Browsing by Author "Baqui, Muhammad Niamul"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Experimental Characterization of a Novel Integrated Flow Control Method(North Dakota State University, 2010) Baqui, Muhammad NiamulFlow control methods can be used in many areas of aerodynamics such as separation control, wind turbines, landing gears and micro satellites. Flow separation in the boundary layer is one of the fundamental problems of aerodynamics. Separated flow in the airfoil boundary layer causes the aircraft to stall. Blowing and Dielectric Barrier Discharge (DBD) Plasma Actuator based techniques have proven successful in limited applications of separation control. However, Blowing techniques require high pressure source and Plasma Actuators are only successful in low speed application. The current research incorporated experimental techniques in characterizing a novel integrated flow control method by combining blowing flow control with Dielectric Barrier Discharge (DBD) Plasma Actuator based flow control. Integrated control would be applicable in wider flow domain than individual plasma or blowing. Initially, characterization experiments were performed as a proof of concept for the integrated control and then, the integrated control was applied in airfoil separation control. Characterization experiments were performed with a vertically fired cylindrical jet having plasma actuator around the jet periphery. The cylindrical jet was used to simulate blowing. The results obtained from characterization experiments indicated 63% reduction in blowing ratio due to plasma addition. The integrated control was placed on NACA 0025 airfoil with blow opening at 25% x/C and plasma actuator at 25.5% x/C location. Windtunnel tests were performed at freestream velocities of 3 mis and 4.5 mis with airfoil angle set at 10 degree. Results indicate 110% increase in airfoil near wall velocity for 3mls when integrated control was applied. Separation was experienced in the region when other flow control methods were used.Item Fuzzy Decision Model for a Smart Grid(North Dakota State University, 2012) Baqui, Muhammad NiamulElectricity is vital for U.S. economy. Over the years, the demand and the usage of electricity have skyrocketed, but the electric transmission and distribution processes have been manual. The current work formulates an automated decision-making model for electric-grid resource allocation. Resource allocation is primarily in the form of assigning the best power source to a sink. The model is built in Fuzzy Logic. The input parameters for the model are the power capacity, the price and the distance. A rule base has been created by domain knowledge and analyzing an operator decision making activity. The Mamdani Min-Max approach of is used for defuzzification. A separate model based on Rough Set analysis has also been constructed to compare the results with Fuzzy model. The results obtained from both models show agreement in decision output and reveal the potential application areas of the Fuzzy model.