Show simple item record

dc.contributor.authorKennedy, Diana Michelle
dc.description.abstractThe goal of this thesis is to provide an new generalization of Cohen-Kaplansky domains, stemming from questions related to valuation domains. Recall that a Cohen-Kaplansky domain is an atomic integral domain that contains only a nite number of irreducible elements (up to units). In the new generalization presented in this thesis, we remove the atomic condition required in the de nition of a Cohen-Kaplansky domain and add in the extra condition that our integral domain has nitely many irreducible elements, say 1; 2; ; n, such that for every nonzero nonunit y in the domain there exists an irreducible element, say i with 1 i n, such that i j y.en_US
dc.publisherNorth Dakota State Universityen_US
dc.rightsNDSU Policy 190.6.2
dc.titleA New Generalization of Cohen-Kaplansky Domainsen_US
dc.typeThesisen_US
dc.date.accessioned2018-03-27T18:20:22Z
dc.date.available2018-03-27T18:20:22Z
dc.date.issued2015en_US
dc.identifier.urihttps://hdl.handle.net/10365/27876
dc.rights.urihttps://www.ndsu.edu/fileadmin/policy/190.pdf
ndsu.degreeMaster of Science (MS)en_US
ndsu.collegeScience and Mathematicsen_US
ndsu.departmentMathematicsen_US
ndsu.programMathematicsen_US
ndsu.advisorDuncan, Benton


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record