Industrial & Manufacturing Engineering
Permanent URI for this communityhdl:10365/32561
Research from the Department of Industrial & Manufacturing Engineering. The department website may be found at https://www.ndsu.edu/ce/https://www.ndsu.edu/ime/
Browse
Browsing Industrial & Manufacturing Engineering by Subject "additive manufacturing"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Designing Bio-Ink for Extrusion Based Bio-Printing Process(North Dakota State University, 2019) Habib, MD AhasanTissue regeneration using in-vitro scaffold becomes a vital mean to mimic the in-vivo counterpart due to the insufficiency of animal models to predict the applicability of drug and other physiological behavior. Three-dimensional (3D) bio-printing is an emerging technology to reproduce living tissue through controlled allocation of biomaterial and cell. Due to its bio-compatibility, natural hydrogels are commonly considered as the scaffold material in bio-printing process. However, repeatable scaffold structure with good printability and shape fidelity is a challenge with hydrogel material due to weak bonding in polymer chain. Additionally, there are intrinsic limitations for bio-printing of hydrogels due to limited cell proliferation and colonization while cells are immobilized within hydrogels and don’t spread, stretch and migrate to generate new tissue. The goal of this research is to develop a bio-ink suitable for extrusion-based bio-printing process to construct 3D scaffold. In this research, a novel hybrid hydrogel, is designed and systematic quantitative characterization are conducted to validate its printability, shape fidelity and cell viability. The outcomes are measured and quantified which demonstrate the favorable printability and shape fidelity of our proposed material. The research focuses on factors associated with pre-printing, printing and post-printing behavior of bio-ink and their biology. With the proposed hybrid hydrogel, 2 cm tall acellular 3D scaffold is fabricated with proper shape fidelity. Cell viability of the proposed material are tested with multiple cell lines i.e. BxPC3, prostate stem cancer cell, HEK 293, and Porc1 cell and about 90% viability after 15-day incubation have been achieved. The designed hybrid hydrogel demonstrate excellent behavior as bio-ink for bio-printing process which can reproduce scaffold with proper printability, shape fidelity and higher cell survivability. Additionally, the outlined characterization techniques proposed here open-up a novel avenue for quantifiable bio-ink assessment framework in lieu of their qualitative evaluation.Item Form and Functionality of Additively Manufactured Parts with Internal Structure(North Dakota State University, 2019) Ahsan, AMM NazmulThe tool-less additive manufacturing (AM) or 3D printing processes (3DP) use incremental consolidation of feed-stock materials to construct part. The layer by layer AM processes can achieve spatial material distribution and desired microstructure pattern with high resolution. This unique characteristics of AM can bring custom-made form and tailored functionality within the same object. However, incorporating form and functionality has their own challenge in both design and manufacturing domain. This research focuses on designing manufacturable topology by marrying form and functionality in additively manufactured part using infill structure. To realize the goal, this thesis presents a systematic design framework that focuses on reducing the gap between design and manufacturing of complex architecture. The objective is to develop a design methodology of lattice infill and thin shell structure suitable for additive manufacturing processes. Particularly, custom algorithmic approaches have been developed to adapt the existing porous structural patterns for both interior and exterior of objects considering application specific functionality requirements. The object segmentation and shell perforation methodology proposed in this work ensures manufacturability of large scale thin shell or hollowed objects and incorporates tailored part functionality. Furthermore, a computational design framework developed for tissue scaffold structures incorporates the actual structural heterogeneity of natural bones obtained from their medical images to facilitate the tissue regeneration process. The manufacturability is considered in the design process and the performances are measured after their fabrication. Thus, the present thesis demonstrates how the form of porous structures can be adapted to mingle with functionality requirements of the application as well as fabrication constraints. Also, this work bridges the design framework (virtual) and the manufacturing platform (realization) through intelligent data management which facilitates smooth transition of information between the two ends.