Micro-Pore Parametrics for Optimal Hyperfiltration of Conservative Contaminants

No Thumbnail Available

Date

2012

Journal Title

Journal ISSN

Volume Title

Publisher

North Dakota State University

Abstract

In compacted Na-montmorillonite membranes, the pore-size, and surface charge will influence filtration processes of solutes. A dead-end hyperfiltration setup was utilized to: (a) study the intrinsic retention, membrane filtration coefficient, and solution flux of different membrane configurations and (b) model nitrate break-through effluent concentrations through the membrane. Scanning electron microscopy and solute analytical techniques were employed to assess what critical components of micro-pore parametrics would prevail in a non-bio stimulated remediation of simulated agricultural wastewater. Although high content bentonite membrane configurations (5 g clay at 2500 psi) offered better solute rejections with a 30 percent increase in the cell concentration, the compaction of the membrane had the most deterministic influence on the solution flux. The results reveal hyperfiltration of nitrate ions is a function of the compaction pressure and composition of bentonite in the mixed soils. High content bentonite membranes compacted at the optimal pressures offer promising solutions to nitrate contaminant remediation.

Description

Keywords

Citation