2 results
Search Results
Now showing 1 - 2 of 2
Item Design and Fabrication of Micro-Channels and Numerical Analysis of Droplet Motion Near Microfluidic Return Bends(North Dakota State University, 2019) Singh, John-Luke BenjaminThree-dimensional spheroid arrays represent in vivo activity better than conventional 2D cell culturing. A high-throughput microfluidic chip may be capable of depositing cells into spheroid arrays, but it is difficult to regulate the path of individual cells for deposition. Droplets that encapsulate cells may aid in facilitating cell delivery and deposition in the return bend of a microfluidic chip. In this study, a low-cost method for fabricating polymer-cast microfluidic chips has been developed for rapid device prototyping. Computational fluid dynamic (CFD) simulations were conducted to quantify how a change in geometry or fluid properties affects the dynamics of a droplet. These simulations have shown that the deformation, velocity, and trajectory of a droplet are altered when varying the geometry and fluid properties of a multiphase microfluidic system. This quantitative data will be beneficial for the future design of a microfluidic chip for cell deposition into 3D spheroid arrays.Item Generation and Analysis of Streamwise Vortices from Vortex Tube Apparatus(North Dakota State University, 2020) Carlson, Bailey McKayA pressurized vortex tube is used to generate streamwise vortices in a wind tunnel and the resulting flow behavior is analyzed. The apparatus is intended to verify computational data from the AFRL by offering a method of conducting real-world counterpart experiments. The apparatus design process and other considered approaches are discussed. The vortex tube is operated at pressures of 20, 30 and 40 psi while the wind tunnel is operated at 3, 5, 10 and 20% capacity. Flow measurements are performed using particle image velocimetry to observe vortices and freestream interactions from which velocity and vorticity data is comparatively analyzed. Results indicate that vortex velocity greater than freestream flow velocity is a primary factor in maintaining vortex structures further downstream, while increased supply pressure and reduced freestream velocity also reduce vortex dissipation rate. A brief analysis of the vortex interaction with a downstream airfoil is presented to support future work.