Show simple item record

dc.contributor.authorFeickert, Aaron James
dc.description.abstractProjective and injective modules are of key importance in algebra, in part because of their useful homological properties. The notion of C-projective and C-injective modules generalizes these constructions. In particular, these modules may be used to construct resolutions and define related homological dimensions in a natural way. When C is a semidualizing module, the C-projective and C-injective modules have particularly useful homological properties. Further, one may combine projective and C-projective resolutions to construct complete PC-resolutions (and, dually, complete IC-resolutions) that yield other modules with nice homological properties. This paper surveys some of the literature on these constructions.en_US
dc.publisherNorth Dakota State Universityen_US
dc.rightsNDSU Policy 190.6.2
dc.titleResolutions and Semidualizing Modulesen_US
dc.typeMaster's paperen_US
dc.date.accessioned2014-04-08T18:19:39Z
dc.date.available2014-04-08T18:19:39Z
dc.date.issued2014
dc.identifier.urihttp://hdl.handle.net/10365/23139
dc.subject.lcshLocal rings.en_US
dc.subject.lcshInjective modules (Algebra)en_US
dc.subject.lcshProjective modules (Algebra)en_US
dc.subject.lcshHomology theory.en_US
dc.subject.lcshAlgebra, Homological.en_US
dc.rights.urihttps://www.ndsu.edu/fileadmin/policy/190.pdf
ndsu.degreeMaster of Science (MS)en_US
ndsu.collegeScience and Mathematicsen_US
ndsu.departmentMathematicsen_US
ndsu.programMathematicsen_US
ndsu.advisorSather-Wagstaff, Sean


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record