Search Results

Now showing 1 - 2 of 2
  • Item
    Riparian Graminoid Species Responses and Productivity in Compromised Environmental and Soil Conditions
    (North Dakota State University, 2019) Wallace, Casey Ruth
    Riparian buffers have been created as a sustainable and effective way to combat the harmful effects of excess nitrogen and soil salinity in riparian settings. The goal of this research was to determine what species will I) germinate in saline environments and II) establish and produce sufficient biomass while being exposed to increased nitrogen. Incubation of eight native riparian graminoid species were evaluated for their ability to germinate in MgSO4-induced salinity. In a greenhouse study, seven riparian graminoid species were evaluated to quantify their ability to survive and take up nitrogen, mimicking buffer strips exposed to high inputs of runoff nitrogen. Slender wheatgrass and green needlegrass were able to germinate successfully when exposed to MgSO4 with EC levels up to 16 dS m-1 and 8 dS m-1, respectively. Of the graminoid species tested, smooth brome yielded sufficient biomass and nitrogen uptake percentages in a controlled setting.
  • Item
    Oil-Field Brine Impacts on Seed Germination and a Contemporary Remediation Technique for Contaminated Soils
    (North Dakota State University, 2019) Green, Aaron Wesley
    The growth of fossil fuel production in North Dakota has resulted in numerous releases of brine. Brine releases cause vegetation mortality as well as the deterioration of soil structural and edaphic properties. Little research to date has been dedicated to the germination response of plant species grown in North Dakota to brine-induced salinity. Through the exposure of plant seeds to increasing levels of brine and NaCl-induced salinity, it was determined that the graminoid species Elymus hoffmannii (AC Saltlander) and Pascopyrum smithii (Western Wheatgrass) exhibited the greatest germination at high salinities. Current remediation technologies for brine-impacted lands often produce mixed results, requiring further research and testing. In two laboratory experiments, the ability of materials to wick salts from brine-contaminated soils was tested. The results of these studies show that some materials reduced Na concentrations in sandy loam, loam, and silty clay soils by upwards of 88, 89.5, 38.4% respectively.