Search Results

Now showing 1 - 2 of 2
  • Item
    Increasing the Predictive Potential of Machine Learning Models for Enhancing Cybersecurity
    (North Dakota State University, 2021) Ahsan, Mostofa Kamrul
    Networks have an increasing influence on our modern life, making Cybersecurity an important field of research. Cybersecurity techniques mainly focus on antivirus software, firewalls and intrusion detection systems (IDSs), etc. These techniques protect networks from both internal and external attacks. This research is composed of three different essays. It highlights and improves the applications of machine learning techniques in the Cybersecurity domain. Since the feature size and observations of the cyber incident data are increasing with the growth of internet usage, conventional defense strategies against cyberattacks are getting invalid most of the time. On the other hand, the applications of machine learning tasks are getting better consistently to prevent cyber risks in a timely manner. For the last decade, machine learning and Cybersecurity have converged to enhance risk elimination. Since the cyber domain knowledge and adopting machine learning techniques do not align on the same page in the case of deployment of data-driven intelligent systems, there are inconsistencies where it is needed to bridge the gap. We have studied the most recent research works in this field and documented the most common issues regarding the implementation of machine learning algorithms in Cybersecurity. According to these findings, we have conducted research and experiments to improve the quality of service and security strength by discovering new approaches.
  • Item
    Detecting Insider and Masquerade Attacks by Identifying Malicious User Behavior and Evaluating Trust in Cloud Computing and IoT Devices
    (North Dakota State University, 2019) Kambhampaty, Krishna Kanth
    There are a variety of communication mediums or devices for interaction. Users hop from one medium to another frequently. Though the increase in the number of devices brings convenience, it also raises security concerns. Provision of platform to users is as much important as its security. In this dissertation we propose a security approach that captures user behavior for identifying malicious activities. System users exhibit certain behavioral patterns while utilizing the resources. User behaviors such as device location, accessing certain files in a server, using a designated or specific user account etc. If this behavior is captured and compared with normal users’ behavior, anomalies can be detected. In our model, we have identified malicious users and have assigned trust value to each user accessing the system. When a user accesses new files on the servers that have not been previously accessed, accessing multiple accounts from the same device etc., these users are considered suspicious. If this behavior continues, they are categorized as ingenuine. A trust value is assigned to users. This value determines the trustworthiness of a user. Genuine users get higher trust value and ingenuine users get a lower trust value. The range of trust value varies from zero to one, with one being the highest trustworthiness and zero being the lowest. In our model, we have sixteen different features to track user behavior. These features evaluate users’ activities. From the time users’ log in to the system till they log out, users are monitored based on these sixteen features. These features determine whether the user is malicious. For instance, features such as accessing too many accounts, using proxy servers, too many incorrect logins attribute to suspicious activity. Higher the number of these features, more suspicious is the user. More such additional features contribute to lower trust value. Identifying malicious users could prevent and/or mitigate the attacks. This will enable in taking timely action against these users from performing any unauthorized or illegal actions. This could prevent insider and masquerade attacks. This application could be utilized in mobile, cloud and pervasive computing platforms.