Browsing by Author "Hungness, Derek"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Exploratory Spatial Data Analysis of Traffic Forecasting: A Case Study(2022) Hungness, Derek; Bridgelall, Raj; Upper Great Plains Transportation InstituteTransportation planning has historically relied on statistical models to analyze travel patterns across space and time. Recently, an urgency has developed in the United States to address outdated policies and approaches to infrastructure planning, design, and construction. Policymakers at the federal, state, and local levels are expressing greater interest in promoting and funding sustainable transportation infrastructure systems to reduce the damaging effects of pollutive emissions. Consequently, there is a growing trend of local agencies transitioning away from the traditional level-of-service measures to vehicle miles of travel (VMT) measures. However, planners are finding it difficult to leverage their investments in their regional travel demand network models and datasets in the transition. This paper evaluates the applicability of VMT forecasting and impact assessment using the current travel demand model for Dane County, Wisconsin. The main finding is that exploratory spatial data analysis of the derived data uncovered statistically significant spatial relationships and interactions that planners cannot sufficiently visualize using other methods. Planners can apply these techniques to identify places where focused VMT remediation measures for sustainable networks and environments can be most cost-effective.Item Model Contrast of Autonomous Vehicle Impacts on Traffic(2020) Hungness, Derek; Bridgelall, Raj; Upper Great Plains Transportation InstituteThe adoption of connected and autonomous vehicles (CAVs) is in its infancy. Therefore, very little is known about their potential impacts on traffic. Meanwhile, researchers and market analysts predict a wide range of possibilities about their potential benefits and the timing of their deployments. Planners traditionally use various types of travel demand models to forecast future traffic conditions. However, such models do not yet integrate any expected impacts from CAV deployments. Consequently, many long-range transportation plans do not yet account for their eventual deployment. To address some of these uncertainties, this work modified an existing model for Madison, Wisconsin. To compare outcomes, the authors used identical parameter changes and simulation scenarios for a model of Gainesville, Florida. Both models show that with increasing levels of CAV deployment, both the vehicle miles traveled and the average congestion speed will increase. However, there are some important exceptions due to differences in the road network layout, geospatial features, sociodemographic factors, land-use, and access to transit.