University Distinguished Professors
Permanent URI for this communityhdl:10365/32082
Becoming a University Distinguished Professor (UDP) is the highest honor that can be awarded to a faculty member at North Dakota State University. Research from these individuals can be found here. More information about University Distinguished Professors can be found at https://www.ndsu.edu/president/honors/distinguished_professors/
Browse
Browsing University Distinguished Professors by browse.metadata.program "Genomics and Bioinformatics"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Genetic Characterization of Dormancy in Durum Wheat(North Dakota State University, 2012) Dilawari, MridullTwo populations derived by crossing LDN x LDN Dic-3A (Population I) and LDN x LDN Dic-3B (Population II) were genetically characterized for the seed dormancy present on chromosome 3A and 3B of durum wheat. The genes for seed dormancy in these two populations were contributed by the wild parent T. dicoccoides. Although the populations showed transgressive segregants for both dormant as well as nondormant parent, the populations were similar to the dormant parent at Langdon and Prosper 2006 field locations for Population I and at Langdon 2007 and Autumn greenhouse season for Population II. Genotypic and phenotypic analysis over the combined populations showed an environmental effect on expression of the trait. Different QTL were identified for both field and greenhouse season for the population derived from the cross between LDN x LDN Dic-3A. Five QTL for seed dormancy were identified on chromosome 3A for the QTL analysis performed over combined field locations. One QTL ranging between marker interval Xcfa2193 and Xcfd2a was consistently present for the 30 day period of seed germination and was also found to be linked to red grain color trait. The QTL analysis performed on the population derived from the cross between LDN x LDN Dic-3B identified only one major QTL on the long arm of chromosome 3B between the marker interval Xbarc84 and Xwmc291. This QTL was consistently present for all the field and spring greenhouse season for the seed germination period of 30 days. The QTL x E effect was also observed for this QTL, however it was very small.Item Identification and Genomic Analysis of Stagonospora Nodorum Blotch Susceptibility Genes in Wheat(North Dakota State University, 2014) Shi, GongjunParastagonospora nodorum is a necrotrophic fungal pathogen that causes the disease Stagonospora nodorum blotch (SNB) on wheat. The fungus produces necrotrophic effectors (NEs), that when recognized by corresponding host genes, cause cell death leading to disease. A novel NE, designated SnTox7, was identified from culture filtrates of isolate Sn6 of P. nodorum. SnTox7 is a small protein with estimated size less than 30 kDa. The interaction between SnTox7 and its corresponding host sensitivity gene, Snn7, explained 33% of the disease variation among a segregating F2 population. The Snn7 gene governs sensitivity to SnTox7 and was delineated to a 2.7 cM interval on the long arm of wheat chromosome 2D. Another host sensitivity gene Snn3- B1, conferring sensitivity to SnTox3, was previously mapped on the short arm of wheat chromosome 5B. Forty-four molecular markers were added to the genetic map to saturate the Snn3-B1 gene region. High-resolution mapping of the Snn3-B1 locus in 5,600 gametes delineated the gene to a 1.5 cM interval. The closely linked markers should be very useful for marker-assisted selection against Snn3-B1. A third host gene, Snn1, confers sensitivity to the NE Tox1. Snn1 was isolated through map-based cloning, and its structure, expression and allelic diversity were further characterized. A bacterial artificial chromosome (BAC) contig of about 2.5 Mb in size was identified to span the Snn1 locus through screening of Chinese Spring chromosome arm 1BS minimum tiling path (MTP) pools. Additional markers developed from BAC end sequences (BESs) delineated the Snn1 gene to a physical segment consisting of four BAC clones. Sequencing and bioinformatic analysis of these clones led to the identification of seven candidate genes. Six of the seven candidates were excluded through critical recombinants. The seventh gene, a cell wall-associated kinase (WAK), was verified as Snn1 through comparative sequence analysis with ethylmethane sulfonate (EMS)-induced mutants. The Snn1 transcription profile showed that it was regulated by light and possibly circadian rhythms. These results demonstrate that P. nodorum can hijack multiple host pathways driven by different classes of genes that typically confer resistance to biotrophic pathogens, thus demonstrating the surprisingly intricate nature of plant-necrotrophic pathogen interactions.