2 results
Search Results
Now showing 1 - 2 of 2
Item Surface Property Modification of Coatings via Self-Stratification(North Dakota State University, 2010) Pieper, Robert JosephBiological fouling occurs everywhere in the marine environment and is a significant problem for marine vessels. Anti-fouling coatings have been used effectively to prevent fouling; however, these coatings harm non-targeted sea-life. Fouling-release coatings (FRC) appear to be an alternative way to combat fouling. FRC do not necessarily prevent the settlement of marine organisms but rather allow their easy removal with application of shear to the coatings surface. These coatings must be non-toxic, non-leaching, have low surface energy, low modulus, and durability to provide easy removal of marine organisms. Here the goal is to develop FRC based on thermosetting siloxane-polyurethane, amphiphilic polyurethane, and zwitterionic/amphiphilic polyurethane systems. A combinatorial high-throughput approach has been taken in order to explore the variables that may affect the performance of the final coatings. Libraries of acrylic polyols were synthesized using combinatorial high-throughput techniques by either batch or semi-batch processes. The design of the experiments for the batch and semi-batch processes were done combinatorially to explore a range of compositions and various reaction process variables that cannot be accomplished or are not suitable for single reaction experiments. Characterization of Rapid-GPC, high-throughput DSC, and gravimetrically calculated percent solids verified the effects of different reaction conditions on the MW, glass transition temperatures, and percent conversion of the different compositions of acrylic polyols. Coatings were characterized for their surface energy, pseudobarnacle pull-off adhesion, and were subjected to bioassays including marine bacteria, algae, and barnacles. From the performance properties results the acrylic polyol containing 20% hydroxyethyl acrylate and 80% butyl acrylate was selected for further siloxane-polyurethane formulations and were subjected to the same physical, mechanical, and performance testing. Amiphiphilic copolymers based on PDMS molecular weight and the addition of PEG based polymer blocks on the properties of acrylic-polyurethane coatings were explored. The key properties screened were surface energy, determined by contact angle measurements using water and methylene iodide, dynamic water contact angle, and pseudobarnacle adhesion properties. The data from all of the biological assays indicates that the novel coatings were able to resist fouling and have low fouling adhesion for the broad variety of fouling organisms tested.Item Surface Optimization of Siloxane-Polyurethane Marine Coatings for Improved Fouling-Release Properties(North Dakota State University, 2016) Galhenage, Teluka PasanBiofouling has been an economically and environmentally costly problem to mankind ever since they set sail. Biofouling causes frictional drag leading to slow vessel speeds, and increased fuel costs. Antifouling (AF) coatings containing biocides have been used for decades, however, since some biocides have shown undesired effects towards the environment, a non-toxic solution to combat fouling is desired. Subsequently, fouling release (FR) coatings quickly gained acceptance as a non-toxic approach to contend with biofouling. Unlike AF coatings, FR coatings not necessarily prevent settlement of organisms, they permit weak adhesion which is easily released by water shear or light grooming. The siloxane-polyurethane (SiPU) coatings based on the concept of self-stratification is a non-toxic and durable approach to prepare FR coatings. In this work, several approaches were considered to optimize surface properties of SiPU coatings. Incorporation of phenyl-methyl silicone oils led to improved FR properties towards several marine organisms in laboratory assays and in ocean field immersion. Enhancement in FR properties may be attributed to slowly exuding silicone oil providing surface lubricity, weakening the adhesion of marine organisms. Addition of diphenyldimethyl siloxane in to SiPU coatings at different ratios resulted in micro-scale surface topographical features which negatively affected microfouling-release while several coatings displayed good FR performance towards macrofouling organisms. In another study, decreasing the acid group content helped to improve FR performance towards barnacles, but FR performance towards diatoms were compromised. Novel amphiphilic siloxane-polyurethane (AmSiPU) coatings from polyisocyanate pre-polymers modified with polydimethyl siloxane and polyethylene glycol displayed excellent FR properties towards several marine organisms during laboratory assays. These AmSiPU coatings show promise as contenders to commercial FR standards. Initial development of SiPU coatings with hydrophilic surfaces showed promise, as the coatings showed rapidly rearranging surfaces with comparable FR performance to commercial standards which claim hydrophilic surface properties. During freshwater field immersion trials, SiPU coatings displayed excellent mussel FR performance up to 3 years. Surface analysis suggested that solvent content affected self-stratification and morphology of SiPU coatings. The SiPU coating system is a highly tunable, tough, environmentally friendly, and practical FR solution which can evolve along with non-toxic commercial marine coatings.