2 results
Search Results
Now showing 1 - 2 of 2
Item Changing the Pancreatic Cancer Treatment Paradigm: Developing Clostridium novyi as an Intravenously Injectable Solid-State Tumor Therapeutic(North Dakota State University, 2020) Dailey, Kaitlin MarieThe development of a drug able to distinguish between tumor and host cells has been long sought, but the solid tumor microenvironment (TME) confounds many current therapeutics. Solid tumors present several challenges for oncotherapeutics, primarily, (1) aberrant vascularization, resulting in hypoxia, necrosis, abnormally high pH, and (2) tumor immune suppression. Oncolytic microbes are drawn to this microenvironment by an innate ability to selectively penetrate, colonize, and eradicate solid tumors as well as reactivate tumor associated immune components. To consider oncolytic bacteria deployment into this microenvironment, Chapter 1 dives into the background of oncolytic microbes. A discussion of the oncolytic bacterial field state, identifying Clostridium novyi¸ as a promising species, and details genetic engineering techniques to develop customized bacteria. Despite the promise of C.novyi in preclinical/clinical trials when administered intratumorally, the genetic and biochemical uniqueness of C.novyi necessitated the development of new methodologies to facilitate more widespread acceptance. Chapter 2 reports the development of methods that facilitate experimental work and therapeutic translation of C.novyi, including the ability to work with this obligate micro-anaerobe aerobically on the benchtop. While methods development is a necessary step in the clinical translation of C.novyi so too is choosing the correct model of the TME within which to test a potential anti-cancer therapy. While the typical solid TME includes both phenotypic and genotypic heterogeneity, the methods used to model this disease state often do not reflect this complexity. This simplistic approach may have contributed to stagnant five-year survival rates over the past four decades. Nevertheless, simplistic models are a necessary first step in clinical translation. Chapter 3 explores the impact of cancer cell lines co-cultured with C. novyi to establish the efficacy of this oncolytic bacteria in a monolayer culture. Chapter 4 extends this analysis adding not only a level of complexity by using an in vivo model, but also using CRISPR/Cas9 to modify the genome of C.novyi to encode a tumor targeting peptide, RGD, for expression within the spore coat. The combination of these studies indicates that C. novyi is uniquely poised to accomplish the long sought after selective tumor localization via intravenous delivery.Item Therapeutic Potential of Piperlongumine for Pancreatic Ductal Adenocarcinoma(North Dakota State University, 2019) Mohammad, Jiyan MageedPancreatic ductal adenocarcinoma (PDAC) is among the most lethal malignancies because it is often diagnosed at a late disease stage and has a poor response rate to currently available treatments. Therefore, it is critical to develop new therapeutic approaches that will enhance the efficacy and reduce the toxicity of currently used therapies. Here we aimed to evaluate the therapeutic potential and mechanisms of action for piperlongumine (PL), an alkaloid from long pepper, in PDAC models. We postulated that PL causes PDAC cell death through oxidative stress and complements the therapeutic efficacy of chemotherapeutic agents in PDAC cells. First, we determined that PL is one of the most abundant alkaloids with antitumor properties in the long pepper plant. We also showed PL in combination with gemcitabine, a chemotherapy agent used to treat advanced pancreatic cancer, reduced tumor weight and volume compared to vehicle-control and individual treatments. Further, biochemical analysis, including RNA sequencing and immunohistochemistry, suggested that the antitumor activity of PL was associated with decreased cell proliferation, induction of cell cycle arrest, and oxidative stress-induced cell death. Moreover, we identified that c-Jun N-terminal kinase (JNK) inhibition blocks PL-induced cell death, translocation of Nrf2, and transcriptional activation of HMOX1 in PDAC. Finally, high-throughput drug and CRISPR screenings identified potential targets that could be used in combination with PL to treat PDAC cells. Collectively, our data suggests that cell cycle regulators in combination with PL might be an effective approach to combat pancreatic cancer.