscal year 1883-84, by F. W.
Clarke, chief chemist; T. M. Chatard, assistant chemist. 1884. 8°. 49 pp. Price 5 cents.
1884. 8°. 74 pp. 10 pl. Price 5 cents.
11. On the Quaternary and Recent Mollusca of the Great Basin; with Descriptions of New
Forms, by R. Ellsworth Call. Introduced by a sketch of the Quaternary Lakes of the Great Basin,
3 pl. Price 5 cents.
13. Boundaries of the United States and of the several States and Territories, with a Historical
33 pp. Price 5 cents.
80 pp. 3 pl. Price 5 cents.
17. On the Development of Crystallization in the Igneous Rocks of Washoe, Nevada, with Notes
cents.
18. On Marine Eocene, Fresh-water Miocene, and other Fossil Mollusca of Western North America,
by Charles A. White. 1885. 8°. 26 pp. 3 pl. Price 5 cents.
1885. 8°. 114 pp. 1 pl. Price 10 cents.
21. The Lignites of the Great Sioux Reservation; a report on the Region between the Grand
and Missouri Rivers, by Bailey Willis. 1885. 8°. 16 pp. 5 pl. Price 5 cents.
Price 5 cents.
23. Observations on the Junction between the Eastern Sandstone and the Kewanaw Series on
Keweenaw Point, Lake Superior, by R. D. Irving and T. C. Chamberlin. 1885. 8°. 121 pp. 17 pl.
Price 15 cents.
24. List of Marine Mollusca, comprising the Quaternary fossils and recent forms from American
Localities between Cape Hatteras and Cape Roque, including the Bermudas, by William Healey Dall.
25. The Present Technical Condition of the Steel Industry of the United States, by Phineas
27. Report of work done in the Division of Chemistry and Physics, mainly during the fiscal year
28. The Gaboles and Associated Hornblende Rocks occurring in the Neighborhood of Baltimore,
Md., by George Huntington Williams. 1886. 8°. 78 pp. 4 pl. Price 10 cents.
8°. 41 pp. 4 pl. Price 5 cents.
30. Second Contribution to the Studies on the Cambrian Faunas of North America, by Charles
31. Systematic Review of our Present Knowledge of Fossil Insects, including Myriapods and
32. Lists and Analyses of the Mineral Springs of the United States; a Preliminary Study, by
34. On the Relation of the Laramie Molluscan Fauna to that of the succeeding Fresh-water Eocene
and other groups, by Charles A. White. 1886. 8°. 54 pp. 5 pl. Price 10 cents.
84 pp. 1 pl. Price 5 cents.
40. Changes in River Courses in Washington Territory due to Glaciation, by Bailey Willis. 1887.
8°. 10 pp. 4 pl. Price 5 cents.
41. On the Fossil Faunas of the Upper Devonian—the Genesee Section, New York, by Henry S.
42. Report of work done in the Division of Chemistry and Physics, mainly during the fiscal year
47. Analyses of Waters of the Yellowstone National Park, with an Account of the Methods of Analysis employed, by Frank Austin Gooch and James Edward Whittfield. 1888. 8°. 84 pp. Price 10 cents.
55. Report of work done in the Division of Chemistry and Physics, mainly during the fiscal year 1886-87, by Frank Wigglesworth Clarke, chief chemist. 1889. 8°. 96 pp. Price 10 cents.
56. Fossil Wood and Lignite of the Potomac Formation, by Frank Hall Knowltton. 1889. 8°. 72 pp. 7 pl. Price 10 cents.
59. The Gabbros and Associated Rocks in Delaware, by Frederick D. Chester. 1890. 8°. 45 pp. 1 pl. Price 10 cents.
60. Report of work done in the Division of Chemistry and Physics, mainly during the fiscal year 1887-88, by F. W. Clarke, chief chemist. 1890. 8°. 174 pp. Price 15 cents.
64. A report on work done in the Division of Chemistry and Physics, mainly during the fiscal year 1888-89, by F. W. Clarke, chief chemist. 1890. 8°. 90 pp. Price 10 cents.
66. On a Group of Volcanic Rocks from the Teton Mountains, New Mexico, and on the occurrence of Primary Quartz in certain Basalts, by Joseph Paxson Siddings. 1891. 8°. 34 pp. Price 5 cents.
71. Index to the Known Fossil Insects of the World, including Myriapods and Arachnids, by Samuel Howard Scudder. 1891. 8°. 744 pp. Price 50 cents.
73. The Viscosity of Solids, by Carl Barus. 1891. 8°. xii, 129 pp. 6 pl. Price 15 cents.
ADVERTISEMET.

77. The Texan Permian and its Mesozoic types of Fossils, by Charles A. White. 1891. 8°. 51.
78. A report of work done in the Division of Chemistry and Physics, mainly during the fiscal
79. A Late Volcanic Eruption in Northern California and its peculiar lavas, by J. S. Diller.
279 pp. Price 20 cents.
Price 25 cents.
82. Correlation papers—Cretaceous, by Charles A. White. 1891. 8°. 773 pp. 3 pl. Price 20
cents.
15 cents.
84. Correlation papers—Neocene, by W. H. Dall and G. D. Harris. 1892. 8°. 349 pp. 3 pl.
Price 25 cents.
Price 25 cents.
Price 25 cents.
87. A report of work done in the Division of Chemistry and Physics, mainly during the fiscal
year 1890-'91. F. W. Clarke, chief chemist. 1892. 8°. 77 pp. Price 10 cents.
Price 10 cents.
90. Some Insects of special interest from Florissant, Colorado, and other points in the Tertiaries
of Colorado and Utah, by Samuel Hubbard Scudder. 1892. 8°. 33 pp. 3 pl. Price 5 cents.
Price 5 cents.
Price 20 cents.
95. Flora of the Outlying Carboniferous Basins of Southwestern Missouri, by David White.
1893. 8°. 130 pp. 5 pl. Price 15 cents.
Price 10 cents.
97. A Catalogue and Bibliography of North American Mesozoic Invertebrata, by Cornelius
98. High Temperature Work in Igneous Fusion and Ebulbition, chiefly in relation to pressure,
by Carl Barns. 1893. 8°. 57 pp. 9 pl. Price 10 cents.
99. The Glaciation of the Yellowstone Valley northern of the Park, by Walter Harvey Weed.
1893. 8°. 41 pp. 4 pl. Price 5 cents.
100. The Laramie and the overlying Livingstone Formation in Montana, by Walter Harvey
101. The Colorado Formation and its Invertebrate Fauna, by T. W. Stanton. 1893. 8°. 288
pp. 45 pl. Price 20 cents.
102. The Trap Dikes of Lake Champlain Valley and the Eastern Adirondacks, by James Furman
Kemp.
104. The Erupitive and Sedimentary Rocks on Pigeon Point, Mitusaca, and their contact pheno-
105. The Paleozoic Section in the vicinity of Three Forks, Montana, by Albert Charles Peale.
1893. 8°. 56 pp. 6 pl. Price 10 cents.
106. Geology of the Big Stone Gap Coal Fields of Virginia and Kentucky, by Marius R. Camp-
cents.
108. A report of work done in the Division of Chemistry during the fiscal years 1891-'92 and
5 cents.
15 cents.
cents.
VI

ADVERTISEMENT.

In press:

132. A Mineralogical Lexicon, of Franklin, Hampshre, and Hampden counties, Massachusetts, by Benjamin Kendall Emerson.

135. The Disseminated Lead Ores of Southeastern Missouri, by Arthur Winslow.

In preparation:

140. Geology of the Fort Riley Military Reservation, Kansas, by Robert Hay.

STATISTICAL PAPERS.

Mineral Resources of the United States [1882], by Albert Williams, jr. 1883. 8vo. xvii, 813 pp. Price 50 cents.

Mineral Resources of the United States, 1883 and 1884, by Albert Williams, jr. 1885. 8vo. xiv, 1016 pp. Price 60 cents.

The money received from the sale of these publications is deposited in the Treasury, and the Secretary of the Department declines to receive bank checks, drafts, or postage-stamps; all remittances, therefore, must be by post-office money order, made payable to the Chief Clerk of the U. S. Geological Survey, or in currency for the exact amount. Correspondence relating to the publications of the Survey should be addressed to the Director of the United States Geological Survey, Washington, D. C.
CHANNEL OF THE RIVER WARREN, THE OUTLET OF LAKE AGASSIZ.

Looking southeast, over the south end of Lake Traverse and the town of Browns Valley, to Big Stone Lake at a distance of 6 miles.
DEPARTMENT OF THE INTERIOR

MONOGRAPHS

OF THE

UNITED STATES GEOLOGICAL SURVEY

VOLUME XXV

WASHINGTON
GOVERNMENT PRINTING OFFICE
1896
UNITED STATES GEOLOGICAL SURVEY
CHARLES D. WALCOTT, DIRECTOR

THE

GLACIAL LAKE AGASSIZ

BY

WARREN UPHAM 1850-

WASHINGTON
GOVERNMENT PRINTING OFFICE
1895

53669
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LETTER OF TRANSMITTAL</td>
<td>xvii</td>
</tr>
<tr>
<td>PREFACE</td>
<td>xix</td>
</tr>
<tr>
<td>ABSTRACT OF VOLUME</td>
<td>xxi</td>
</tr>
<tr>
<td>CHAPTER I.—INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>Basin of the Red River of the North and of Lake Winnipeg</td>
<td>1</td>
</tr>
<tr>
<td>The Glacial Lake Agassiz</td>
<td>2</td>
</tr>
<tr>
<td>Relationship to the ice-sheet</td>
<td>3</td>
</tr>
<tr>
<td>Early observations of Lake Agassiz</td>
<td>6</td>
</tr>
<tr>
<td>Work reported in this monograph</td>
<td>7</td>
</tr>
<tr>
<td>CHAPTER II.—TOPOGRAPHY OF THE BASIN OF LAKE AGASSIZ</td>
<td>14</td>
</tr>
<tr>
<td>Outlet, bed, and shores of Lake Agassiz</td>
<td></td>
</tr>
<tr>
<td>River Warren</td>
<td>15</td>
</tr>
<tr>
<td>The Red River Valley</td>
<td>19</td>
</tr>
<tr>
<td>Shore-lines</td>
<td>26</td>
</tr>
<tr>
<td>Deltas</td>
<td>27</td>
</tr>
<tr>
<td>Dunes</td>
<td>28</td>
</tr>
<tr>
<td>Wooded region of northern Minnesota and of Manitoba and Keewatin, partly covered by this lake</td>
<td>29</td>
</tr>
<tr>
<td>Country bordering Lake Agassiz on the east</td>
<td>30</td>
</tr>
<tr>
<td>Giants Range</td>
<td>31</td>
</tr>
<tr>
<td>Mesabi Range</td>
<td>31</td>
</tr>
<tr>
<td>Mesabi and Itasca moraines</td>
<td>32</td>
</tr>
<tr>
<td>Leaf Hills</td>
<td>33</td>
</tr>
<tr>
<td>Country west of Lake Agassiz</td>
<td>34</td>
</tr>
<tr>
<td>The Coteau des Prairies</td>
<td>36</td>
</tr>
<tr>
<td>Ascent from the Red River Valley in North Dakota</td>
<td>39</td>
</tr>
<tr>
<td>The Manitoba escarpment</td>
<td>40</td>
</tr>
<tr>
<td>Pembina Mountain</td>
<td>40</td>
</tr>
<tr>
<td>Tiger Hills</td>
<td>42</td>
</tr>
<tr>
<td>Riding and Duck mountains</td>
<td>42</td>
</tr>
<tr>
<td>Porcupine and Pasquia hills</td>
<td>43</td>
</tr>
<tr>
<td>Great Bear Hills</td>
<td>44</td>
</tr>
<tr>
<td>Forest and prairie</td>
<td>44</td>
</tr>
<tr>
<td>Existing lakes within the area of Lake Agassiz</td>
<td></td>
</tr>
<tr>
<td>Lake Winnipeg</td>
<td>46</td>
</tr>
<tr>
<td>Lakes Manitoba and Winnipegosis</td>
<td>48</td>
</tr>
<tr>
<td>Rainy Lake</td>
<td>49</td>
</tr>
<tr>
<td>Lake of the Woods</td>
<td>49</td>
</tr>
<tr>
<td>Red Lake</td>
<td>49</td>
</tr>
</tbody>
</table>
CONTENTS.

CHAPTER II.—TOPOGRAPHY OF THE BASIN OF LAKE AGASSIZ—Continued.

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rivers tributary to Lake Agassiz and draining its area</td>
<td>50</td>
</tr>
<tr>
<td>Rainy and Winnipeg rivers</td>
<td>50</td>
</tr>
<tr>
<td>Red Lake River</td>
<td>52</td>
</tr>
<tr>
<td>Red River</td>
<td>54</td>
</tr>
<tr>
<td>Sheyenne River</td>
<td>56</td>
</tr>
<tr>
<td>Lakes Valley</td>
<td>57</td>
</tr>
<tr>
<td>Pembina River</td>
<td>57</td>
</tr>
<tr>
<td>Assiniboine River</td>
<td>58</td>
</tr>
<tr>
<td>Qu'Appelle and Souris rivers</td>
<td>59</td>
</tr>
<tr>
<td>Little Saskatchewan or Fairford River</td>
<td>61</td>
</tr>
<tr>
<td>Saskatchewan River</td>
<td>61</td>
</tr>
<tr>
<td>Smaller tributaries of Lake Winnipeg</td>
<td>62</td>
</tr>
<tr>
<td>Nelson River</td>
<td>62</td>
</tr>
</tbody>
</table>

Extension of the basin of Lake Agassiz by glacial lakes outflowing to it from the region of the Peace and Athabasca rivers. 63

CHAPTER III.—GEOLOGIC FORMATIONS UNDERLYING THE DRIFT.

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archean formations</td>
<td>65</td>
</tr>
<tr>
<td>The Archean area in Minnesota</td>
<td>66</td>
</tr>
<tr>
<td>Vicinity of the Lake of the Woods, Rainy Lake, and northward</td>
<td>67</td>
</tr>
<tr>
<td>Boundary of the Archean toward the west</td>
<td>67</td>
</tr>
<tr>
<td>Lower Silurian formations</td>
<td>68</td>
</tr>
<tr>
<td>Outcrops on Lake Winnipeg</td>
<td>69</td>
</tr>
<tr>
<td>East Selkirk</td>
<td>70</td>
</tr>
<tr>
<td>Lower Fort Garry</td>
<td>71</td>
</tr>
<tr>
<td>Stony Mountain</td>
<td>71</td>
</tr>
<tr>
<td>Little Stony Mountain</td>
<td>72</td>
</tr>
<tr>
<td>Stonewall</td>
<td>72</td>
</tr>
<tr>
<td>Upper Silurian and Devonian formations</td>
<td>72</td>
</tr>
<tr>
<td>Sections of artesian wells in Paleozoic strata</td>
<td>74</td>
</tr>
<tr>
<td>Well at Humboldt, Minn</td>
<td>74</td>
</tr>
<tr>
<td>Well at Grafton, N. Dak</td>
<td>77</td>
</tr>
<tr>
<td>Well at Rosenfeld, Manitoba</td>
<td>78</td>
</tr>
<tr>
<td>Well at Morden, Manitoba</td>
<td>81</td>
</tr>
<tr>
<td>Cretaceous formations</td>
<td>81</td>
</tr>
<tr>
<td>Marine series of the Upper Missouri</td>
<td>81</td>
</tr>
<tr>
<td>In the South Saskatchewan basin</td>
<td>82</td>
</tr>
<tr>
<td>Along the Manitoba escarpment</td>
<td>83</td>
</tr>
<tr>
<td>The brackish- and fresh-water Laramie formation</td>
<td>84</td>
</tr>
<tr>
<td>The western plains a lacustrine and land area since the early part of the Laramie epoch</td>
<td>85</td>
</tr>
<tr>
<td>Fort Pierre shales west of Lake Agassiz</td>
<td>86</td>
</tr>
<tr>
<td>Southwestern Minnesota and the Coteau des Prairies</td>
<td>86</td>
</tr>
<tr>
<td>Along the Sheyenne River</td>
<td>91</td>
</tr>
<tr>
<td>In the escarpment and plateau of Pembina Mountain</td>
<td>93</td>
</tr>
<tr>
<td>In western Manitoba and Assiniboia</td>
<td>97</td>
</tr>
<tr>
<td>Former extent of Cretaceous beds eastward on the area of Lake Agassiz</td>
<td>100</td>
</tr>
</tbody>
</table>
CONTENTS.

CHAPTER V.—HISTORY OF LAKE AGASSIZ—Continued.

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evidences of glacial lakes—Continued.</td>
<td></td>
</tr>
<tr>
<td>Beaches</td>
<td>199</td>
</tr>
<tr>
<td>Deltas</td>
<td>200</td>
</tr>
<tr>
<td>Lacustrine sediments</td>
<td>201</td>
</tr>
<tr>
<td>Principal glacial lakes of the northern United States and of Canada.</td>
<td>202</td>
</tr>
<tr>
<td>New England, Quebec, the eastern provinces, the Northeast Territory, and Labrador</td>
<td>202</td>
</tr>
<tr>
<td>Basins of the Laurentian lakes and of Hudson Bay</td>
<td>203</td>
</tr>
<tr>
<td>Basins of the Saskatchewan and the Red River of the North</td>
<td>205</td>
</tr>
<tr>
<td>British Columbia, Athabasca, and the Northwest Territory</td>
<td>206</td>
</tr>
<tr>
<td>Extension of Lake Agassiz with the departure of the ice-sheet</td>
<td>208</td>
</tr>
<tr>
<td>Stages of growth shown by moraines</td>
<td>210</td>
</tr>
<tr>
<td>Reduction to the present great lakes of Manitoba</td>
<td>216</td>
</tr>
<tr>
<td>Successive shore-lines of Lake Agassiz</td>
<td>221</td>
</tr>
<tr>
<td>Dependence of the lake levels on the erosion and changes of outlets</td>
<td>222</td>
</tr>
<tr>
<td>Progress of erosion by the River Warren</td>
<td>222</td>
</tr>
<tr>
<td>Later outlets northeastward</td>
<td>226</td>
</tr>
<tr>
<td>Dependence of lake levels on epeirogenic elevation</td>
<td>227</td>
</tr>
<tr>
<td>Depression of the continent shown by coastal submergence</td>
<td>229</td>
</tr>
<tr>
<td>Depression and relevation of the basin of Lake Agassiz shown by differentially uplifted beaches</td>
<td>250</td>
</tr>
<tr>
<td>Improbable hypothesis of an outlet from Lake Agassiz to the Mackenzie River</td>
<td>251</td>
</tr>
<tr>
<td>Probable hypothesis of the discharge from the northeastward outlets being tributary successively to the Mississippi and Hudson rivers</td>
<td>252</td>
</tr>
<tr>
<td>Division of the ice-sheet into parts east and west of Hudson Bay</td>
<td>233</td>
</tr>
<tr>
<td>Amount of differential elevation between Lake Traverse and Gladstone</td>
<td>234</td>
</tr>
<tr>
<td>Alternate stages of elevation and rest</td>
<td>235</td>
</tr>
<tr>
<td>Later and greater inclination of beaches along the base of Riding and Duck mountains</td>
<td>235</td>
</tr>
<tr>
<td>Review of the epeirogenic uplifting</td>
<td>236</td>
</tr>
<tr>
<td>Molluscan fauna of Lake Agassiz</td>
<td>237</td>
</tr>
<tr>
<td>Measurements of time since the Glacial period</td>
<td>238</td>
</tr>
<tr>
<td>Short duration of Lake Agassiz</td>
<td>240</td>
</tr>
<tr>
<td>Comparison with postglacial lakes</td>
<td>240</td>
</tr>
<tr>
<td>Comparison with Lakes Bonneville and Lahontan</td>
<td>241</td>
</tr>
<tr>
<td>Brevity of time required for the formation of terminal moraines</td>
<td>242</td>
</tr>
<tr>
<td>ALTERNATIVE INTERPRETATIONS, BY T. C. CHAMBERLIN</td>
<td></td>
</tr>
<tr>
<td>Volume of water received and discharged by Lake Agassiz</td>
<td>252</td>
</tr>
<tr>
<td>Fluvial deposits in the Red River Valley</td>
<td>253</td>
</tr>
<tr>
<td>Associated glacial lakes</td>
<td></td>
</tr>
<tr>
<td>The Laurentian lakes</td>
<td>254</td>
</tr>
<tr>
<td>Lake Minnesota</td>
<td>255</td>
</tr>
<tr>
<td>Lake Dakota</td>
<td>264</td>
</tr>
<tr>
<td>Lake Souris</td>
<td>266</td>
</tr>
<tr>
<td>Lake Saskatchewan</td>
<td>267</td>
</tr>
<tr>
<td>Glacial lakes of the Peace and Athabasca basins</td>
<td>272</td>
</tr>
</tbody>
</table>
CONTENTS.

CHAPTER VI.—BEACHES AND DELTAS OF THE HERMAN STAGES

The upper or Herman beaches and deltas in Minnesota .. 276
From Lake Traverse east to Herman ... 278
From Herman north to the Red River ... 279
From the Red River north to Muskoda .. 282
Delta of the Buffalo River ... 284
From Muskoda north to the Sand Hill River .. 284
Delta of the Sand Hill River .. 288
Vicinity of Maple Lake .. 289
Eastward to Red Lake and the Big Fork of Rainy River .. 303
Beltrami Island ... 304
The upper or Herman beaches and deltas in North Dakota 306
From Lake Traverse northwest to Milnor ... 306
From Milnor north to Sheldon ... 312
Delta of the Sheyanne River ... 315
From Sheldon north to the Northern Pacific Railroad ... 317
From the Northern Pacific Railroad north to Galesburg ... 322
From Galesburg north to Larimore ... 326
Delta of the Elk Valley ... 333
Shore west of the Elk and Golden valleys .. 337
Beaches and islands east of the Elk and Golden valleys ... 345
From Gardar north to the Tongue River .. 354
Delta of the Pembina River ... 357
The upper or Herman beaches and deltas in Manitoba ... 363
From the international boundary to the vicinity of Neepawa 363
Delta of the Assiniboine River .. 370

CHAPTER VII.—LOWER BEACHES WITH SOUTHWARD OUTFLOW

Beaches of the Norcross stages .. 382
From Lake Traverse to Norcross and Maple Lake, Minnesota 383
Through North Dakota, from Lake Traverse to the international boundary 388
Western Norcross shores in Manitoba .. 393
Beaches of the Tintah stages ... 396
Eastern Tintah shores, from Lake Traverse to Tintah and northward in Minnesota ... 396
Western Tintah shores in North Dakota .. 402
Western Tintah shores in Manitoba ... 404
Beaches of the Campbell stages ... 407
From Lake Traverse and Campbell north to the Tamarack River, in Minnesota 408
Campbell shores in North Dakota ... 414
Campbell shores in western Manitoba ... 422
Beaches of the McCauleyville stages ... 427
Eastern McCauleyville shores in Minnesota ... 428
Western McCauleyville shores in North Dakota ... 434
Western McCauleyville shores in Manitoba ... 439

CHAPTER VIII.—BEACHES FORMED WHEN LAKE AGASSIZ OUTFLOWED NORTHEASTWARD

Beaches of the Blanchard stages .. 443
The Hillsboro beach .. 449
CONTENTS.

CHAPTER VIII.—Beaches formed when Lake Agassiz outflowed northeastward—Cont’d.
Beaches of the Emerado stages .. 454
Beaches of the Ojata stages ... 459
The Gladstone beach .. 462
The Burnside beach ... 465
The Ossowa beach ... 468
The Stonewall beach ... 470
Beaches of the Niverville stages 471

CHAPTER IX.—Changes in the levels of the beaches.
Northward ascent of the western shore-lines 474
Eastward ascent of the former lake levels 483
Rate of ascent greatest toward the north-northeast 485
Changes of levels nearly completed during the existence of Lake Agassiz 486
Causes of the changes of levels 487
Gravitation toward the ice-sheet 488
Changes in the temperature of the earth’s crust 491
Epeirogenic movements apparently dependent on glaciation 492
Discussion of the relationship of the earth’s crust to the interior .. 493
History of the doctrine of crust deformation by the ice-sheet ... 497
Tardiness in the beginning of the changes of levels of the Lake Agassiz basin 498
Pauses in the crustal uplift recorded by the series of beaches 499
Changes in levels of the beaches only a partial measure of the ice weight 500
Review of Pleistocene oscillations of land and sea 501
Preglacial elevation of North America shown by fjords and submarine river valleys 501
Late Glacial or Champlain submergence shown by the fossiliferous marine beds over-lying the till .. 505
Reelevation closely following the departure of the ice-sheet .. 507
Oscillations associated with glaciation in other countries 509
Pleistocene oscillations independent of glaciation 512
Effects of ice accumulation on the sea-level 515
Probable relationship of epeirogenic movements throughout the world to glaciation 516
Epeirogenic movements independent of glaciation often combined with others due to the ice weight and to its removal ... 520
Uplift of the basin of Lake Agassiz apparently attributable wholly to the departure of the ice-sheet .. 521

CHAPTER X.—Artesian and common wells of the Red River Valley
Sources of the artesian waters 523
Fresh water from porous beds of the drift sheet 525
Saline and alkaline water from the Dakota sandstone 526
Relationship to the artesian wells of Devils Lake and the James River Valley 528
Relationship to artesian wells at Tower City and Grafton, N. Dak., Humboldt, Minn., and Rosenfeld, Manitoba .. 535
Analyses of waters from wells, streams, and lakes in the Red River Valley and the adjoining region 536
Use of artesian water for irrigation 545
CONTENTS.

CHAPTER X.—ARTESIAN AND COMMON WELLS OF THE RED RIVER VALLEY—Continued.

Notes of artesian and common wells .. 548
Wells on the area of Lake Agassiz in Minnesota .. 550
Traverse County .. 550
Wilkin County .. 551
Clay County .. 555
Norman County .. 557
Polk County .. 559
Marshall County .. 562
Kittson County .. 564
Wells on the area of Lake Agassiz in North Dakota .. 565
Richland County .. 565
Cass County .. 567
Traill County .. 570
Grand Forks County ... 573
Walsh County .. 574
Pembina County .. 575
Wells on the area of Lake Agassiz in Manitoba .. 576

CHAPTER XI.—AGRICULTURAL AND MINERAL RESOURCES OF THE AREA OF LAKE AGASSIZ

Variety and distribution of the soils .. 583
Climatic conditions ... 582
Rainfall and snowfall .. 582
Fluctuations of lakes and streams .. 584
Temperature .. 588
Winds .. 600
Flora of the basin of the Red River of the North .. 601
Forest trees and shrubs .. 603
Causes of limitation of the forest .. 604
Prairie grasses and flowers ... 606
Development of agriculture .. 610
Wheat and other cereals ... 615
Hay, potatoes, flax, and other crops .. 621
Stock raising and dairying ... 624
Geologic resources .. 625
Gold .. 625
Building stone .. 628
Lime .. 628
Brick .. 627
Salt .. 628
Lignite .. 629
Natural gas .. 631
Water power and manufactures ... 631

APPENDIX A.—COU RSES OF GLACIAL STRE E.T

APPENDIX B.—NOTES OF ABORIGINAL EARTHWORKS WITHIN AND NEAR THE AREA OF LAKE AGASSIZ

INDEX .. 643
Illustrations

Plate I. Brown's Valley, the outlet of Lake Agassiz by the River Warren. (Frontispiece.)

II. Map showing the relationship of Lake Agassiz to the drift-bearing area of North America and to Lakes Bonneville and Lahontan.

III. Map showing the areas of Lake Agassiz and of the upper Laurentian lakes.

IV. Town of Brown's Valley, Minn.

V. Lake Traverse.

VI. Upper Herman beach of Lake Agassiz.

VII. The Lightning's Nest (dunes of the Cheyenne delta).

VIII. The Leaf Hills.

IX. Map with altitudes of Lake Agassiz and adjoining country.

X. Map with altitudes of the southern portion of Lake Agassiz, explored with leveling in Minnesota, North Dakota, and Manitoba.

XI. Map of Rainy Lake and the Lake of the Woods.

XII. Map of Red Lake and its vicinity.

XIII. Map of drainage systems on the area of Lake Agassiz and adjoining country.

XIV. Map of the rock formations underlying the drift on the area of Lake Agassiz.

XV. Sections of wells at Humboldt, Minn., Graffon, N. Dak., and Rosenfeld and Morden, Manitoba.

XVI. Map of the glaciated area of North America.

XVII. Map of the drift deposits on the southern portion of the basin of Lake Agassiz.

XVIII. Map of Devils and Stump lakes.

XIX. Map showing the extent of Lake Agassiz at the times of formation of the Fergus Falls and Leaf Hills moraines.

XX. Map showing the extent of Lake Agassiz at the times of formation of the Itasca and Mesabi moraines.

XXI. Map of the Glacial Lake Souris.

XXII. Map of the southern portion of Lake Agassiz, explored with leveling in Minnesota, North Dakota, and Manitoba, showing the location of Plates XXIII-XXXII.

XXIII. Map of Lakes Traverse and Big Stone, and the shores of Lake Agassiz near its mouth.

XXIV. Map of the eastern shores of Lake Agassiz from Campbell north to Barnesville and its vicinity.

XXV. Map of the eastern beaches and deltas of Lake Agassiz from Muskola north to the Sand Hill River.

XXVI. Map of the eastern shores of Lake Agassiz, in the vicinity of Maple Lake and northward.

XXVII. Map showing the greater part of the Sheyenne delta of Lake Agassiz and contiguous beaches.

Page: XIX
ILLUSTRATIONS.

PLATE XXVIII. Map of the western shores of Lake Agassiz from the vicinity of Wheatland north to Portland and Mayville .. 322

XXIX. Map of the western shores of Lake Agassiz and of the Elk Valley delta, in
Grand Forks County and parts of adjoining counties .. 334

XXX. Map of the western shores of Lake Agassiz and of the Pembina delta, from
Park River north to the international boundary ... 354

XXXI. Map of the western shores of Lake Agassiz from Morden and Thornhill north
to the Assiniboine River ... 364

XXXII. Map of the western shores of Lake Agassiz, in the vicinity of the Canadian
Pacific Railway and north to Orange River .. 368

XXXIII. Map of the delta of the Assiniboine River ... 370

XXXIV. Map of the southern portion of Lake Agassiz, showing its extent in the lower
Campbell stage ... 408

XXXV. Map of the southern portion of Lake Agassiz, showing its extent in the lower
Blanchard stage ... 446

XXXVI. Map of the southern portion of Lake Agassiz, showing its extent in the Gladstone stage .. 462

XXXVII. Map showing the distribution and depths of artesian wells in the Red River
Valley .. 523

XXXVIII. Map of the southern portion of Lake Agassiz, showing areas of forest and
prairie .. 604

FIG. 1. Order of sections in townships of the United States and of Manitoba .. 11
2. Section across the Red River Valley on the latitude of Breckenridge and Wahpeton 22
3. Section across the Red River Valley on the latitude of Moorhead and Fargo 23
4. Section across the Red River Valley from Larimore and Grand Forks to Maple Lake 23
5. Section across the Red River Valley on the international boundary ... 24
6. Typical section across a beach ridge of Lake Agassiz.. 26
7. Eroded terrace marking the shore of Lake Agassiz .. 26
8. Section across the Coteau des Prairies ... 38
9. Map of Birds Hill and its vicinity .. 184
10. Section of Birds Hill .. 185
11. Section across the delta of the Buffalo River .. 290
12. Section across the delta of the Sand Hill River .. 298
13. Section across the delta of the Sheyenne River ... 316
14. Section across the delta of the Elk Valley .. 334
15. Section across the delta of the Pembina River .. 358
16. Section across the delta of the Assiniboine River ... 373
17. Profile of the Campbell escarpment in section 6, Dundee, N. Dak ... 419
18. Profile of the Campbell escarpment 1 mile south of Mountain, N. Dak 420
19. Section across the Campbell embankment, in sections 20 and 21, T. 161, R. 55, N. Dak 421
20. Profile across beaches at and near Barnesville, Minn ... 429
21. Section of the Campbell and McCauleyville beaches, in sections 33 and 34, Liberty, Minn. 431
22. Profile across beaches on the north line of Onstead and Godfrey, Minn., west of Maple
Lake .. 432
23. Profile across beaches at and near Wheatland, N. Dak ... 435
ILLUSTRATIONS.

<table>
<thead>
<tr>
<th>Illustration Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24. Profile across beaches at Hunter, N. Dak., and westward</td>
<td>435</td>
</tr>
<tr>
<td>25. Profile across beaches in the vicinity of Arvilla and Larimore, N. Dak.</td>
<td>436</td>
</tr>
<tr>
<td>26. Profile across beaches at Inkster, N. Dak., and westward</td>
<td>437</td>
</tr>
<tr>
<td>27. Profile across beaches at Park River, N. Dak., and westward</td>
<td>437</td>
</tr>
<tr>
<td>28. Section on the international boundary, south of ranges 6 and 5, Manitoba</td>
<td>439</td>
</tr>
<tr>
<td>29. Section across ranges 6 and 5, Manitoba, 9 to 10 miles north of the international boundary</td>
<td>440</td>
</tr>
<tr>
<td>30. Section on the south side of township 15, ranges 13 and 12, Manitoba, between Arden and Gladstone</td>
<td>441</td>
</tr>
<tr>
<td>31. Diagram indicating the probable relationship of sources of artesian water at Grandin, N. Dak</td>
<td>525</td>
</tr>
<tr>
<td>32. Section across the Red River Valley, showing the water supply of its fresh artesian wells</td>
<td>527</td>
</tr>
<tr>
<td>33. Section from the Rocky Mountains to the Red River Valley, showing the water supply of its saline artesian wells</td>
<td>527</td>
</tr>
<tr>
<td>34. Section showing the series of artesian wells from Devils Lake and Jamestown southward to Yankton and Vermillion</td>
<td>532</td>
</tr>
<tr>
<td>35. Section showing the series of artesian wells from Harold eastward to Huron</td>
<td>532</td>
</tr>
</tbody>
</table>
LETTER OF TRANSMITTAL.

UNIVERSITY OF CHICAGO,
Chicago, Ill., March 8, 1894.

Sir: I have the honor to transmit herewith, for publication as a monograph of the United States Geological Survey, the manuscript of a report on the Glacial Lake Agassiz, by Mr. Warren Upham. I am confident that it will be welcomed by the scientific world as a valuable contribution to the literature of North American glaciology.

Very respectfully,

T. C. CHAMBERLIN,
Geologist in Charge

To the Director United States Geological Survey.

MON XXV—II

xvii
PREFACE.

In my work for the Geological and Natural History Survey of Minnesota, from 1879 to 1885, under the direction of Prof. N. H. Winchell, State geologist, the highest shore-line of Lake Agassiz in that State was mapped through its prairie portion, extending about 175 miles from Lake Traverse eastward to Herman and thence northward to Maple Lake. During this survey Mr. Horace V. Winchell was my efficient assistant as rodman in leveling. The exploration showed that a very large lake occupied the Red River Valley in the closing stage of the Glacial period, when the ice-sheet was being melted away from this district. Terminal moraines of the ice-sheet, forming a series of eleven in consecutive order from south to north, were also explored and mapped in Minnesota; and it was seen that the glacial lake and moraines were intimately related as records of the recession of the ice and the transition from the Pleistocene to the Recent or present geologic period.

It became evident, however, that a satisfactory investigation of the extent and history of Lake Agassiz must comprise both sides of the Red River Valley. The United States Geological Survey therefore undertook the more extended examination of this lake area, which was assigned to me, as a member of the Glacial Division, under the direction of Prof. T. C. Chamberlin, for whose friendly counsel and constant interest in this work I have the pleasure of recording here my great indebtedness. Suggestions derived from the previous work for this Survey by Mr. G. K. Gilbert and Mr. I. C. Russell on other Pleistocene lakes also aided me much in both the field work and the study for preparing this report.

Again, when the shore-lines of Lake Agassiz had been mapped through North Dakota from Lake Traverse to the international boundary, it was found that a comprehensive monograph of this subject could not be presented while the exploration was restricted by a political limit. Hence it
was generously arranged by Director J. W. Powell, of this Survey, and
Director A. R. C. Selwyn, of the Geological and Natural History Survey
of Canada, that my work of mapping the Lake Agassiz shores, with
determination of their heights by leveling, should be continued through
the prairie region of southwestern Manitoba, which was done in the sum-
mer of 1887, the termination of my survey being near the southern end of
Riding Mountain. Important observations of the part of Lake Agassiz
adjoining the international boundary had been previously made by Dr.
George M. Dawson; and during 1887 and subsequent years Mr. J. B.
Tyrrell, of the Canadian Geological Survey, has added much to the
explored extent of the shores of this glacial lake, tracing them northward
along the east side of the Riding and Duck mountains, and noting them in
isolated localities farther north to the Saskatchewan River. My work in
Manitoba being thus supplemented, this monograph is enabled to include
under its descriptions and discussion a continuous extent of nearly 700
miles of the ancient lake border.

The field work on Lake Agassiz for the United States Geological
Survey occupied four summers; and during three of these, in 1885 and
the two following years, I had the very satisfactory assistance of Mr.
Robert H. Young as rodman. The fourth summer of exploration, in 1889,
included no leveling, and was chiefly devoted to tracing the course of
terminal moraines adjacent to the area of Lake Agassiz. With two sum-
ners which I had spent in exploration of this lake while engaged on the
Minnesota Geological Survey, the work here reported comprises the field
observations of six years.

Study, writing, and preparation of maps and illustrations for this
report and three preliminary official publications relating to Lake Agassiz,
which are noticed in Chapter I, have required considerably more time than
was used in the collection of field notes. For so full opportunity to give
to this subject long-continued investigation and to present it in this volume,
my grateful thanks are due and are hereby respectfully tendered to the
Director and to the Geologist in Charge of the glacial investigations of this
Survey.

W. U.
ABSTRACT OF VOLUME.

CHAPTER I: INTRODUCTION.—Lake Agassiz occupied the basin of the Red River of the North and of Lake Winnipeg. Its northern barrier was the retreating ice-sheet of the Glacial period. That a great lake had existed here was recognized by Keating in 1828, and later by Owen, Palliser, Hind, Dawson, Warren, and N. H. Winchell.

It was named in 1879 to commemorate Louis Agassiz, who established the theory that the drift was due to glaciation. Its southward outlet was named the River Warren in 1883. The work here reported comprises explorations performed for the geological surveys of Minnesota, the United States, and Canada. Previous reports and papers relating to Lake Agassiz and its dependence on the waning ice-sheet are noted.

CHAPTER II: TOPOGRAPHY OF THE BASIN OF LAKE AGASSIZ.—The bed of this lake is the flat Red River Valley plain. Its channel of outlet by the River Warren is now occupied by lakes Traverse and Big Stone and the Minnesota River. The shore-lines of Lake Agassiz are commonly marked by beach ridges of gravel and sand a few feet high; less frequently by an eroded escarpment from 10 to 30 feet high. Several large deltas were formed contemporaneously with the highest shore-line. East of Lake Agassiz is a somewhat higher wooded country, on which are the Giants and Meabi ranges and the morainic Leaf Hills. On the west are the Coteau des Prairies and the Manitoba escarpment, the latter comprising the Pembina, Riding, and Duck mountains and the Porcupine and Pasqua hills. Lake Agassiz is now represented by lakes Winnipeg, Manitoba, and Winnipegosis; while Rainy Lake, the Lake of the Woods, and Red Lake lie within its southeastern boundary. Its basin is drained by the Rainy, Winnipeg, Red, Assiniboine, and Saskatchewan rivers, and others of smaller size. For some time, also, Lake Agassiz probably received streams outflowing from glacial lakes in the basins of the Peace and Athabasca rivers. The area of Lake Agassiz was approximately 110,000 square miles, and the country tributary to it was 550,000 to 600,000 square miles. The length of the lake was nearly 700 miles; its maximum width in Manitoba was probably more than 250 miles; and its maximum depth, during its earliest and highest stage, was about 700 feet above the present level of Lake Winnipeg.

CHAPTER III: GEOLOGIC FORMATIONS UNDERLYING THE DRIFT.—The bed rocks of this lacustrine area comprise, in their order from east to west, Archean, Lower and Upper Silurian, Devonian, and Cretaceous formations. Sections of the Paleozoic rocks are known by borings for artesian wells at Humboldt, Minn., Grafton, N. Dak., and Rosenfield and Morden, Manitoba. Cretaceous strata extend from Lake Agassiz westward across the plains to the Rocky Mountains. During the Tertiary era these strata had been greatly denuded, being generally worn down to an almost flat expanse. The vertical amount of the erosion was thousands of feet at the west and hundreds of feet at the east, as shown by mountains and hills that were spared. Later erosion, during an epeirogenic uplift closing the Tertiary and beginning the Quaternary era, removed the eastern part of the Cretaceous beds, and thus formed the broad trough of the Red River Valley and of the Manitoba lake region, which was the basin of Lake Agassiz.
CHAPTER IV: THE GLACIAL PERIOD AND ITS DRIFT DEPOSITS.—The continental ice-sheet attained an area of about 4,000,000 square miles, and had a maximum thickness, in its central portion, of probably 1 to 2 miles. It extended from the Atlantic to the Pacific and from the northern United States to the Arctic Sea, probably enveloping the Rocky Mountains in the region of the Peace River and northward. The closing stage of this glaciation was the time of existence of Lake Agassiz. On the greater part of the lacustrine area the drift is from 100 to 500 feet thick, consisting chiefly of till or bowlder-clay. A series of twelve terminal moraines is found in proceeding from south to north and northeast in Minnesota and North Dakota. The last six of these, named Upper, Fergus Falls, Leaf Hills, Itasca, Mesabi, and Vermilion moraines, were contemporaneous with Lake Agassiz, besides probably others to be traced farther north. Birds Hill, near Winnipeg, a remarkable esker, indicates that much drift was contained in the lower part of the ice-sheet. The deltas of Lake Agassiz were formed chiefly of modified drift, brought by streams from the receding ice. Very little transportation of bowlders and other drift was effected by icebergs or floes on this lake.

CHAPTER V: HISTORY OF LAKE AGASSIZ.—The records of glacial lakes are their outlets across present lines of watersheds; eroded cliffs, beach ridges, and deltas at the levels of the former outlets; and lacustrine sediments in the basin inclosed by the old shores. Lake Agassiz grew from south to north as fast as the ice-sheet receded, forming its series of moraines. The outlet by the River Warren was eroded to a depth of about 50 feet. Afterwards lower outlets were opened toward the northeast. Probably the early northeastward outflow passed along the ice border and through the upper Laurentian lakes to the Mississippi, then to the Hudson River, and later to the much enlarged Gulf of St. Lawrence. Finally the outflow was tributary to Hudson Bay when the ice had melted so far as to admit the sea to that basin. With the uncovering of the course of the Nelson River, Lake Agassiz ceased to be held by the ice barrier, and became Lake Winnipeg. Epeirogenic uplifting of the area of Lake Agassiz, increasing in vertical extent from south to north, gave to its beaches a northward ascent, and caused the several shores of its southern part to become double or multiple as they are traced northward. The molluscan fauna of Lake Agassiz, so far as it has been discovered, consists of five fresh-water species. The amount of the shore erosion of Lake Agassiz and the volume of its beaches, compared with the postglacial erosion and beach deposits of the present Great Lakes, have a ratio approximately as one to ten. The duration of postglacial time is believed to have been from seven to ten thousand years; of Lake Agassiz, probably not more than one thousand years.

CHAPTER VI: BEACHES AND DELTAS OF THE HERMAN STAGES.—These shore deposits are described in detail. The earliest and highest beach, named from Herman, Minn., has been mapped, with determination of its height by leveling, through an extent of about 175 miles in Minnesota, from Lake Traverse east to Herman, and thence north to Maple Lake. In 140 miles, from south to north, this shore-line ascends from 1,050 feet to 1,170 feet, approximately, above the sea. Near Maple Lake four lower beaches, successively about 8, 15, 30, and 45 feet below the highest, were also formed during the time of accumulation of the single Herman beach at the south; and on the west side of the lake in Manitoba the Herman series of beaches is increased to seven. In North Dakota the uppermost Herman shore has a northward ascent of about 180 feet in the distance of 224 miles from Lake Traverse to the international boundary, where its height is 1,290 feet above the sea. At the latitude of Gladstone, in Manitoba, 84 miles farther north, the altitude of 1,315 feet is attained by the second of the Herman shores, which is the highest one extending so far. Six noteworthy deltas were brought into Lake Agassiz, contemporaneously with the formation of the Herman beaches, by streams which were exceptionally supplied with much modified drift by the melting ice-sheet. These are the Buffalo River and Sand Hill River deltas in
ABSTRACT OF VOLUME.

XXIII

Minnesota, the Sheyenne, Elk Valley, and Pembina deltas in North Dakota, and the very large delta of the Assiniboine in Manitoba.

CHAPTER VII: LOWER BEACHES WITH SOUTHWARD OUTFLOW.—Below the Herman shore the southern part of Lake Agassiz has four shore-lines, which receive names from Norcross, Tintah, Campbell, and McCauleyville, in Minnesota. Portions of these shores have been traced with leveling and are here described. In the northern part of the area of my exploration the Norcross and Tintah beaches are double, and the Campbell and McCauleyville beaches are each represented by three. With the seven Herman shores recorded in Manitoba, Lake Agassiz had thus at the north seventeen stages marked by successive beaches during its time of southward discharge by the River Warren. The upper Norcross shore rises from about 1,630 feet above the sea at Lake Traverse to 1,215 feet on the latitude of Gladstone. In the same distance the upper Tintah shore rises from 1,015 to 1,150 feet; the upper Campbell shore, from 980 to 1,080 feet; and the upper and lower McCauleyville shores, respectively, from 970 to 1,065 feet, and from 980 to 1,012 feet, approximately, above the present sea-level.

CHAPTER VIII: BEACHES FORMED WHEN LAKE AGASSIZ OUTFLOWED NORTHEASTWARD.—Fourteen stages of Lake Agassiz are shown by beaches that were formed after the lake had fallen below its southern outlet. These comprise, in descending order, three successive Blanchard beaches, passing near Blanchard, N. Dak.; the Hillaboro beach, and two Emerado and two Ojata beaches, named likewise from towns in North Dakota; and the Gladstone, Burnside, Ossowa, Stonewall, and Niverville beaches, the last being double northward, named from places in Manitoba. These shore-lines are as definitely marked by beach ridges, and occasionally by low eroded escarpments, as the series belonging to the time of the River Warren. Their northward ascent is gradually diminished, until in the latest-formed Niverville beach it is only about 20 feet in the distance of more than 200 miles from near Winnipeg and the southern part of Lake Winnipeg northward to the mouth of the Saskatchewan.

CHAPTER IX: CHANGES IN THE LEVELS OF THE BEACHES.—The rate of northward ascent of the originally level highest beach, within the area of my leveling, varies from about 6 inches per mile near its southern end to about 1 foot per mile along the greater part of its extent to southern Manitoba. On the east side of the Red River Valley the old shores are higher than on its west side, the rate of ascent from west to east being about half as much as from south to north. The direction of maximum ascent of the planes of the former lake levels is therefore toward the north-northeast. Farther north several beaches of the series mapped by Tyrrell along the bases of the Riding and Duck mountains have a northward rise of 2 to 3 feet per mile. These changes of level were in progress and were nearly completed during the existence of Lake Agassiz, as is shown by the gradual diminution in the northward ascent of the successive lower beaches, until the latest and lowest differs only very slightly from perfect horizontality. Gravitation of Lake Agassiz toward the ice-sheet accounts for a small part of the present inclination of the beaches. Changes in the temperature of the earth's crust due to the Glacial period and its termination produced a still smaller effect, but this tended to give the opposite slope, or a descent toward the north. Upward epeirogenic movements, resulting from the unburdening of the land by the departure of the ice-sheet, were the chief element in the causes of the differential changes in the height of this basin. Flow of the plastic inner part of the earth's mass, restoring isostasy, uplifted first the southern half of the area of Lake Agassiz, from Lake Traverse to Gladstone; next it raised the northern half of the lake area, while the region at the south was almost at rest; and finally, during the Recent epoch, after the whole basin of Lake Agassiz was passed by the wave-like permanent uplift, it has been elevating the basin of Hudson Bay, where the movement still continues. Pleistocene oscillations of the land in many other parts
ABSTRACT OF VOLUME.

of the world have been independent of glaciation, or these have been combined with movements due to the accumulation of ice-sheets and to their removal; but the uplifting of the basins of Lake Agassiz and Hudson Bay is apparently attributable wholly to the departure of the ice-sheet.

Chapter X: Artesian and Common Wells of the Red River Valley.—Hundreds of artesian wells, from 40 to 300 feet deep, have been obtained in the drift formations of the Red River Valley plain, the axial lowest part of the Lake Agassiz basin. South of Crookston and Blanchard they yield fresh water; but northward, to the border of Manitoba, their water is usually saline and alkaline. The fresh water is derived from rainfall on the higher land adjoining this valley. The saline matter is brought mostly by water flowing through the Dakota sandstone and issuing into the drift of the Red River Valley upon tracts where this sandstone is the next underlying formation. The saline and alkaline wells in the drift of this district are thus supplied, like the deeper artesian wells penetrating the Cretaceous strata at Devils Lake and in the James River Valley, from rainfall on the flanks of the Black Hills and Rocky Mountains. Analyses and experience show that the saline and alkaline water is not suitable for use in irrigation. Sections of many artesian and common wells on the area of Lake Agassiz are reported, with notes of the characters of their water supply.

Chapter XI: Agricultural and Material Resources of the Area of Lake Agassiz.—The fertility of the soil and the climatic conditions of the prairie portion of this area make agriculture its leading industry and source of wealth. Previous to its occupation by the present farming population the rich pasturage and countless herds of buffaloes betokened the value of the land for the cultivation of grain and for stock-raising. The annual wheat product of the six counties in Minnesota and six in North Dakota lying mainly within the Red River Valley is about 66,000,000 bushels, or on an average 285 bushels for each of the 161,049 people enumerated by the census of 1890 in these counties. Other crops which receive considerable attention are oats, barley, hay, potatoes, and flax. The tendency is toward diversified farming, with stock-raising and dairying. Magnesian limestones, which outcrop near Winnipeg, are used for building and the manufacture of lime. Clay of the best quality for brickmaking is found along all the Red River Valley, and this business is carried on in many places. The brines and natural gas occasionally supplied by wells, and the lignite occurring in very thin layers in Cretaceous formations of this region, and hence sparsely distributed in fragments through the drift, are not of economic importance. Many streams within the area of Lake Agassiz, especially in the northeastern wooded country, have valuable water powers, which are beginning to be utilized for mills and manufactures.