The Effects of Spatial and Temporal Properties on a Viscoelastic Model of the Dyssynchronous Canine Heart

No Thumbnail Available

Date

2011

Journal Title

Journal ISSN

Volume Title

Publisher

North Dakota State University

Abstract

In this study, lumped parameter cardiovascular modeling has been used to understand the influence of muscle properties on mechanical dyssynchrony (MD) as well as general muscle dynamics. Incorporating viscous influence into the model allowed for an expanded view when analyzing muscle parameter response to MD. A unique method of ventricle segmentation was introduced that allowed fast analysis of regional and global ventricular properties. This segmentation process produced a ventricle with four identical sections each consisting of separately tunable muscle properties in the form of minimum and maximum elastance, elastance waveform delay, and myocardial viscous friction, yet these regional sections remained globally dependent. Elastance waveform delay proved to be the most influential property on MD as measured by internal flow fraction (IFF), followed by regional elastance magnitude, and finally regional viscosity influence. Due to the unique segmentation of this model, two metrics for IFF were derived: (1) the "true" IFF (IFF-4seg) and (2) the IFF as would be measured by an ideal conductance catheter (IFF-CC). The results of IFF-CC versus IFF-4seg show that conductance catheters are not capable of measuring IFF during a side-to-side volume transfer within the stacked cylinder under measurement. Finally, unique energetic situations were observed with this model that point to likely myocardium remodeling situations.

Description

Keywords

Citation