3 results
Search Results
Now showing 1 - 3 of 3
Item Hydrologic Experiments and Analysis: The Effect of Microtopography on Runoff Generation(North Dakota State University, 2014) Bogart, Daniel FrederickMicrotopography is an important factor in hydrologic processes. The purpose of this research was to study the effects of microtopography on runoff generation. Specifically, this was performed through an array of physical experimentation comparing “rough” and “smooth” surfaces under natural and simulated rainfall. Utilizing these types of rainfalls required experimentation to take place in both field and laboratory settings. The range of control factors in this study varied from surface microtopography to soil type, rainfall intensity/pattern, and ambient moisture content. The recorded results of the laboratory study were further compared with the output of a puddle-to-puddle (P2P) overland flow model. The physical experiments showed a trend initially favoring neither the rough nor smooth surface in runoff production. However, in subsequent experiments the rough surface appeared to substantially increase runoff production relative to the smooth surface. Additionally, good agreement was found between the results of the physical experimentation and the model.Item Infiltration and Unsaturated Flow under the Influence of Surface Microtopography: Model Simulations and Experimental Observations(North Dakota State University, 2014) Liu, YangSurface microtopography affects fundamental hydrologic processes including infiltration and soil-water percolation at different scales. By means of studying the unsaturated flow, this thesis research is aimed to evaluate the effects of surface microtopography on wetting front moving patterns for rough soil surfaces through both experimental study and HYDRUS modeling. Additional influential factors such as rainfall intensity and soil type are also considered. Laboratory-scale infiltration and unsaturated flow experiments were conducted for different microtopographic surfaces, rainfall intensities, and types of soil; and two- and three-dimensional numerical modeling was conducted under the same conditions. The simulated and observed wetting front distributions were compared in this combined experimental and modeling study. It was found that a uniformly distributed wetting front was eventually achieved although soil surfaces had dissimilar topographic characteristics. However, the timing to reach the uniform flat wetting front varied, depending on surface microtopography, soil hydraulic properties, and boundary conditions.Item Characterization of Surface Microtopography and Determination of Hydrotopographic Properties(North Dakota State University, 2012) Chi, YapingSpatial characterization of surface microtopography is important in understanding the overland flow generation and the spatial distribution of surface runoff. In this study, fractal parameters (i.e., fractal dimension D and crossover length l) and three hydrotopographic parameters, random roughness (RR) index, maximum depression storage (MDS), and the number of connected areas (NCA), have been applied to characterize the spatial complexity of microtopography. Clear and meaningful relationships have been established between these parameters. The RR was calculated as the standard deviation of the processed elevation, and the fractal parameters were calculated with the semivariogram method. The puddle delineation program was applied in this study to spatially delineate soil surface and to accurately determine MDS and NCA. It has been found that fractal parameters can better characterize surface microtopography. More importantly, fractal and anisotropic analyses can help to better understand the overland flow generation process.