University Distinguished Professors
Permanent URI for this communityhdl:10365/32082
Becoming a University Distinguished Professor (UDP) is the highest honor that can be awarded to a faculty member at North Dakota State University. Research from these individuals can be found here. More information about University Distinguished Professors can be found at https://www.ndsu.edu/president/honors/distinguished_professors/
Browse
Browsing University Distinguished Professors by browse.metadata.program "Entomology"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Conspectus of Aeptini Stål, 1871 (Hemiptera: Heteroptera: Pentatomidae: Pentatominae)(North Dakota State University, 2017) Faúndez, Eduardo IThe Pentatominae tribe Aeptini is revised. A key to the known genera is provided, together with redescription and figures. The genus Paramenestheus is revised, including a key to the species and figures to all the included taxa. Two new genera and eight new species are discovered and described. A phylogenetic analysis is included for the Aeptini, with two approaches, cladistic and maximum likelihood, both morphologically based. After these analysis it is concluded that it is a monophyletic tribe and has to be split into two subtribes: Aeptina (including Aeptus and Eribotes) and Menesthina (including Aeliosoma, Hillieria, Menestheus, Paramenestheus, Pseudaelia, New Genus 1, New Genus 2.). Diagnoses for both subtribes are included. Biogeographically it is hypothesized that the Aeptini have a Gondwanian origin which explains it current disjunct distribution in Africa and Australia. The importance of the findings on this dissertation, as well as the relationships among Aeptini and other Pentatominae groups is commented and disccused. Special reference is made to the importance of the presence of a mesosternal sulcus as a major character that may lead to a reclassification of the Pentatominae, having the Aeptini as one of the basal groups. After all the changes proposed on this dissertation the Aeptini is now comprised of two subtribes, nine genera and 30 species.Item IfSAR DTM-derived Predictive Flood Models: A Cost-effective Approach to Target Site- Specific Mosquito (Diptera: Culicidae) Control Efforts(North Dakota State University, 2016) Stenehjem, Jacquelin J.The study area is the 400 km2 floodplain and wetlands of the upper Missouri River, located in the northwestern corner of North Dakota, near the community of Williston. Regional climate is semiarid, yet the Williston vector control agency battles large populations of Culicidae nearly every spring and summer. Best mosquito management practices (BMPs) are integrated, relying on a combination of thorough, routine, ground-based sampling and surveillance methods to provide important information on which control strategies and evaluations of effective are based. However, the mosquito breeding habitat near Williston is extensive and contains difficult terrain, which makes standard ground-based sampling and surveillance methods impractical. This study analyzed remotely sensed Interferometric Synthetic Aperture Radar (IfSAR) Digital Terrain Model (DTM) elevation data as a potential alternative for ground-based methods. Remotely sensed IfSAR technology is relative low-cost, has high-spatial resolution, is not limited by inclement weather, and only needs to be collected once if local topography remains stable. IfSAR elevation data provides information needed to model hydrological characteristics such as slope, aspect, water flow direction, and accumulation, important considerations in relation to mosquito control efforts. Predictive flood models, developed in this study from the IfSAR elevation data, make it possible to predict the locations of water accumulation within the floodplain as river elevations fluctuate. A vertical root mean squares error (RMSEz) assessment of the full IfSAR elevation data in all land cover classifications combined was 1.071 m, consistent with the vendor’s stated RMSEz of 1 meter. The vertical accuracy of the full IfSAR data was 2.099 meters at the 95% confidence level and is consistent with the 95th percentile accuracy of 2.211 meters. The frequency distribution of errors was generally normal. This study determined that airborne, high-resolution IfSAR DTM-elevation data can serve as an alternative for ground-based sampling and surveillance methods and provide a needed decision support system (DSS) tool to the local vector control agency. The predictive flood models are a new approach for predicting the locations of accumulated water within the floodplain will decrease vector control response time and improve the targeting of site-specific control efforts, which in turn, will decrease overall costs for these services.