Materials & Nanotechnology
Permanent URI for this communityhdl:10365/32530
Research from the Department of Materials & Nanotechnology. The interdisciplinary department website may be found at https://www.ndsu.edu/materials_nanotechnology/
Browse
Browsing Materials & Nanotechnology by browse.metadata.program "Materials and Nanotechnology"
Now showing 1 - 20 of 39
- Results Per Page
- Sort Options
Item Adhesion With Slender Structures: Tape Loops, Crumples, and Origami(North Dakota State University, 2021) Elder, Theresa MarieThe desire for improved adhesive systems led us to examine three geometries: tape loops, crumples, and origami shapes. The tape loop is mechanically interesting because it is stable in more than one configuration. For example, the first configuration is a circular loop. The second is an elongated oval shape that occurs after the loop is pushed into a surface. In this work we examined this cycle and derive a simple mathematical model. We found a solution to the model that only needs one input measurement, that of the loop radius, to determine a tape loop’s adhesion. We explored how a sticky but crumpled film adhered to smooth and rough surfaces. To do this we crumpled inextensible sheets because crumples have been shown to maintain a high compliance while increasing contact area through deforming around obstacles. We found that there was no significant difference in the adhesive behavior of the crumples on rough surfaces compared to flat surfaces. Finally, we designed a switchable adhesive based on thin film origami. We examined a unit cell of the Ron Resch pattern which had two different configurations (open and closed) aided by a 3-D printed device In the closed state the device had a high pull off force, and in the open state a different style of peel off occurred, lowering the peak force. We present promising results that show this to be the case.Item Agricultural Residues and Other Carbon-Based Resources as Feedstocks for Supercapacitor Electrodes(North Dakota State University, 2017) Wang, YongAgricultural residues are generally considered as renewable, economical and environmental-friendly sources to produce carbon-based materials with many advanced applications. Agricultural residues and by-products generated from the agricultural industry, such as distiller's dried grains with solubles (DDGS), are produced every year on a large scale but lack of proper utilization. As a result, seeking high-value applications based on agricultural residues is essential for the promotion of the economy in agricultural states like North Dakota, USA. With the fast development of nanotechnology in recent years, carbon-based nanomaterials have attracted intense research interests in the fields of chemistry, materials science and condensed matter physics due to many unique properties (e.g., chemical and thermal stability, electrical conductivity, mechanical strength, etc.). The development of low-cost nanomaterials using agricultural residues as feedstocks can be a promising route for the sustainable development of the agricultural industry. In this dissertation, the preparation of carbon-based materials from agricultural residues is explored. Many advanced applications are investigated, especially in the field of energy storage devices. The development of porous activate carbons were investigated in detail, and their application as electrode materials of supercapacitors was demonstrated. Hydrothermal carbonization of biomass to produce carbonaceous materials was also covered in this dissertation. In addition to traditional raw materials such as cellulose produced from wood industry, novel material sources such as bacterial cellulose were used to prepare nanocomposites that can be used for the electrodes of supercapacitors. This dissertation contributes to the sustainable development of the agricultural industry in North Dakota.Item Bending and Force Recovery in Polymer Films and Microgel Formation(North Dakota State University, 2018) Elder, Theresa MarieTo determine correlation between geometry and material three different model films: polymethylsiloxane (PDMS), polystyrene (PS), and polycarbonate (PC), were singly bent and doubly bent (forming D-cones). Bends were chosen as they are fundamental in larger complex geometries such as origami and crumples. Bending was carried out between two plates taking force and displacement measurements. Processing of data using moment equations yielded values for bending moduli for studied films that were close to accepted values. Force recovery showed logarithmic trends for PDMS and stretched exponential trends for PS and PC. In a separate experiment a triblock copolymer of polystyrene–polyacrylic acid–polystyrene was subjected to different good and bad solvent mixing with any resulting particle morphology examined. Particles formed more uniformly with high water concentration, particles formed with high toluene concentration and agitation yielded three separate morphologies.Item Biomimetic Nanoclay Scaffolds for Bone Tissue Engineering(North Dakota State University, 2014) Ambre, Avinash HarishchandraTissue engineering offers a significant potential alternative to conventional methods for rectifying tissue defects by evoking natural regeneration process via interactions between cells and 3D porous scaffolds. Imparting adequate mechanical properties to biodegradable scaffolds for bone tissue engineering is an important challenge and extends from molecular to macroscale. This work focuses on the use of sodium montmorillonite (Na-MMT) to design polymer composite scaffolds having enhanced mechanical properties along with multiple interdependent properties. Materials design beginning at the molecular level was used in which Na-MMT clay was modified with three different unnatural amino acids and further characterized using Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD). Based on improved bicompatibility with human osteoblasts (bone cells) and intermediate increase in d-spacing of MMT clay (shown by XRD), 5-aminovaleric acid modified clay was further used to prepare biopolymer (chitosan-polygalacturonic acid complex) scaffolds. Osteoblast proliferation in biopolymer scaffolds containing 5-aminovaleric acid modified clay was similar to biopolymer scaffolds containing hydroxyapatite (HAP). A novel process based on biomineralization in bone was designed to prepare 5-aminovaleric acid modified clay capable of imparting multiple properties to the scaffolds. Bone-like apatite was mineralized in modified clay and a novel nanoclay-HAP hybrid (in situ HAPclay) was obtained. FTIR spectroscopy indicated a molecular level organic-inorganic association between the intercalated 5-aminovaleric acid and mineralized HAP. Osteoblasts formed clusters on biopolymer composite films prepared with different weight percent compositions of in situ HAPclay. Human MSCs formed mineralized nodules on composite films and mineralized extracellular matrix (ECM) in composite scaffolds without the use of osteogenic supplements. Polycaprolactone (PCL), a synthetic polymer, was used for preparing composites (films and scaffolds) containing in situ HAPclay. Composite films showed significantly improved nanomechanical properties. Human MSCs formed mineralized ECM on films in absence of osteogenic supplements and were able to infiltrate the scaffolds. Atomic force microscopy imaging of mineralized ECM formed on composite films showed similarities in dimensions, arrangement of collagen and apatite with their natural bone counterparts. This work indicates the potential of in situ HAPclay to impart polymeric scaffolds with osteoinductive, osteoconductive abilities and improve their mechanical properties besides emphasizing nanoclays as cell-instructive materials.Item Development of Bio-based Wood Adhesive by Using Cellulose Nanofiber Reinforcement and Crosslinking Agent for Improved Bonding Strength(North Dakota State University, 2017) Oh, MyungkeunEngineered woods, plywood, particle board, and oriented strand board, are widely used as a low-cost wood replacement in many applications. Many of the currently used wood adhesives contain chemicals that are harmful to human health and the environment. Increasing environmental and human health concerns have made the development of safe bio-based adhesives a priority. In this study, two plant proteins, zein from corn and wheat gluten, were used to develop wood adhesives. To increase their bond strength, cellulose nanofibers were added to create nanocomposite adhesives and a crosslinking agent was also used. Single-lap shear test, flexural and internal bond tests were performed on dry and water-immersed samples to measure the bond strength. Fractured bond surfaces were studied using optical observation and scanning electron microscopy (SEM) to determine bond failure mechanisms. Thermal and chemical properties of the adhesives were evaluated using thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR), respectively.Item The Development, Characterization and Testing of Mg-rich Primers(North Dakota State University, 2012) Battocchi, DanteAluminum alloys are widely used in aircraft industry for their strength and light weight. Those alloys that are hardened by precipitation, especially the Copper-rich of the 2000 series, are prone to corrosion and are protected against it using chromate containing coatings. The primary component of these coating systems is Chromium 6+ (CrVI) that has been found to be very toxic in the environment and carcinogenic, toxic and mutagenic in humans. The Mg-rich primer development is the result of a successful multi-year project funded by the US Air-force with its objective the replacement of coatings based on CrVI with a class of coatings less toxic and with comparable protective performances. The Mg rich primer fulfilled the USAF requirements and it is currently undergoing commercial and military qualifications testing. The use of Mg as one of the active pigments in coatings allows the primer to protect the underlying Al sacrificially, not considered possible for this substrate until now. Mg is anodic to most of the other structural metals and when particulate Mg became available commercially, the concept of the primer was first developed by analogy to Zn-rich coatings for steel. When Mg and Al are in contact and immersed in a corrosive environment, magnesium corrodes preferentially and protects the aluminum.Item Dynamic 3D In Vitro Bone Metastatic Testbeds for Prostate and Breast Cancer(North Dakota State University, 2022) Jasuja, HaneeshMetastatic prostate cancer spreads preferentially to the bone, causing skeletal complications associated with significant morbidity and a poor prognosis, despite current therapeutic approaches. Increasing evidence suggests the synergistic role of biochemical and biophysical cues in cancer progression at metastases. However, the mechanism underlying the crosstalk between interstitial flow-induced mechanical stimuli and prostate cancer progression in the bone microenvironment remains poorly understood. To this end, we have developed 3D in vitro dynamic models of prostate cancer bone metastasis using perfusion bioreactor and horizontal flow bioreactor to delineate the role of flow-induced shear stress on prostate cancer progression and migration, respectively at metastases. Using a perfusion bioreactor, we observed changes in the expressions of MET biomarkers and the tumoroid morphologies of prostate cancer cells under dynamic culture. Evaluation of cell adhesion proteins indicated that the altered cancer cell morphologies resulted from the constant force pulling due to increased E-cadherin and FAK proteins under shear stress. Using a horizontal flow bioreactor, we demonstrated that the percent cell migration rate of prostate cancer cells was increased in the presence of bone under dynamic conditions. The results showed that interstitial fluid flow did not alter the CXCR4 level, but bone upregulated CXCR4 levels, leading to increased MMP-9 levels. In addition, both αvβ3 integrins and MMP-9 levels were upregulated by fluid flow conditions, contributing to an increased migration rate under dynamic conditions. Breast cancer cells also tend to preferentially disseminate to bone and colonize within the remodeling bone site to cause bone metastases. We have previously developed a 3D in vitro breast cancer bone metastasis model using hMSCs and commercial breast cancer cells (MCF-7 and MDAMB231), recapitulating late-stage breast cancer metastasis to bone. In the present study, we have validated our model using patient-derived breast cancer cell lines- NT013 and NT023, exhibiting hormone-positive and triple-negative characteristics, respectively that showed MET and formed tumors in the presence of bone. In addition, the results showed ET-1 (NT013) and DKK-1 (NT023) mediated stimulation and abrogation of the osteogenesis via Wnt/β catenin pathway, in line with our previous results with MCF-7 and MDAMB231 cell lines.Item The Effects of Doping on the Lithium Ionic Conductivity of LLZO Solid-State Electrolyte(North Dakota State University, 2020) Altayaran, Fadhilah AhmedLithium-ion batteries (LIBs) employing solid-state electrolytes are considerably safer and might potentially generate a higher energy density compared. The goal of this thesis is to investigate the synthesis and stability of doped Li₇La₃Zr₂O₁₂ (LLZO). The reason of adopting LLZO is to presents a high conductivity, good electrochemical stability against metallic lithium. The investigation method involves preparing LLZO powder, pressing it to pellets, sintering the pellets at 1230 ºC and coating metal electrodes on them, followed by the measurement of the lithium ionic conductivity through Electrochemical Impedance Spectroscopy, Scanning Electron Microscopy, and X-ray diffraction. Doping has proven to be an effective way to improve the lithium ionic conductivity. In our research, multi-doped LLZO with Al and Ta and F presented the highest conductivity σ = 1.67×10-4 Scm-1 at room temperature. Our study suggests that the adoption may lead to a significant increase in the lithium ionic conductivity of LLZO solid-state electrolyte.Item Electrochemical Impedance Spectroscopy Study of the Ultraviolet Exposure of Ballistic Resistant Polymer Matrix Composites(North Dakota State University, 2012) Pavlacky, Drew AdamThis study examined the effect of ultraviolet radiation on ballistic resistant polymer matrix composites. Two composite systems studied included a phenolic matrix with either S2 Glass® or Kevlar® fiber laminates. These composites were weathered in ultraviolet conditions and the effects were quantified with multiple destructive and non-destructive testing. Electrochemical impedance spectroscopy (EIS) was used as a non-destructive evaluation method which is a commonly used experiment in the corrosion community. Circuit modeling the EIS spectra produced both resistive and capacitive characteristics inherent of the composite materials. Surface characterization was performed to determine if degradation was occurring at the composite surface. Techniques included: color, gloss, surface profilometry, and water contact angle. Tensile and flexural destructive experimentation revealed the influence of the ultraviolet exposure on the mechanical properties. It was determined that the resistive portion of the EIS response correlated well with the ultimate tensile strength of the S2 Glass® fiber composites.Item An Electron Energy-Loss Spectroscopic Investigation of Molecular Interactions at Hydroxyapatite-Collagen Interfaces in Healthy and Diseased (Osteogenesis Imperfecta) Human Bone and Biomineralized Tissue-Engineered Bone(North Dakota State University, 2018) Payne, Scott AndrewAt its primary level (nm scale) bone is a nanocomposite consisting of a mineral (hydroxyapatite) phase which gives bone its strength and an organic (type I collagen) phase giving bone its fracture toughness. Hydroxyapatite, (HAP) Ca10(PO4)6(OH)2, is the most abundant mineral in the human body. Bone tissue has a complex hierarchical structure spanning multiple length scales (cm to nm). Characterization of mineral composition in biomineralized tissues such as bone at their primary level, is very challenging and requires instrumentation with nanometer-scale spatial resolution. Transmission electron microscopy (TEM) combines high spatial resolution with visual correlation of diffraction and elemental-composition data. Electron energy-loss spectroscopy (EELS) is a sensitive technique used to probe electronic structure at the molecular level. TEM-based EELS is the only available technique that can provide information about the chemical and coordination environment of minerals with nm scale spatial resolution. Prior studies in our group has developed a method to create biomimetic HAP using biomineralization routes inside the clay galleries of montmorillonite clay modified with amino acids (in-situ HAPclay). Incorporation of in-situ HAPclay into polymer scaffolds and seeding with human mesenchymal stem cells has enabled the cells towards differentiation into osteoblastic lineages without differentiating media. Because of the importance of these materials for bioengineering applications, TEM-EELS was used to evaluate differences and similarities among HAP, biomimetic in-situ HAPclay, modified MMT clay, and β-tricalcium phosphate. Osteogenesis imperfecta (OI), also known as brittle bone disease, is an inheritable disease characterized by increased bone fragility, low bone mass, and bone deformity caused primarily by mutation in collagen type I genes and is expressed as changes in structure and mechanics at the macrostructural level of bone. Therefore the mineralization of HAP in OI bone and the molecular basis of OI bone disease makes this an interesting system for molecular-level investigations. Small changes in the valence band and outer electronic structures of the diseased bone have been revealed through EELS. These small changes observed in the electron energy-loss spectra of the OI bone appear to play important biological roles towards development of the disease.Item Enhanced Bone Tissue Regeneration Enabled with Tissue-Engineered Interlocking Nanoclay Scaffolds and Bone Morphogenic Proteins(North Dakota State University, 2022) Kundu, KrishnaAbout 6 million bone fractures occur annually in the US; 30% require bone grafting transplants to aid bone healing. Well-established clinical therapy techniques for bone regeneration suffer from limited availability, higher infection risk, donor site morbidity, and poor transplant integration. Delay in healing or nonunion of critical-sized defects is another concern in orthopedics. This dissertation focuses on constructing an interlocking scaffold structure to speed bone regeneration. In this thesis, a BMP-2 & 7 coated PCL-nanoclay-hydroxyapatite interlocking scaffold was developed to accelerate bone regeneration. Developed nano clay polymer interlocking scaffolds retain the scaffold's structural integrity and provide a large surface area while allowing for media interaction. Mesenchymal stem cells (MSCs) and osteoblast cells seeded at a 1:1 ratio boost cell viability and enable calcium deposition on day three and collagen production on day 7 with BMP-2 and BMP-7 coated scaffolds. In addition, BMPs, interlocking, and co-culturing of osteoblasts and MSCs promote osteogenic differentiation. In this dissertation, The long-term effect of BMP-2/BMP-7 on in-vitro utilizing interlocking scaffold blocks was evaluated. Changes to the nanomechanical properties of scaffolds and bone tissue during osteogenesis with the progression of ECM formation were reported. Gene expression results and Alizarin Red S staining images indicate a significant increase in mineralized bone nodules with BMPs coated samples compared with uncoated samples. Results suggest BMPs played a critical role in mineralized ECM production, which increased the scaffolds' elastic modulus. This research provides valuable insight into understanding how BMPs affect bone growth. In this dissertation, polymer clay nanocomposites fibers were constructed utilizing a pressured gyration setup and observed improved cell viability, osteogenic differentiation, ECM development, and collagen formation for PCL HAP MMT-Clay nanocomposite fiber scaffolds compared to pure PCL fibers. In this dissertation, the in-silico design of the unnatural amino acids modified clays and fabricated unnatural amino acids modified scaffolds were reported for application as cancer testbeds. This dissertation also reported the design of the in situ hydroxy apatite and tri-calcium phosphate incorporated nano clays polymer scaffolds for bone tissue engineering applications. These studies represent a new opportunity to design manufacturable composite nanoclay polymer scaffolds for bone tissue engineering applications.Item Evaluating Mechanisms of Metastasis of Prostate Cancer to Bone Using 3D Bone-Mimetic Tissue Engineered Scaffolds(North Dakota State University, 2018) Molla, MD ShahjahanThe complex nature of cancer metastasis necessitates the development of a cancer model based on specific metastatic stages. In this dissertation, we report a polymer-nanoclay based in vitro tumor model which recapitulates early stage of prostate cancer skeletal metastasis. A unique cell culture system termed as ‘sequential culture’ has been applied to create a bone-mimetic niche for colonization of prostate cancer cells. Sequentially cultured MDA PCa 2b cells with MSCs formed self-organized multicellular tumoroids with distinct tight cellular junctions and hypoxic core regions. Further, the sequentially cultured PC-3 cell formed multicellular tumoroid like clusters. We performed immunocytochemical confocal microscopy, qRT-PCR, ELISA assays, nanomechanical evaluation and SEM imaging to characterize our tumor model. We observed that in the in vitro model that MSCs differentiated to matured osteoblasts, EMT (epithelial to mesenchymal transition) was inhibited, MET was enhanced, and hypoxia increased angiogenesis when prostate cancer cells were sequentially cultured with MSCs. We also studied the effect of prostate cancer metastasis on bone microenvironment using different prostate cancer cell lines. We found that the less metastatic MDA PCa 2b cells inhibited mineralized collagen formation whereas, highly metastatic PC-3 cells enhanced mineralized collagen formation. All the experimental results indicated osteoblastic bone formation by PC-3 cells and osteolytic bone resorption by MDA PCa 2b cells. Cancer metastasis is a complex process requiring dramatic remodeling of the cell cytoskeleton. Bone metastasis is characterized by complex biochemical, morphological, pathophysiological, and genetic changes to cancer cells as they colonize at remote bone sites. These changes can be captured in sum by changes to nanomechanical properties of cancer cells during metastasis. Using a specially designed nanoindentation apparatus, we observed significant softening of prostate cancer cells during MET and then further softening during the disease progression at the metastatic site. We observed a substantial reduction in elastic modulus of prostate cancer cells during MET arising from actin reorganization and depolymerization. This is the first study that reveals changes to nanomechanical characteristics of prostate cancer cells with correlation to cytoskeletal changes during MET and progression of the disease at the metastatic bone site.Item Experimental Evaluation of Multiscale Behavior of Human Bone(North Dakota State University, 2014) Gu, ChunjuBone is the most important structural member of the human body. It has a unique hierarchical structure and its primary constituents, collagen molecules and hydroxyapatite, are arranged in a staggered pattern at nanometer scale. Osteogenesis imperfecta (OI) is an inheritable disease characterized by the fragility of bones and other tissues rich in the type I collagen. OI provides an interesting platform for investigating how alterations of collagen at the molecular level cause changes in the structure of bone. In this dissertation, multi-scale-, particularly nanometer and sub-micro scale-, behaviors of both normal and OI (putative type I) human bones have been evaluated experimentally. Since chemical treatment influences collagen or mineral structure, we have used ―undisturbed bone samples‖ that are not subjected to any chemicals as previously done in literature. Photoacoustic-Fourier transform infrared spectroscopy (PA-FTIR) experiments reveal orientational differences in stoichiometry of hydroxyapatite. FTIR, electron microscopy, scanning probe microscopy, and nanomechanical tests also show that the OI disease results in a distorted microstructure in bone and that the mineralization of hydroxyapatite in OI is also altered. Modulus mapping test displays the distribution of mineralized fibril and extrafibrillar mineral according to the spatial variation of elastic properties. Dynamic nanomechanical behaviors of OI bone and normal bone indicates that the viscoelasticity of intact bone is mostly determined by the mineral. Also investigated are molecular composition and nanomechanical properties of different anatomical positions in the diaphysis of an OI human tibia. Our study on OI bone describes unique differences in collagen as previously described but also elaborates on unique influence of the non-collagenous proteins on mineralization of bone in OI. The fundamental premise of this work is investigation of the molecular basis of this highly debilitating bone disease.Item First Principle Study on Interfacial Energetic Alignment and Charge Transfer in Quantum Dots Functionalized via Metal-Organic Dye(North Dakota State University, 2016) Cui, PengQuantum dots (QDs) are promising materials for applications in solar energy conversion because of tunable band gap, multi-exciton generation, photon-upconversion, etc. One of the main challenges of increasing solar energy conversion is to extend the lifetime of photoexcited charge-carriers in conduction band, and one of the strategies is to functionalize QD with mediator molecules. Functionalizing QD with metal-organic dye serves as the additional channel of manipulating charge transfer – the key process increasing solar energy conversion. When metal-organic dye is attached to QD, the interfacial charge transfer direction as well as the rates are determined by a balance between the energetic alignment, QD-dye interaction as well as charge-carrier relaxation dynamics. In this dissertation, we explore the effect of dye functionalization on these elements. We change the metal ion, organic ligands as well as binding geometry of dye, size of QD, polarity of solvent, and use density functional theory to study their effects on energetic alignment. Embedding density functional calculation is used to study the dipole interaction between QD and dye providing additional controllability on charge transfer excitation. At last, we apply Tully surface hopping scheme in combining with density functional theory in time domain to study the charge-carrier relaxation dynamics and charge transfer across the heterogeneous interface in QD/dye nanocrystal composite.Item Flexible Nanocomposite Thin Films for Electronic Devices(North Dakota State University, 2019) Alzaid, Meshal MuflehElectronic technology is moving towards flexible, durable, and smaller devices with multifunctional capability. To accelerate this movement, creating materials with outstanding properties is critical. Nanocomposites based on single wall carbon nanotubes (SWCNTs) have received considerable attention because of their unique mechanical and electrical properties. When SWCNTs are formed as a sheet, they provide large contact area and ease of control, especially when incorporated into a flexible format. However, when SWCNT films are adhered to an elastic substrate, there are challenges with their use in flexible electronics, such as a reduction Young’s modulus under deformation. SWCNT films can undergo plastic behavior at even a small strain because individual SWCNTs slide past each other in response to deformation. To address these challenges, a strain-induced elastic buckling instability for mechanical measurements (SIEBIMM) method was used to query SWCNT film mechanics. The buckling wavelength and the film thickness are two main factors that influence the mechanics of nanocomposite thin films adhered to elastomeric substrates. SWCNT films coated with a second nanomaterial, such as a polymer thin film or nanocrystals (NCs), have shown a significant enhancement in elasticity. The studies described in this dissertation demonstrate that polymer thin film can reduce the strain softening of SWCNT films, where both yield strain and Young’s modulus increase with the introduction of SWCNT-polymer layers. Specifically, the films started to exhibit a strong synergy between SWCNT and polymer at a film thickness of around 20 nm, which is attributed to the thickness approaching the characteristic interfacial width between the two materials. Both a ‘passive’ polymer thin film (for example, polystyrene-PS) and an ‘active’ polymer thin film, the conducting polymer poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS), were investigated, spanning a bilayer to the bulk limit of SWCNT-polymer multilayers. In addition, ultrathin SWCNT films coated with colloidal NCs have also been investigated. We have utilized two approaches to coat SWCNT films with NCs: Langmuir-Blodgett (LB) and spray coating. Both Si and CdSe nanocrystals showed a roughly two-fold enhancement in film elasticity, which was attributed to an excluded volume effect that prevents the SWCNT rearrangement under an applied strain.Item The Free and Restricted Diffusion of Silicon Nanocrystal Clusters(North Dakota State University, 2015) Elbaradei, Ahmed BahgatBiological applications for silicon nanocrystals (SiNCs) have recently gained more attention because of silicon’s low toxicity. But, to be able to use SiNCs in applications such as biological sensors, labeling or drug delivery we need to understand their transport in different environments and their interaction with cell membrane. I will review some different methods for the synthesis of, and I will give an accounting of encapsulating SiNCs with PEGylated phospholipids to make them soluble in water. I also studied the free diffusion of these micelles in water, as well as their restricted diffusion and interaction with giant unilamellar vesicles (GUVs). I studied their restricted diffusion in oil emulsions. I was able to calculate the diffusion coefficient for a large number of micelles moving freely in water. I also measured the effect of water on the SiNC micelles intensity and observed the difference between the restricted diffusion in liposomes and emulsions.Item In-Silico Investigation of Geological and Biological Materials by Molecular Dynamics Simulations(North Dakota State University, 2021) Faisal, H M NasrullahMolecular dynamics (MD) simulation is a computational technique that predicts the time-dependent behavior of a molecular system utilizing molecular mechanics. MD simulations are extensively employed in the scientific arena to investigate a wide range of material systems at the nanoscale (atoms and molecules), including organics, inorganics, polymer, composites, biomacromolecules, etc. This work investigates the properties of a range of geological (Green River oil shale and swelling clays) and biological materials (coronaviral proteins) at the molecular level using MD simulations. Oil shale, a sedimentary rock containing organic crude oil precursor named kerogen trapped in an inorganic mineral matrix, has long been considered an alternative source of petroleum. Molecular dynamics simulation of Green River oil shale Type I kerogen has been performed in the proximity of predominantly present calcite and quartz minerals to identify their binding interactions with trapped kerogen from the mineral matrix for efficient crude oil production. Sodium-montmorillonite (Na-MMT), a member of the smectite group, is one of the swelling clay minerals components that find various geo-environmental and industrial applications due to its high swelling capacity. Steered molecular dynamics (SMD) simulations have been performed to determine the nanomechanical properties of both dry and hydrated Na-MMT clay tactoid. Besides the geological materials, MD and SMD simulations have also been used to computationally inspect the coronaviral protein-ACE2 protein interactions to elucidate the potential reasons why COVID-19 results in significantly more infections and deaths compared to other coronaviruses. The coronaviral attachment to host cell through spike-ACE2 interactions and coronaviral replication mechanism through tri non-structural protein (nsp12-nsp7-nsp8) interactions have been simulated to understand the differences between SARS-CoV and SARSCoV-2 (COVID-19). The major findings obtained from coronaviral protein interactions may point towards the underlying reasons behind the severity of COVID-19. Moreover, the potency of different phytochemicals has been examined for breast cancer treatment. Compounds commonly found in Rhodiola, and Oregano plants extracts have been targeted against a series of breast cancer proteins utilizing molecular docking to determine the most potent phytochemical for breast cancer treatment.Item An Insilico Design of Nanoclay Based Nanocomposites and Scaffolds In Bone Tissue Engineering(North Dakota State University, 2016) Sharma, AnuragA multiscale in silico approach to design polymer nanocomposites and scaffolds for bone tissue engineering applications is described in this study. This study focuses on the role of biomaterials design and selection, structural integrity and mechanical properties evolution during degradation and tissue regeneration in the successful design of polymer nanocomposite scaffolds. Polymer nanocomposite scaffolds are synthesized using aminoacid modified montmorillonite nanoclay with biomineralized hydroxyapatite and polycaprolactone (PCL/in situ HAPclay). Representative molecular models of polymer nanocomposite system are systematically developed using molecular dynamics (MD) technique and successfully validated using material characterization techniques. The constant force steered molecular dynamics (fSMD) simulation results indicate a two-phase nanomechanical behavior of the polymer nanocomposite. The MD and fSMD simulations results provide quantitative contributions of molecular interactions between different constituents of representative models and their effect on nanomechanical responses of nanoclay based polymer nanocomposite system. A finite element (FE) model of PCL/in situ HAPclay scaffold is built using micro-computed tomography images and bridging the nanomechanical properties obtained from fSMD simulations into the FE model. A new reduction factor, K is introduced into modeling results to consider the effect of wall porosity of the polymer scaffold. The effect of accelerated degradation under alkaline conditions and human osteoblast cells culture on the evolution of mechanical properties of scaffolds are studied and the damage mechanics based analytical models are developed. Finally, the novel multiscale models are developed that incorporate the complex molecular and microstructural properties, mechanical properties at nanoscale and structural levels and mechanical properties evolution during degradation and tissue formation in the polymer nanocomposite scaffold. Overall, this study provides a leap into methodologies for in silico design of biomaterials for bone tissue engineering applications. Furthermore, as a part of this work, a molecular dynamics study of rice DNA in the presence of single walled carbon nanotube is carried out to understand the role played by molecular interactions in the conformation changes of rice DNA. The simulations results showed wrapping of DNA onto SWCNT, breaking and forming of hydrogen bonds due to unzipping of Watson–Crick (WC) nucleobase pairs and forming of new non-WC nucleobase pairs in DNA.Item Investigating the Reduction of Fogging Behavior of Natural Fiber-Filled Polymers(North Dakota State University, 2021) Thanki, Nidhi ModhaSynthetic fibers such as glass and carbon are used as reinforcement in polymer composites due to their high strength and modulus. However, synthetic fibers are non-biodegradable and contribute to high costs. In literature, various natural fibers, including banana and sisal fiber, as reinforcement in a polymer matrix, are investigated for mechanical and thermal properties to overcome this challenge. Nevertheless, natural fibers bring their issues such as degradation and emissions of Volatiles Organic Compounds (VOCs), resulting in the fogging phenomena when exposed to heating-cooling cycles. In this study, effectiveness of addition of porous fillers in reducing VOCs emissions in biocomposites reinforced with natural fibers is investigated. Mechanical testing exhibited that adding the porous filler into the biocomposites did not hinder mechanical properties. It is hypothesized that adding the porous filler in the biocomposites could reduce the VOCs emission due to the pore structures absorbing the VOCs.Item Laser-Assisted Advanced Assembly for MEMS Fabrication(North Dakota State University, 2014) Atanasov, Yuriy AndreevMicro Electro-Mechanical Systems (MEMS) are currently fabricated using methods originally designed for manufacturing semiconductor devices, using minimum if any assembly at all. The inherited limitations of this approach narrow the materials that can be employed and reduce the design complexity, imposing limitations on MEMS functionality. The proposed Laser-Assisted Advanced Assembly (LA3) method solves these problems by first fabricating components followed by assembly of a MEMS device. Components are micro-machined using a laser or by photolithography followed by wet/dry etching out of any material available in a thin sheet form. A wide range of materials can be utilized, including biocompatible metals, ceramics, polymers, composites, semiconductors, and materials with special properties such as memory shape alloys, thermoelectric, ferromagnetic, piezoelectric, and more. The approach proposed allows enhancing the structural and mechanical properties of the starting materials through heat treatment, tribological coatings, surface modifications, bio-functionalization, and more, a limited, even unavailable possibility with existing methods. Components are transferred to the substrate for assembly using the thermo-mechanical Selective Laser Assisted Die Transfer (tmSLADT) mechanism for microchips assembly, already demonstrated by our team. Therefore, the mechanical and electronic part of the MEMS can be fabricated using the same equipment/method. The viability of the Laser-Assisted Advanced Assembly technique for MEMS is demonstrated by fabricating magnetic switches for embedding in a conductive carbon-fiber metamaterial for use in an Electromagnetic-Responsive Mobile Cyber-Physical System (E-RMCPS), which is expected to improve the wireless communication system efficiency within a battery-powered device.