ND262, ND263, and ND264: New Parental Lines of Corn

H.Z. Cross

Corn (Zea mays L.) yields are lower in North Dakota than in the U.S. Corn Belt due to a combination of factors including lower temperatures, a shorter growing season, irregular precipitation, and soil moisture deficiencies during the growing season. Profitable corn production requires that growers apply the most advanced management practices and select hybrids best suited to the environment and management practices. Much of the improvement in corn yields in the U.S. Corn Belt has been attributed to the increased use of nitrogen fertilizer and higher planting densities (Sundquist et al., 1983). These modern corn production practices may require a different plant type to maximize any advantage associated with these practices in the Northern Great Plains.

Several studies conducted in the Northern Great Plains and northern Corn Belt have confirmed the importance of maturity and plant density for maximizing grain yields. As early as 1930, Olson (1930) reported that an early flint varieity gave increased yields when planting rates were increased from 8,000 to 20,000 plants per acre in an experiment conducted at Fargo. Wiidakas (1958) found that early maturing varieties planted at 20,000 plants per acre at Fargo produced higher grain yields than late maturing varieties. Carson et al. (1966) evaluated the grain yield responses of three northern Corn Belt hybrids (early, medium, and late) at three plant densities (20,000, 30,000, and 40,000 plants per acre) for two planting dates (early May and late June) at Brookings, South Dakota. Their results seemed to indicate that early maturing hybrids display a greater yield response to increased planting rates, and that the earlier hybrids are higher yielding at high plant densities. Troyer (1968) observed that earlier maturing corn varieties with their smaller plant sizes tend to withstand crowding better than larger, later maturing varieties. High plant density and uniform plant distribution within the row tend to compensate for the smaller plant size and lower yield per plant of early maturing varieties.

Merely increasing plant density does not always result in increased corn yields. Kanter (1969) evaluted several corn hybrids in North Dakota in the mid-1960's and found that some hybrids did not respond favorably to plant populations greater than 18,000 plants per acre. Troyer and Rosenbrook (1983) reported that corn breeders have been testing hybrids at higher plant densities in recent years, and many of the newer hybrids are more tolerant to higher planting rates. One factor which has been associated with plant density responses in the Corn Belt is production of more than one ear per plant or prolificacy. Zuber et al. (1960) reported that prolific maize hybrids, which produce more than one

Cross is professor, Department of Crop and Weed Sciences

Ears of ND262 and ND264.

ear per plant, had more consistent yields that nonprolific types in Missouri regardless of planting rate. Russell (1968) compared one-eared and two-eared hybrids in Iowa and concluded that prolific types would reduce barrenness at high plant densities.

In recent North Dakota tests, Cross et al. (1987) compared prolific with nonprolific hybrids of both early and late maturity, at plant densities of 10,000, 20,000 and 30,000 plants per acre in four environments. They found that the early hybrids yielded more than late hybrids and prolific hybrids yielded more than nonprolific hybrids. Over the four environments, the highest yields were obtained at the highest plant density. The data supported the use of early, prolific hybrids at medium to high plant densities. In order to provide a germplasm source for parental lines to produce very early, prolific hybrids, the corn improvement project at North Dakota State University developed a synthetic, NDSF, by intercrossing approximately 65 very early maturing prolific inbreds (Cross, 1983). The first parental inbred lines developed from that new germplasm source are ND262, ND263, and ND264.

BREEDING HISTORY

ND262, ND263, and ND264 (tested as ND84-4, ND84-9, and ND84-11, respectively) were selected from NDSF(FS)C1, an improved version of NDSF. NDSF(FS)C1 was developed by one cycle of reciprocal full-sib selection with NDSB as a reciprocal tester population (for a description of NDSB see Cross, 1980). The S1 parents of these inbreds were selected on the basis of their full-sib family performance. ND262 and ND264 are sister lines derived from the same S3 plant, but ND263 was derived from a different S1 plant from that used to derive ND262 and ND264. All three inbreds were self-pollinated for eight generations with selection for desired plant and ear traits.

AGRONOMIC DESCRIPTION

ND262 typically produces short plants with ears below the midpoint of the stalk (Table 1). Plants have medium-long, moderately wide leaves and medium-sized tassels. Ears with 14 to 16 rows of medium-weight kernels are borne on short shanks. ND262 is AES200 maturity based on the North Central Corn Breeding Research Committee (NCR-2) class-ification system.

ND263 produces medium-height plants with ears below the midpoint of the stalk. Plants have medium-long, narrow leaves and small tassels. Short, slender ears with 12 to 14 rows of small, shallow kernels are borne on medium-length shanks. ND263 also is AES200 maturity.

ND264 usually produces medium-height plants with ears well below the midpoint of the stalk. Plants have mediumlong, wide leaves and large tassels. Ears with 14 to 18 rows of medium weight, deep kernels are borne on medium-long shanks. ND262 also is AES200 maturity.

INBRED PERFORMANCE

ND262, ND263, and ND264 were evaluted for yield and agronomic characters in 1987 at Casselton (Table 2). ND262 and ND264 had above average grain yields and near average ear moisture at harvest. ND263 had low grain yields, high ear moisture at harvest, and tended to tiller, indicating that it would not make a suitable female parent for single cross hybrids.

HYBRID PERFORMANCE

ND262, ND263, and ND264 were tested in four hybrid combinations in three locations in 1985 and 10 hybrid combinations at five environments in 1987 (Table 3). ND262 produced high yields in crosses with ND301 and CM105 in 1985 and with ND256, A654, ND259, and CM105 in 1987. ND263 produced good overall performance in hybrids with ND246, CM105, ND250, ND257, and ND256. ND264 displayed good overall performance in crosses to ND301, ND246, ND256, CM105, A654, and ND257.

Estimates of general combining ability (GCA) over five environments in 1987 (Table 4) indicated that ND262, ND263, and ND264 each had significantly better GCA effects for grain yield than ND240, ND246, ND257, and

Inbred	Plant ht.	Ear ht.	Leaf no.	Leaf length	Leaf wid.	Tassel br.	Shank len.	Ear len.	Ear wid.	Kernel rows	Kemel wt.	Kernel dpth.
	Incl	nes		Incl	hes			Inches			g	In
A654	49.1	15.4	11.5	23.0	3.35	7	6.0	5.30	1.51	13.6	0.224	0.29
CM105	55.1	19.5	13.0	27.0	3.35	6	4.5	5.15	1.51	13.8	0.240	0.27
ND240	49.9	22.7	12.5	19.5	3.36	16	6.0	4.00	· 1.50	18.0	0.189	0.25
ND246	51.7	22.3	12.0	22.0	3.36	18	6.0	5.65	1.20	12.2	0.170	0.18
ND247	64.1	25.0	11.5	27.0	4.13	20	11.0	6.80	1.57	14.8	0.235	0.31
ND248	53.8	21.6	13.0	26.0	3.34	19	6.5	5.65	1.38	14.6	0.208	0.27
ND253	50.0	21.9	12.0	23.0	2.95	18	1.5	5.65	1.52	15.8	0.212	0.29
ND254	30.2	8.9	12.0	18.0	3.54	12	4.0	4.40	1.32	17.1	0.148	0.22
ND256	49.4	25.9	12.0	20.0	3.57	18	1.5	4.30	1.61	18.4	0.212	0.31
ND257	52.3	23.2	11.0	22.0	3.93	16	7.0	5.35	1.50	17.6	0.151	0.27
ND259	52.0	27.9	12.0	26.5	3.55	14	3.0	5.00	1.43	13.2	0.257	0.25
ND260	51.2	21.0	12.5	27.0	2.74	9	6.5	5.30	1.24	11.3	0.244	0.17
ND301	57.6	28.7	18.5	19.5	2.54	18	3.5	5.35	1.50	15.6	0.204	0.29
ND474	57.0	25.1	12.0	29.5	3.55	12	6.5	6.80	1.65	14.4	0.262	0.34
ND262	39.8	15.4	11.5	22.5	3.34	13	3.5	5.00	1.48	14.4	0.223	0.31
ND263	47.0	19.2	12.5	24.5	2.57	10	5.5	4.15	1.00	13.7	0.180	0.13
ND264	47.7	16.9	11.0	21.5	4.14	24	6.5	5.45	1.51	16.0	0.209	0.32
MEAN	50.9	21.7	12.3	23.4	3.43	15	5.1	5.31	1.46	15.0	0.216	0.27
LSD	5.9	6.5	2.9	3.6	0.89	6	2.9	0.57	0.09	2.0	0.025	0.05

Table 1. Summary of plant characteristics in ND262, ND263, ND264, and 14 standard inbreds grown at Casselton in 1987.

¹ Inbred differences larger than this value would be expected due to random environmental effects only once in 20 repetitions of this experiment.

ND474, and each had better than average GCA effects for stalk lodging resistance. ND263 exhibited significantly better GCA effects for low grain moisture at harvest than all inbreds except ND246 and ND257, while only CM105 had better GCA effects for grain yield. ND262 and ND263 also had better than average GCA effects for root lodging resistance.

REFERENCES

- Carson, P.L., R.C. Ward, D.B. Shank, and D.W. Beatty. 1966. Stable corn yields sought in Northern Great Plains. Crops and Soils Mag. 19(2):19-20.
- Cross, H.Z. 1980. Registration of maize germplasm (Reg No. GP84 and GP85). Crop Sci. 20:418.
- Cross, H.Z. 1983. Registration of NDSAB and NDSF maize germplasm (Reg. Nos. GP125 and GP126). Crop Sci. 23:1227.
- Cross, H.Z., J. Tonye Kamen, and L. Brun. 1987. Plant density, maturity, and prolificacy effects on early maize. Can. J. Plant Sci. 67:35-42.

- Kanter, D.G. 1969. Agronomic performance of corn (*Zea mays L.*) for six genotypes and five plant densities. M.S. Thesis. North Dakota State Univ., Fargo, ND.
- Olson, P.J. 1930. Planting rates for early varieties of corn. North Dakota Agri. Exp. Stn. Cir. 43:8-9.
- Russell, W.A. 1968. Test crosses of one and two-ear types of corn belt maize inbreds. 1.Performance at four plant stand densities. Crop Sci. 8:244-247.
- Sundquist, W.B., K.M. Menz, and C.F. Neumeyer. 1982. A technology assessment of commercial corn production in the United States. Minnesota Agric. Exp. Stn. Bul. 546.
- Troyer, A.F. 1968. Yield as influenced by maturity and population. Proc. Annu. Hybrid Corn and Sorghum Res. Conf., Am. Seed Trade Assoc. 22:91-98.
- Troyer, A.F., and R.W. Rosenbrook. 1983. Utility of higher plant densities for corn performance testing. Crop Sci. 23:863-867.
- Wiidakas, W. 1958. Is early maturing corn more dependable? North Dakota Farm Res. 20(5):4-10.
- Zuber, M.S., C.O. Grogan, and D.V. Singleton. 1960. Rate-ofplanting studies with prolific and single ear corn hybrids. Missouri Agric. Exp. Stn. Res. Bul. 737.

Inbred	Grain yld.	Ear moist.	Stalk Idg.	Root Idg.	Test wt.	Gen. app. ¹	Unifor- mity ¹	Till- ers	Smut	Ears /plt.	Plant pop.
	bu/A		%		- Ib/bu				%		plt/A
A654	57.0	42.2	1.9	3.4	61.8	6.0	9.0	18.0	1.9	0.95	23151
CM105	46.2	40.3	0.0	2.7	61.5	7.5	7.5	15.8	2.2	1.28	17786
ND240	37.9	39.1	5.0	1.4	54.8	6.0	8.0	0.0	0.0	1.41	13838
ND246	37.8	25.2	9.2	6.8	65.7	7.5	7.5	15.8	58.0	1.01	18482
ND248	55.9	33.1	10.0	13.3	63.5	7.0	7.0	25.5	18.0	1.38	16130
ND253	53.9	41.4	0.0	0.1	58.6	5.5	7.5	7.5	7.5	1.31	15128
ND257	43.0	30.4	0.0	0.0	56.2	6.0	8.0	10.5	0.0	1.46	15120
ND259	24.3	46.5	10.5	0.0	60.2	7.0	7.5	15.5	10.5	1.03	15613
ND301	40.1	34.9	13.8	4.9	60.1	8.5	7.0	16.0	20.5	1.17	15910
ND474	75.8	34.8	2.4	0.0	62.5	7.5	7.5	13.8	0.0	1.20	13855
ND262	60.0	40.3	0.0	1.0	61.0	9.0	7.5	21.5	7.2	1.37	19337
ND263	4.2	54.6	3.1	0.0	61.3	5.5	7.0	46.5	0.0	1.32	14132
ND264	72.8	41.2	2.0	15.3	59.7	7.0	7.5	18.0	6.2	1.30	21392
MEAN	44.5	37.3	5.1	5.3	60.2	6.5	7.6	18.4	9.5	1.31	
LSD ²	24.8	6.0	NS	10.5	1.9	2.0	NS	NS	17.2	0.50	

Table 2. Summary of yield and agronomic characteristics of ND262, ND263, ND264, and 10 standard inbreds grown at Casselton in 1987.

¹ The scale was 1 to 9 with 9 assigned for the most desirable expression of the trait and 1 for the least desirable expression. ² Inbred differences larger than this value would be expected due to random environmental effects only once in 20 repetitions of this experiment.

Pedigree	Hybrid	Grain moist.	Grain yield	Root lodg.	Stalk lodg.	Pop.	P.I. ¹
		%	bu/A		%	plts/A	
		Means	s of 3 locati	ons in 1985			
ND246 X ND262 ND249 X ND262 ND301 X ND262 CM105 X ND262	NDG384 NDG385 NDG386 NDG383	20.35 31.82 36.75 34.33	61.7 63.4 74.8 70.0	0.80 0.00 0.80 0.80	0.00 4.24 2.27 0.28	20994 17482 19925 18749	167.49 108.47 110.74 110.99
ND246 X ND263 ND249 X ND263 ND301 X ND263 CM105 X ND263	NDG403 NDG404 NDG405 NDG402	22.16 27.18 33.29 30.71	55.8 61.1 65.4 62.1	0.70 0.00 1.40 0.00	1.57 3.99 3.33 2.03	21027 20399 21462 21565	137.10 122.30 106.89 110.12
ND246 X ND264 ND249 X ND264 ND301 X ND264 CM105 X ND264	NDG410 NDG411 NDG412 NDG409	25.26 30.64 36.15 33.08	51.0 64.6 73.5 66.7	0.00 0.80 0.00 0.00	2.23 3.79 0.00 3.44	17529 19553 19973 18814	109.85 114.83 108.11 109.79
Pioneer Brand Pioneer Brand Top Farm Brand LSD (0.05) ²	3901 3978 TFSX87	50.94 29.95 32.56 5.32	54.5 71.8 72.1 17.5	0.00 0.00 0.00 5.18	1.28 2.59 0.48 NS	23074 19832 22769 4987	58.27 130.51 120.47
		Means	s of 5 locati	ons in 1987			
ND259 X ND262 ND260 X ND262 ND262 X CM105 ND262 X ND240 ND262 X ND246 ND262 X ND250 ND262 X ND256 ND262 X ND257 ND262 X ND277 ND262 X ND474 A654 X ND262 A654 X ND263 CM105 X ND263	NDG680 NDG689 NDG383 NDG645 NDG384 NDG654 NDG654 NDG666 NDG640 NDG697 NDG702 NDG702 NDG402	24.66 20.22 21.27 20.01 15.77 22.46 19.75 11.66 18.08 18.20 18.41 13.53	100.4 87.7 93.7 97.9 76.4 75.7 102.7 94.9 95.0 100.6 92.3 92.1	1.40 6.70 0.70 1.60 0.00 8.90 0.00 3.60 0.00 4.40 1.50	5.40 18.80 7.00 22.40 2.90 4.40 13.20 18.00 14.80 3.70 8.70 15.20	20227 19914 19698 19987 18864 18202 20464 21282 20866 20725 23728 20611	80.63 85.89 87.28 96.97 95.98 66.77 102.97 161.24 104.08 109.45 99.32 134.84
ND240 X ND263 ND256 X ND263 ND259 X ND263 ND260 X ND263 ND263 X ND246 ND263 X ND250 ND263 X ND257 ND263 X ND474	NDG650 NDG710 NDG685 NDG693 NDG403 NDG659 NDG670 NDG643	15.31 14.03 18.77 17.47 11.81 16.02 12.20 19.13	82.8 98.6 83.9 97.1 77.3 101.4 86.5 97.3	2.40 2.60 1.90 0.00 2.40 6.70 0.40 14.00	26.60 10.40 23.40 23.90 9.30 5.90 9.90 17.80	18617 21227 19265 21765 19753 20400 22833 20935	107.17 139.30 88.57 110.09 129.69 125.47 140.55 100.72
A654 X ND264 CM105 X ND264 ND240 X ND264 ND256 X ND264 ND264 X ND246 ND264 X ND250 ND264 X ND257 ND264 X ND259 ND264 X ND260 ND264 X ND260 ND264 X ND474	NDG699 NDG409 NDG647 NDG707 NDG410 NDG656 NDG656 NDG667 NDG682 NDG690 NDG641	17.51 17.73 19.35 19.80 14.13 21.10 16.40 24.13 18.93 17.90	89.3 83.5 96.2 109.6 79.1 88.6 90.8 106.6 100.2 102.4	3.00 0.00 9.40 12.80 6.30 15.50 1.30 4.00 0.00 21.40	8.50 6.20 36.10 8.20 6.70 10.30 15.70 4.40 18.30 17.40	17556 17837 19210 20180 18536 19277 17567 20409 18669 21068	101.02 93.27 98.49 109.60 110.97 83.24 109.71 87.50 104.89 113.32
Pioneer Brand Pioneer Brand Top Farm Brand LSD (0.05) ²	3953 3978 TFSX87	13.20 17.44 16.40 1.97	104.3 97.0 112.8 12.2	1.70 1.30 0.50 9.10	2.90 7.80 9.60 10.68	20134 20014 20981 2005	156.61 110.18 136.29

Table 3. Average performance of selected single cross hybrids with ND262, ND263, ND264, and check hybrids tested at three environments in 1985 and five environments in 1987.

¹ Performance Index = (Yield/test mean)/(Moisture/test mean) x 100.

² Average differences among hybrids of this amount could be explained by random environmental effects only once in 20 repetitions of this experiment.

Inbred	Grain moist.	Grain yield	Root lodg.	Stalk lodg.	Pop.	P.I.
	%	bu/A		%	plts/A	
	Design II ana	alysis (two te	esters) over	3 locations	IN 1985	
ND262	0.65	3.38	0.10	-1.02	-1687	7.40
ND263	-4.79	-1.72	-0.30	0.34	1179	13.38
ND264	-1.87	2.36	0.10	-0.27	-619	9.81
ND300	7.07	-11.98	0.35	-1.79	233	-32.97
CG10	1.43	3.42	0.05	1.82	741	1.11
ND474	-1.21	4.53	-0.30	0.94	153	11.13
LSD (0.05) ²	3.76	12.37	3.66	NS	3526	
	Diall	el analysis o	ver 5 locati ND262	ons in 1987		
NIDOCO	1 40	2.05	2.52	262	880	2.87
ND202	0.46	5.95	-2.02	-3.02	300	1 25
CM105	-0.15	7.05	-2.00	-4.30	016	4.55
CIVI IUS	-0.09	1.04	-2.03	-0.79	910	5.53
ND240	2.00	-1.02	-0.70	7 38	-748	7.51
ND240	-3.09	-9.59	-1.02	-7.30	-740	1.51
ND250	1.12	0.05	2.00	-3.07	-244	-4.09
ND250	1.13	4.20	-0.55	-0.57	221	24.92
ND257	-4.37	-4.39	0.47	1.67	271	11 09
ND259	2.90	4.07	0.92	1.07	975	1.06
ND200	0.01	0.72	5.24	4.40	2120	18.22
LSD (0.05) ²	0.66	4.07	3.03	3.56	668	-10.22
			ND263			
ND263	-1.46	2 64	-1.38	-0.51	1605	12.41
A654	0.98	5.03	-2.65	-4.57	564	-1.78
CM105	-0.26	7.91	-2.77	-0.91	842	10.14
ND240	0.47	-3.10	-0.90	11.01	-303	-7.67
ND246	-2.89	-9.26	-1.37	-7.68	-824	7.72
ND250	0.85	2.86	2 44	-3.86	-189	-1.88
ND256	1.15	2.28	-0.49	-1.79	-161	-3.65
ND257	-3.72	-5.00	0.48	0.59	-241	19.60
ND259	2.92	3.26	0.75	2.53	110	-13.44
ND260	0.33	2.67	-0.26	4.03	895	0.31
ND474	1.61	-9.26	6.16	1.11	-2297	-21.72
LSD (0.05) ²	0.66	4.07	3.03	3.56	668	
			ND264			
ND264	1.02	5.66	1.56	-2.08	65	-0.99
A654	0.34	4.06	-3.44	-4.23	289	1.36
CM105	-0.39	6.38	-3.60	-1.45	906	8.96
ND240	0.32	-2.43	-0.85	12.32	98	-5.57
ND246	-3.21	-9.75	-1.63	-7.58	-603	8.81
ND250	0.80	0.91	2.67	-3.06	41	-3.13
ND256	1.18	2.70	-0.12	-1.65	76	-3.65
ND257	-3.85	-5.24	-0.08	1.53	-426	19.49
ND259	2.90	4.85	0.31	0.99	566	-10.58
ND260	-0.07	2.32	-1.03	3.83	928	2.76
ND474	0.93	-9.42	6.25	1.43	-1942	-17.49
LSD (0.05) ²	0.66	4.07	3.03	3.56	668	

Table 4. Average general combining ability effects for ND262, ND263, and ND264 compared to various sets of standard inbreds.¹

¹ General combining ability effects are differences between the mean of all hybrids in the test and all hybrids produced from a particular inbred. Negative values indicate that inbred's hybrids were below average while positive values indicate above average performance.

² Average differences among hybrids of this amount could be explained by random environmental effects on once in 20 reptitions of this experiment.