Sande, Leif Andrew2019-03-052019-03-052011https://hdl.handle.net/10365/29329Experimental studies on infiltration/soil-water movement processes are vital to better understanding movement of soil-water in the vadose zone. The objective of this experimental research was to investigate infiltration/soil-water movement processes utilizing laboratory experiments and computer modeling. Small scale laboratory soil box infiltration experiments were conducted and utilized for the improved parameterization of the Green-Ampt (GA) saturated moisture content parameter to produce an effective moisture content parameter (Be) for utilization in a modified GA model. By incorporating ⊖e values into GA modeling, modeling results showed greatly improved wetting front prediction across different soil conditions. A new soil packing method was proposed for replicating complex microtopographical surfaces with uniform bulk densities in laboratory soil box experiments which proved efficient and effective at accomplishing both objectives. A rainfall simulator and an instantaneous-profile laser scanner were used to simulate rainfall and quantify surface microtopography for experiments. The results clearly show the effect of microtopography on infiltration and soil-water movement characteristics. This offers valuable insight into infiltration/soil-water movement processes as affected by different soil and surface microtopographic conditions.NDSU Policy 190.6.2Soil infiltration rate -- Measurement.Groundwater flow -- Mathematical models.Soil moisture -- Mathematical models.Soil permeability -- Mathematical models.Experimental Studies on Infiltration/Soil-Water Movement Processes and Green-AMPT ModelingThesis