Search Results

Now showing 1 - 2 of 2
  • Item
    Single-Wall Carbon Nanotube Films Dip-Coating by Colloidal Nanocrystals Bilayer Films
    (North Dakota State University, 2019) Altayyar, Amal
    A wrinkling approach was used to study the mechanics of hybrid nanotube/nanocrystal coatings adhering to soft polymer (PDMS) substrates. We focused on three thicknesses: 10 nm, 30 nm, and 40 nm. The approach we used is the Strain-Induced Elastic Buckling Instability for Mechanical Measurements (SIEBIFMM) technique, which allows measurement of the SWCNT film mechanics by the buckling wavelength and the film thickness by inducing a compressive stress in the films at different strains; 2%, 4%, 6%, 8%, 10%, and 12%. In this thesis, dip-coating method with colloidal nanocrystals was used to enhance the rigidity of the carbon nanotube films by filling the pores of the nanotube network. Our results show an almost two-fold enhancement in the Young modulus of a thin SWCNT film related to the presence of a thin interpenetrating over-layer of the semiconductor nanocrystal.
  • Item
    Non-Thermal Plasma Synthesis of Luminescent Silicon Nanocrystals from Cylclohexasilane
    (North Dakota State University, 2019) Pringle, Todd Andrew
    In this report we establish cyclohexasilane (CHS) as a reliable precursor for non-thermal plasma synthesis of high quality photoluminescent silicon nanocrystals (SiNCs). We demonstrate that this synthesis approach can produce high quality, size tunable silicon quantum dots with quantum yields exceeding 60% as synthesized (subsequent work in our group has measured over 70% quantum yield after density gradient ultracentrifugation size purification).After a brief background on non-thermal plasma synthesis, the characterization methods used in this study, and an overview of CHS, we report at length on our development of the apparatus used, and our exploration of the controllable processing parameters of the synthesis method. We describe our successes and challenges with size tuning, sample collection, and passivation. Finally, we discuss preliminary studies we performed to identify promising future research areas. Novel reactor designs, blue light passivation, and magnetic confinement of plasma are described briefly to entice future researchers.