Browsing by Author "Rafert, J. Bruce"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Hyperspectral Applications in the Global Transportation Infrastructure(2015) Bridgelall, Raj; Rafert, J. Bruce; Tolliver, Denver D.; Upper Great Plains Transportation InstituteHyperspectral remote sensing is an emerging field with potential applications in the observation, management, and maintenance of the global transportation infrastructure. This study introduces a general analytical framework to link transportation systems analysis and hyperspectral analysis. The authors introduce a range of applications that would benefit from the capabilities of hyperspectral remote sensing. They selected three critical but unrelated applications and identified both the spatial and spectral information of their key operational characteristics to demonstrate the hyperspectral utility. The specific scenario studies exemplifies the general approach of utilizing the outputs of hyperspectral analysis to improve models that practitioners currently use to analyze a variety of transportation problems including roadway congestion forecasting, railway condition monitoring, and pipeline risk management.Item Hyperspectral Imaging Utility for Transportation Systems(2015) Bridgelall, Raj; Rafert, J. Bruce; Tolliver, Denver D.; Upper Great Plains Transportation InstituteThe global transportation system is massive, open, and dynamic. Existing performance and condition assessments of the complex interacting networks of roadways, bridges, railroads, pipelines, waterways, airways, and intermodal ports are expensive. Hyperspectral imaging is an emerging remote sensing technique for the non-destructive evaluation of multimodal transportation infrastructure. Unlike panchromatic, color, and infrared imaging, each layer of a hyperspectral image pixel records reflectance intensity from one of dozens or hundreds of relatively narrow wavelength bands that span a broad range of the electromagnetic spectrum. Hence, every pixel of a hyperspectral scene provides a unique spectral signature that offers new opportunities for informed decision-making in transportation systems development, operations, and maintenance. Spaceborne systems capture images of vast areas in a short period but provide lower spatial resolution than airborne systems. Practitioners use manned aircraft to achieve higher spatial and spectral resolution, but at the price of custom missions and narrow focus. The rapid size and cost reduction of unmanned aircraft systems promise a third alternative that offers hybrid benefits at affordable prices by conducting multiple parallel missions. This research formulates a theoretical framework for a pushbroom type of hyperspectral imaging system on each type of data acquisition platform. The study then applies the framework to assess the relative potential utility of hyperspectral imaging for previously proposed remote sensing applications in transportation. The authors also introduce and suggest new potential applications of hyperspectral imaging in transportation asset management, network performance evaluation, and risk assessments to enable effective and objective decision- and policy-making.Item Hyperspectral Range Imaging for Transportation Systems Evaluation(2016) Bridgelall, Raj; Rafert, J. Bruce; Tolliver, Denver D.; Atwood, Don; Upper Great Plains Transportation InstituteTransportation agencies expend significant resources to inspect critical infrastructure such as roadways, railways, and pipelines. Regular inspections identify important defects and generate data to forecast maintenance needs. However, cost and practical limitations prevent the scaling of current inspection methods beyond relatively small portions of the network. Consequently, existing approaches fail to discover many high-risk defect formations. Remote sensing techniques offer the potential for more rapid and extensive non-destructive evaluations of the multimodal transportation infrastructure. However, optical occlusions and limitations in the spatial resolution of typical airborne and spaceborne platforms limit their applicability. This research proposes hyperspectral image classification to isolate transportation infrastructure targets for high-resolution photogrammetric analysis. A plenoptic swarm of unmanned aircraft systems will capture images with centimeter-scale spatial resolution, large swaths, and polarization diversity. The light field solution will incorporate structure-from-motion techniques to reconstruct three-dimensional details of the isolated targets from sequences of two-dimensional images. A comparative analysis of existing low-power wireless communications standards suggests an application dependent tradeoff in selecting the best-suited link to coordinate swarming operations. This study further produced a taxonomy of specific roadway and railway defects, distress symptoms, and other anomalies that the proposed plenoptic swarm sensing system would identify and characterize to estimate risk levels.Item Rapid Hyperspectral Image Classification to Enable Autonomous Search Systems(2016) Bridgelall, Raj; Rafert, J. Bruce; Tolliver, Denver D.; Lee, EunSu; Upper Great Plains Transportation InstituteThe emergence of lightweight full-frame hyperspectral cameras is destined to enable autonomous search vehicles in the air, on the ground, and in water. Self-contained and long-endurance systems will yield important new applications, for example, in emergency response and the timely identification of environmental hazards. One missing capability is rapid classification of hyperspectral scenes so that search vehicles can immediately take actions to verify potential targets. Onsite verifications minimize false positives and preclude the expense of repeat missions. Verifications will require enhanced image quality, which is achievable by either moving closer to the potential target or by adjusting the optical system. Such a solution, however, is currently impractical for small mobile platforms with finite energy sources. Rapid classifications with current methods demand large computing capacity that will quickly deplete the on-board battery or fuel. To develop the missing capability, the authors propose a low-complexity hyperspectral image classifier that approaches the performance of prevalent classifiers. This research determines that the new method will require at least 19-fold less computing capacity than the prevalent classifier. To assess relative performances, the authors developed a benchmark that compares a statistic of library endmember separability in their respective feature spaces.