
MITIGATING NONLINEAR EFFECT AND PRESERVING PRIVACY FOR MEMRISTOR 

BASED ON-CHIP NEURAL NETWORK 

A Dissertation 

Submitted to the Graduate Faculty 

of the 

North Dakota State University 

of Agriculture and Applied Science 

By 

Jingyan Fu 

In Partial Fulfillment of the Requirements 

for the Degree of 

DOCTOR OF PHILOSOPHY 

Major Department:  

Electrical and Computer Engineering 

  

December 2021 

Fargo, North Dakota 

  



North Dakota State University 

Graduate School 
 

Title 
 MITIGATING NONLINEAR EFFECT AND PRESERVING PRIVACY 

FOR MEMRISTOR BASED ON-CHIP NEURAL NETWORK 

 

  

  

  By   

  
Jingyan Fu 

  

     

    

  The Supervisory Committee certifies that this disquisition complies with North Dakota 

State University’s regulations and meets the accepted standards for the degree of 

 

  DOCTOR OF PHILOSOPHY  

    

    

  SUPERVISORY COMMITTEE:  

    

  
Dr. Danling Wang 

 

  Chair  

  
Dr. Qifeng Zhang 

 

  
Dr. Sumitha George 

 

 
Dr. Mijia Yang 

 

  
 

 

    

    

  Approved:  

   

 December 13, 2021   Dr. Benjamin Braaten   

 Date  Department Chair  

    

 



 

iii 

 

ABSTRACT 

Memristors offer advantages as a hardware solution for neuromorphic computing, 

however, their non-ideal property makes the weight update difficult and reduces the accuracy of a 

neural network. Also, a large amount of personal data has raised great concern about the privacy 

preservation of neural networks. Thus, the performance of memristor-based neural networks gets 

worse when considering non-ideal property and introducing a privacy preservation mechanism. 

This dissertation focuses on improving the performance of a memristor-based privacy-preserving 

neural network. 

A piecewise linear (PL) method is proposed to mitigate the nonlinear effect of memristors 

by calculating the weight update parameters along a piecewise line, which reduces errors in the 

weight update process. It mitigates the nonlinearity impact without reading the precise 

conductance of the memristor in each updating step, thereby avoiding complex peripheral circuits. 

What’s more., the PL method is proved to be an effective technique that can prevent accuracy loss 

and increase privacy preservation space for privacy-preserving ANN. Also, we propose a Noise 

Distribution Normalization (NDN) method to add Gaussian distributed noise through hardware 

implementation, thereby achieving differential privacy in edge AI. Instead of using traditional 

algorithmic noise-insertion methods, we take advantage of inherent cycle-to-cycle variations of 

memristors during the weight-update process as the noise source, which does not incur extra 

software or hardware overhead. 
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1. INTRODUCTION 

1.1. Background 

Device scaling on the CMOS technology that effectively benefits the cost, speed, and 

power efficiency of Integrated Circuits (ICs), has driven the boom of the computing systems over 

the past several decades. Unfortunately, the increasing physical restrictions such as 

thermodynamic limits including quantum tunneling [1] make COMS device scaling reach a 

plateau, which suppresses the further progress of computing systems in large data centers or the 

Cloud, and also obstruct the fast deployment of sensors and actuators for the Internet of Things 

(IoT) [2]. Meanwhile, neuromorphic computing using bio-inspired learning algorithms has 

emerged and achieved tremendous success. However, due to the separated computation unit and 

memories [3], conventional von Neumann-based computing platform results in insufficient 

bandwidth and overlarge power consumption, particularly for the fast training and/or classification 

tasks in neuromorphic computing, such as real-time online recognition. Therefore, new synapse 

devices and technologies with remarkable performance and less cost are urgently needed.  

Memristors are one of such promising devices. A memristor is an analog device to exploit 

the multilevel conductance states, to regulate the flow of electrical current, and to store the amount 

of charge that has previously flowed through it [4, 5]. In a memristor-based neuromorphic 

computing platform, memristors are connected as neuron devices that implement the function of 

the Sum of Product (SOP). Weight update depends on the transition between different conductance 

states in memristors, which is typically triggered by voltage pulses. Specifically, according to the 

programmed voltage pulses, the conductance of memristors positively and negatively changes, 

enabling weight increase and decrease, respectively [3]. As a result, it can not only act as the non-

volatile memory, but realize the in-memory calculation which brings high potential to implement 
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neural networks in hardware. Different from traditional CMOS-based hardware, such as Field 

Programmable Gate Array (FPGA), Application Specific Integrated Circuit (ASIC), Graphics 

Processing Unit (GPU), and Tensor Processing Unit (TPU), the memristor-based in-memory 

computing architecture breaks the memory wall that results from the Von Neumann architecture, 

thereby achieving at least a 7× reduction of active power for implementing a basic neuron function 

[6]. Also, memristors have better CMOS process compatibility as compared with emerging 

technologies such as quantum computing, molecular computing, quantum dots, and spin-wave 

devices. However, memristors are not flawless and intrinsically suffering from their variability 

issues. The physical mechanism of the conductance modulation in most prospective synaptic 

devices is typically an ionic reconfiguration process based on electro/thermo-dynamics [7, 8]. This 

atomic-level random process is responsible for unavoidable variations including nonlinearity, 

device-to-device, cycle-to-cycle, and ON/OFF conductance variations [9]. The nonlinearity 

property makes it challenging to determine a proper width or amplitude of input signals for 

achieving the desired conductance of memristors. The cycle-to-cycle variations result in the 

different updated conductance when the same updating signal in different updating cycles is 

applied to a memristor, even when the initial conductance is the same. 

Recent years have witnessed significant progress in mobile devices and wireless sensor 

networks, creating unprecedented opportunities to deploy deep learning for smart IoT applications. 

However, when deep learning algorithms work on the edge for human-related applications, IoT 

devices will collect data, which in some cases may contain quite personal and high-value user 

information, therefore raising significant concerns regarding information privacy. It is thus 

possible for the private data to be misused, or to be hacked by outside attacks. Therefore, some 

sort of privacy protection method is required to guarantee a strong notion of privacy, while 
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preserving learning accuracy. Differential privacy [10] is one of the most popular technologies for 

privacy-preserving deep learning, realized by introducing perturbations. Differential privacy (DP) 

provides a mathematical constraint for the privacy loss associated with any data release from a 

statistical database. However, differentially private learning systems not only need to train 

complex models, but also must perform an additional computation for noise insertion as a 

protective mechanism to datasets, models, and algorithms [11]. Such a high-cost training process 

undoubtedly challenges traditional CMOS based hardware technology, and hinders development 

of deep learning, especially for power-sensitive and resource-limited edge computing in IoT 

systems. Therefore, instead of traditional CMOS based hardware technology, a memristor based 

differentially private learning system, with its low computation and storage cost, is an excellent 

candidate for edge AI. 

Thus, this dissertation focuses on improving the performance of memristor based privacy 

preserving neural network. 

1.2. Research Objective 

Memristor-based neuromorphic computing is such a flexible and attractive technology to 

meet the increasing needs of data processing [4, 5]. A memristor is a device with only three layers 

structure that can not only realize desirable device properties such as sub-10 nm feature sizes [12], 

sub-nanosecond switching speed [13, 14], long write-erase endurance [15], and nanoamperes 

programming energy [16], but also exploit multilevel conductance states [5]. However, memristors 

are not flawless, and intrinsically suffer from variability issues. The physical mechanism of the 

conductance modulation in most prospective synaptic devices is typically an ionic reconfiguration 

process based on electro/thermo-dynamics [7, 8]. This atomic-level random process is responsible 

for unavoidable variations including nonlinearity, device-to-device, cycle-to-cycle, and ON/OFF 
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conductance variations [9]. These non-ideal properties extremely degrade the performance of a 

memristor-based circuit. For instance, the nonlinearity makes it challenging to determine a proper 

width or amplitude of input signals for achieving the desired conductance of memristors. It is 

reported that the linear conductance change is the major requirement of memristor-based 

neuromorphic computing to realize high accuracy for online learning [3]. Four state-of-the-art 

memristors in literature – Ag:a-Si [17], TaOx/TiO2 [18], PCMO [19], and AlOx/HfO2 [20] are all 

characterized by device nonlinearity. As discussed in [9, 17], the accuracy of recognition based on 

Ag:a-Si with nonlinearity decreases over 20% compared to without nonlinearity. Therefore, firstly, 

my research objective is to propose new techniques that can mitigate the negative impact of 

memristor’s variations, especially the nonlinearity variation.  

To build a memristor-based neuromorphic computing system, another non-negligible point 

is privacy protection because usually the network is built from a large amount of private data 

training. Effective privacy protection technologies of memristor-based neuromorphic system are 

urgently needed A privacy preserving method is to introduce a randomized noise mechanism for 

differential privacy technology to quantify the protection ability. However, noisy and distorted 

data would lead to a degradation of recognition accuracy in ANN. Accordingly, solutions to 

balance privacy preserving and recognition accuracy are indeed needed. Therefore, secondly, my 

research objective is applying our proposed techniques on a memristor based privacy preserving 

neural network to counteract recognition degradation due to noise injection.  

Apart from the nonlinearity of memristors, which is mentioned above, the other non-ideal 

properties of memristors also degrade the performance of a memristor-based neuromorphic 

computing circuit. These properties include device-to-device variation, cycle-to-cycle variation, 

maximum conductance variation, and minimum conductance variation. Although these non-ideal 
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properties influence learning precision of a memristor-based system, such variations can also be 

considered as inherent resources for noise generation. Also, the privacy preserving method needs 

to introduce such randomized noise. Therefore, a promising way is to utilize variations of 

memristor. By this method, it is possible to add Gaussian noise distribution to a system without 

adding computational complexity and introducing extra hardware. Therefore, thirdly, my objective 

is to convert the negative impact of memristor’s cycle-to-cycle variation into a positive impact by 

utilizing the memristor for privacy-preserving neural networks. 

1.3. Contributions 

This dissertation focuses on improving the performance of memristor based privacy 

preserving neural network.  

First, a piecewise linear (PL) method is proposed to mitigate the nonlinear effect of 

memristors by calculating the weight update parameters along a piecewise line, which reduces 

errors in the weight update process. It mitigates the nonlinearity impact without reading the precise 

conductance of the memristor in each updating step, thereby avoiding complex peripheral circuits. 

This method makes the following contributions:  

• A PL method is proposed to effectively mitigate the impact of memristor’s 

nonlinearity property. Without reading precise conductance of memristors, the PL method makes 

weight update process along a piecewise line and the detailed working flow is presented. 

• To explore the PL method and its configuration, the relations among the recognition 

accuracy, number of segments, split selection strategies, and nonlinearity behaviors are 

investigated through the Modified National Institute of Standards and Technology (MNIST) 

database [21] based on simulation platform.  
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• Based on various configuration models provided by the PL method, the tradeoff 

analysis is conducted to reduce the cost by selecting an appropriate model. 

• By thorough evaluation, the effectiveness of the PL method is verified even with 

various variations including device-to-device variation, cycle-to-cycle variation, maximum or 

minimum conductance variation, and ON/OFF ratio variation. 

What’s more, the PL method is proved to be an effective technique that can prevent 

accuracy loss and increase privacy preservation space for privacy-preserving ANN. This 

investigation makes the following contributions:  

• A method for mitigating the nonlinearity impact in memristor-based privacy-

preserving ANN. To mitigate the impact of memristor’s nonlinearity property, an effective, 

hardware-based PL method with low circuit overhead is proposed, which makes the neuromorphic 

system become more accurate and applicable for ANN application. 

• A mechanism enhancing the immunity of memristor-based privacy-preserving 

ANN to nonlinearity property of memristor device. By applying the PL method under eight groups 

of private perturbations that follow differential privacy theory, the recognition accuracy of ANN 

is proved to get negligible degradation or even get increase than before.  

• Thorough evaluation. We evaluate the proposed method on standard image 

classification tasks [21] and conduct over 1,500 simulations that include 4 models, 8 groups of 

privacy perturbations, and 49 nonlinearity cases.  

• The tradeoff analysis. The PL method provides a variety of configuration models, 

and we discuss how to reduce the cost by selecting the appropriate model while meeting the privacy 

and accuracy requirements based on the actual device. 
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Also, we propose a Noise Distribution Normalization (NDN) method to add Gaussian 

distributed noise through hardware implementation, thereby achieving differential privacy in edge 

AI. Instead of using traditional algorithmic noise-insertion methods, we take advantage of inherent 

cycle-to-cycle variations of memristors during the weight-update process as the noise source, 

which does not incur extra software or hardware overhead. This method makes the following 

contributions:  

• A hardware solution that breaks the limitations of traditional software-based noise-

adding mechanisms of DP. A memristor-based hardware solution is proposed for differentially 

private learning systems that does not require additional circuitry. In this paper, the positive and 

negative pulse pair (PN) method is used to generate adjustable Gaussian noise, satisfying the DP 

constraint. The proposed method transforms non-beneficial cycle-to-cycle variations into a 

valuable measure for privacy protection.   

• Methods that address Differentially Private Stochastic Gradient Descent (DP-SGD) 

by hardware implementation. The Clipping method is proposed to avoid the L2 norm calculation 

of gradient matrices. A combination of the PN method and clipping method, called Noise 

Distribution Normalization (NDN) method, is proposed to implement the DP mechanism.  

• Privacy analysis and performance evaluation. Privacy analysis is conducted to 

verify the effectiveness of proposed methods. Furthermore, to illustrate the performance of each 

method, a comprehensive suite of simulations has been conducted. 

1.4. Organization 

This dissertation is organized into 7 chapters. Chapter 2 introduces related work on 

mitigating nonlinear effect of memristive synaptic device, related work on improving performance 

of memristor based neuromorphic hardware for privacy preserving neural network, and related 
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work on improving performance of memristor based variation enabled differentially private 

learning systems for edge computing in IoT. 

Chapter 3 introduces the preliminaries about memristor and its property, differential 

privacy, and neural network, which will provide the foundation for the rest of the dissertation.  

Chapter 4 introduces a new technique that uses pulses programming method to update the 

weight, following the nonlinear curve of memristors, thereby enhancing the accuracy of the 

learning algorithms. It mitigates the nonlinearity impact without reading the precise conductance 

of the memristor in each updating step, thereby avoiding complex peripheral circuits. The 

effectiveness of the proposed PL method with respectively 2-segment, 3-segment, and 4-segment 

models in two split selection strategies is investigated and the impact of various variations are 

considered. 

 Chapter 5 applies the proposed method in Chapter 3 to enable privacy-preserving ANN 

without accuracy degradation. The effectiveness of the proposed PL method with respectively 2-

segment, 3-segment, and 4-segment models is investigated. The results show that under different 

nonlinearity and different perturbation noise required by differential privacy theory, the PL method 

can increase the recognition accuracy of MNIST handwriting digits by 39.67% on average, which 

provides more space and margin for privacy-preserving technology. 

Chapter 6 introduces a Noise Distribution Normalization (NDN) method to add Gaussian 

distributed noise through hardware implementation, thereby achieving differential privacy in edge 

AI. Instead of using traditional algorithmic noise-insertion methods, we take advantage of inherent 

cycle-to-cycle variations of memristors during the weight-update process as the noise source, 

which does not incur extra software or hardware overhead. In one case study, the proposed method 

realizes ultra-low-cost DP-SGD (Differentially Private Stochastic Gradient Descent) for edge AI 
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in IoT systems, achieving a 3.5% to 15.5% average recognition accuracy improvement under 

different noise levels, as compared with a baseline mechanism. 

Chapter 7 summarizes the major conclusions of this dissertation and suggests a direction 

for future research. 
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2. RELATED WORK 

To optimize the performance of a memristor-based privacy preserving neural network, 

researchers propose various techniques addressing the issues that include nonlinear effect of 

memristive synaptic device, privacy preserving neural network, and cycle-to-cycle variation effect 

of memristive synaptic device. This chapter includes related work on these topics. 

2.1. Related Work on Mitigating Nonlinear Effect of Memristive Synaptic Device 

For analog applications of the memristor technology, the intrinsic nonlinearity property 

causes different conductance changes even with the same voltage pulse. Such nonlinear 

characteristic is also one of the most undesirable non-ideal factors for neuromorphic computing [9, 

22-25]. To mitigate the impact of nonlinearity property, investigations have generally proceeded 

in the following three aspects.  

The first aspect is to change the device structure by manufactural modification in order to 

eliminate nonlinearity property. For example, a thermal enhanced layer is added to confine heat in 

the switching layer to the HfOx RRAM device [26]. Another solution is to introduce an ion-

diffusion limiting layer for the TiN/TaOx RRAM device [27]. A more effective way is to utilize a 

charge trap layer to a gated Schottky diode in order to cancel the nonlinearity factor [28]. Although 

those devices can achieve relatively better linear property, they may ignore the other important 

features designated for the neuromorphic computing, such as the ON/OFF ratio and endurance 

characteristics. For instance, the reconfigurable gated Schottky diode has better linearity, but with 

low ON/OFF ratio [18, 28], which limits its application as an analog synapse. Moreover, 

nonlinearity is widespread and intrinsic in almost all memristors. Due to the implementation cost 

consideration, it is unfeasible nor impractical to create a new manufacturing method to mitigate 
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nonlinearities for each kind of memristor. As a result, novel effective and feasible approaches are 

necessary to conduct a synaptic operation.  

A more universal aspect is to control the conductance change with the current control, time-

domain control, and the flux- and charge-domain control. The current control mechanisms are 

based on transistor gate voltage and time duration in the configuration of one transistor and one 

memristor [29, 30]. The flux- and charge-domain control method describes device state as a 

function of flux or charge and adjusts the device state according to quantization of the flux or 

charge [31, 32]. In theory, these methods can accurately control the conductance of the memristor. 

However, the voltage or current inputs required by these methods are too complex to be 

implemented, since irregular shape pulses are difficult to generate. For example, for the time-

domain control [33], the input voltage curve requires an approximation using a 3rd, 4th, 7th, or 

9th order function. Since generating that voltage consumes too much time and power, it is often 

impossible to realize at circuit level. Therefore, an effective solution that is not only suitable for 

most devices, but also simple enough to realize is desirable. 

The third aspect is to utilize simply programmed pulses on memristors. Several 

programming schemes of the voltage pulse have been developed to achieve controllable 

conductance modulation. For example, the bipolar-pulse scheme [9, 34] applies a pair of positive 

and negative pulses with different amplitudes and durations. It partly mitigates nonlinearity at the 

low conductance stages where usually have large overshoots. However, the nonlinearity at the high 

conductance stages still exists. Also, in order to obtain precise conductance tuning, in [2, 35, 36], 

write-and-verify tuning with feedback circuits are used to adjust the device reliably. A linear and 

symmetric relation is demonstrated but using a much larger digital memory and multiple types of 

pulses [35]. With these methods, the conductance can be effectively controlled, but it needs to 
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identify and verify the precise conductance of the device for each weight update. Accordingly, 

extra processing circuits and a specific pulse generator are necessary, which increases the 

complexity of the circuit design and leads to area overhead and performance penalty. 

In this research, a novel Piecewise Linearity (PL) method is proposed to address the 

nonlinearity problem for memristors. The proposed PL method, using the same amplitude pulses 

with simple duration adjustment and without identification and verification of the precise 

conductance, effectively mitigates the nonlinearity and achieves a high recognition accuracy in 

neuromorphic computing. 

2.2. Related Work on Memristor-Based Neuromorphic Hardware Improvement for 

Privacy-Preserving Neural Network 

With artificial neural networks (ANN) develops rapidly, it powers intelligent products by 

extracting patterns and building models. Meantime, data privacy greatly impacts our daily life, 

such as politics, security, businesses, relationships, health, and finances. The privacy problem is 

not limited to the threats associated with private data exposures or hacking attempts. It is also 

possible to glean extra information even if the data are anonymized and the ANN models are 

inaccessible. Privacy-preserving ANN technologies are proposed to make that ANN transform our 

society positively without risking our sensitive data, which is mainly conducted by cryptographic 

approaches or differential privacy approaches [37]. Especially, differential privacy, that is more 

efficient and popular, resists attacks by adding random noise to the input data, to iterations in a 

certain algorithm, or to the algorithm output. In 2017, the Google security and privacy team 

released a Private Aggregation via Teacher Ensembles (PATE) framework [38], which scales to 

learning tasks with large numbers of output classes and un-curated, imbalanced training data with 

errors, and it was proved as tighter differential-privacy guarantees. In 2018, the ARDEN 
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framework was proposed to protect the sensitive information via local differentially private and 

noise training [39]. However, because these technologies are all based on software technologies, 

the presentence of noise is bound to cause a drop in accuracy and it is impossible to get higher 

accuracy than that without noise injection. Also, software-based noise injection causes latency 

problems and computational overhead. Recently, designers proposed to exploit inherent noise with 

the equivalent error-prone hardware to replace software-based noise to save much power [40], 

which indicates the hardware can provide a more effective solution to realize privacy-preserving 

ANN.  

In this research, instead of using traditional software method, we propose a method that 

applies in memristor-based ANN hardware system to improve privacy preserving space for 

differential privacy technology. The proposed method focuses on mitigating the nonlinearity 

problem of memristors to enable privacy preserving. 

2.3. Related Work on Memristor Based Variation Enabled Differentially Private Learning 

Systems for Edge Computing in IoT 

Most differentially private learning systems for IoT focus on algorithm-based framework 

improvement and optimization. For example, [41] proposes a framework that uses a protection 

layer to perform noise injection; and [42] designs a mechanism named LATENT that adds a 

randomization layer between the convolutional module and the fully connected module to perturb 

data for machine learning services. In [43], the Google security and privacy team released a Private 

Aggregation via Teacher Ensembles (PATE) framework that achieved private learning by 

carefully coordinating the activity of several different machine learning models. Differentially 

Private Stochastic Gradient Descent (DP-SGD) [44] makes fewer assumptions about the machine 

learning task than PATE, but it comes at the expense of making modifications to the training 
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algorithm. Such technologies inevitably need a large cost of noise-generation computing. 

Furthermore, all the above frameworks are software-based privacy protection technologies that 

might not be deployable on IoT devices due to resource constraints.  

Other researchers have presented novel hardware level solutions. In [40], low-voltage static 

random-access memory (SRAM) chips are used to add bit failures as training data noise. This 

method can save energy, but the added noise only followed a uniform distribution, and does not 

guarantee DP. In [45, 46], in order to generate random numbers with true randomness, dedicated 

random number generation modules, such as physical unclonable function (PUF) and random 

number generator, are designed. These modules are accurate but require additional circuitry. In 

[47], an advanced neuro-morphic system is implemented based on memristor arrays, but noise is 

inserted in training data to promise strong theoretical privacy guarantees, where the hardware and 

software are utilized separately for learning and privacy protection. 

Different from the above approaches, we propose a method that can achieve differentially 

private learning in edge AI with high efficiency and low computing cost by taking advantage of 

memristor-based hardware variations, which does not require any additional hardware or software.  

In this research, we utilize a 3-layer fully connected network and MNIST database as an example 

to verify the proposed method. However, our proposed method is generic, and can be applied to 

other databases and any deep learning models that can be mapped into a memristor-based crossbar 

array.  
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3. PRELIMINARIES 

This chapter provides preliminaries to this study by first introducing the concept of 

memristor, followed by discussing non-ideal properties of memristor. Second, besides discussing 

artificial neural networks (ANN), we also discussed how to build an ANN using memristors. 

Finally, a differential privacy concept is involved, which will provide the foundation for the rest 

of the dissertation.  

3.1. Artificial Neural Networks (ANN)  

3.1.1. Neural Networks 

Artificial neural networks (ANNs), or neural networks (NNs), are computing systems 

inspired by the biological neural networks. An ANN is based on a collection of connected units or 

nodes called artificial neurons, which model the neurons in a biological brain. Each connection, 

like the synapses in a biological brain, can transmit a signal to other neurons. To be clear, in this 

research, such connection is named as synapses. An artificial neuron receives a signal then 

processes it by propagation function and produce weighted sum. This weighted sum is called 

activation. This weighted sum is then passed through a (usually nonlinear) activation function to 

produce the output. The initial inputs are external data, such as images and documents. The 

ultimate outputs accomplish the task, such as recognizing an object in an image. A given neuron 

can have multiple input and output connections. Between neurons, the weighted sum is passed to 

neighboring neurons that is connected by these connections (synapses). Each synapse also has a 

weight that adjusts as learning proceeds. The learning process of ANN is also called training 

process. Briefly, learning of ANN is a method by which a machine can extract information from 

data by sending it through different layers of abstraction. With learning process, we are teaching 
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an AI to recognize the differences between things like cats and dogs, and to find patterns in large 

amounts of data.  

The three major learning paradigms are supervised learning, unsupervised learning and 

reinforcement learning. For supervised learning, the training of a neural network from a given 

example is usually conducted by determining the difference between the processed output of the 

network (often a prediction) and a target output. This difference is the error. The network then 

adjusts its weighted associations according to a learning rule and using this error value. Successive 

adjustments will cause the neural network to produce output which is increasingly similar to the 

target output. After a sufficient number of these adjustments the training can be terminated based 

upon certain criteria. For unsupervised learning, take image recognition as an example, developers 

create algorithms that cluster data by similarities. Instead of trying to determine if a group of pixels 

is cat or a dog, for example, it simply tries to figure out everything it can be. It output patterns in 

clusters and is possible to separate the images into dogs, cats, brown animals, white animals and 

so on. For reinforcement learning, the aim is to weight the network (devise a policy) to perform 

actions that minimize long-term (expected cumulative) cost. 

Some hyperparameters needs to be set before the learning process begins. Examples of 

hyperparameters include learning rate, the number of hidden layers and batch size. The learning 

rate defines the size of the corrective steps that the model takes to adjust for errors in each training 

step. A high learning rate shortens the training time, but with lower ultimate accuracy, while a 

lower learning rate takes longer, but with the potential for greater accuracy. A cost function is a 

mathematical formula used to evaluate how production expenses will change at different output 

levels. In other words, it estimates the total cost of production given a specific quantity produced. 

Backpropagation is a method used to adjust the connection weights to compensate for each error 
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found during learning. The error amount is effectively divided among the connections. Technically, 

backprop calculates the gradient (the derivative) of the cost function associated with a given state 

with respect to the weights. The weight updates can be done via stochastic gradient descent or 

other methods. 

In this section, we take a three-layer neural network as an example to illustrate the machine 

learning process. An artificial neural network is an interconnected group of nodes, inspired by a 

simplification of neurons in a brain. Here, each circular node represents an artificial neuron, and 

an arrow represents a connection from the output of one artificial neuron to the input of another. 

 

Figure 1. Artificial neural network. 
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Figure 2. Neural network between two layers. Vi, Gi,j, and Ij represent the input signal in ith 

neuron, the weight of the synapses in jth neuron of output layer and ith neuron in input layer, and 

the output sum that represent the dot product result of V and G, respectively.  

3.1.2. SGD Algorithm 

Stochastic gradient descent (often abbreviated SGD) is an iterative method for optimizing 

an objective function. It can be regarded as a stochastic approximation of gradient descent 

optimization, since it replaces the actual gradient (calculated from the entire data set) by an 

estimate thereof (calculated from a randomly selected subset of the data). Especially in high-

dimensional optimization problems this reduces the computational burden, achieving faster 

iterations in trade for a lower convergence rate. 

𝑄(𝑤) =
1

𝑛
∑ 𝑄𝑖(𝑤)𝑛

𝑖=1                                                            (1) 

where the parameter w that minimizes Q(w) is to be estimated. Each summand function Qi is 

typically associated with the i-th observation in the data set (used for training). 

When used to minimize the above function, a standard (or "batch") gradient descent method 

would perform the following iterations. 

𝑤 = 𝑤 −
𝜂

𝑛
∑ 𝛻𝑄𝑖(𝑤)𝑛

𝑖=1                                                           (2) 

where η is a step size (sometimes called the learning rate in machine learning). 
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3.1.3. Long-term Potentiation (LTP) and Long-term Depression (LTD) 

Long-term potentiation (LTP) and long-term depression (LTD) are cellular processes 

involved in learning and memory. In this research, the terms LTD and LTD are used to represent 

the trend of each synapse weight change. In other words, it represents the trend of each memristor 

conductance change for each synapse. Concretely, the conductance of the memristor (G) represents 

the weight of the synapse and it needs to be updated frequently during the data training process as 

determined by learning algorithms. In such updating process, the conductance can either increase 

in a process as long-term potentiation (LTP) or decrease in a process as long-term depression 

(LTD). In other words, the process that the stimulation leads to a persistent increase of the weight 

is called long-term potentiation of synapses, or LTP for short. The process that the stimulation 

leads to a persistent decrease of the weight is called long-term depression (LTD), or LTD for short. 

Ideally, when LTP or LTD occurs, the change in the conductance of an ideal synapse device is 

proportional to the number of input pulses. 

3.2. Memristors  

A memristor is an analog device to exploit the multilevel conductance states, to regulate 

the flow of electrical current, and to store the amount of charge that has previously flowed through 

it [4, 5]. It can realize desirable device properties such as sub-10 nm feature sizes [7], sub-

nanosecond switching speed [8, 9], long write-erase endurance [17], and nanoamperes 

programming energy [18].  

Memristor is name from memory and resistor. The concept of the memristor was first 

proposed by Chua. Memristor is introduced as the fourth hidden fundamental element, in addition 

to the resistor, inductor, and capacitor. The theoretical memristor connects the flux φ and charge 

q, which is shown in the equation: 𝑑𝜑 = 𝑀𝑑(𝑞) [5]. 
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Figure 3. The four fundamental two-terminal circuit elements. 

In 2008, Hewlett-Packard researchers presented the prototypical memristor (memory + 

resistor) devices based on a titanium dioxide insulator layer sandwiched between two metal 

electrodes (2008). The insulator layer comprises of a stoichiometric titanium oxide layer and a 

non-stoichiometric titanium sub-oxide layer (TiO2/TiO2−x). This prototypical device’s 

conductance can be changed by applying a voltage bias across the Pt electrodes. Such ability of 

encoding the biasing history makes the memristor be a promising storage memory. Different from 

dynamic random-access memory (DRAM) or static random-access memory (SRAM), memristors 

can realize non-volatile property, sub-10 nm feature sizes [12], sub-nanosecond switching speed 

[13, 14], long write-erase endurance [15], and nanoamperes programming energy [16]. However, 

it is challenged to combine all these properties into a single material system. 

Also, different from digital conductance change, the analog conductance tunability of 

memristor makes in-memory computing be possible. Unlike existing CMOS-based memory 

technology, which reads volatile capacitance states, memristor technology is a nonvolatile 
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technology that stores data using nonvolatile resistance states. All these devices exhibit an I-V 

hysteresis that changes from low resistance states (LRSs) to high resistance states (HRSs) and vice 

versa. Moreover, the area surrounded by the I-V hysteresis loop is continuously changed by 

changing the applied electrical signal. In other words, the memristor implements gradual 

conductance changes that can be utilized as synaptic plasticity. 

As a result, it can not only act as the non-volatile memory, but realize the in-memory 

calculation which brings high potential to implement neural networks in hardware [3]. In-memory 

or near-memory computing with SRAM, DRAM, or flash memory provides a highly parallel 

solution to resolve the ‘memory wall’ of the von-Neumann architecture. 

3.2.1. Synaptic Device 

Since memristor fabricated by HP in 2008, most memristors are built using simple three-

layer structures consisting of two electrodes layer and a switching layer that is generally comprised 

of dielectrics. The dielectrics used are mainly binary oxide materials such as silicon oxide (SiO2), 

titanium oxide (TiO2), copper oxide (CuO), nickel oxide (NiO), zinc oxide (ZnO), hafnium oxide 

(HfO2), tantalum oxide (Ta2O5) and aluminum oxide (Al2O3). Depending on the material and 

structure of memristors, the resistive switching characteristics can either be abrupt (binary) or 

gradual (analog). The abrupt resistance change is suitable for storing or processing binary data, 

and the gradual resistance change is more suitable for storing multiple resistance states for analog 

computing. There are reports of other switching materials, including heterogeneous materials, such 

as phase change memory (PCM) that are mainly built out of Chalcogenide materials (prime 

example is Ge2Sb2Te5). The other switching materials are cerium oxide and strontium Titanate 

(CeO2 and SrTiO3); organic materials, such as copper-Tetracyanoquinodimethane (Cu-TCNQ); 

electrolytic materials, such as copper sulfide (Cu2S) and chalcogenides such as silver–germanium–
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selenium (Ag–Ge–Se). However, because of the unconventional fabrication techniques, CMOS 

compatibility issues, or relatively unstable physical characteristics, these materials are less 

commonly used.  

In this research, we focus on implementing artificial neural network that generally consists 

of a large number of synapses. Memristor with gradual resistance change is more suitable for 

storing multiple resistance states for analog neural computing that implements the function of Sum 

of Product (SOP). Therefore, in this research, the synaptic devices that we adopted for 

neuromorphic computing is the memristor with gradual (analog) resistance change. For the rest of 

this dissertation, all mentioned memristors are refer to a special subset of the resistive memory 

devices that can continuously tune the conductance into multi-level states. 

In a memristor-based neuromorphic computing platform, memristors are connected as 

neuron devices that implement the function of the Sum of Product (SOP). Weight update depends 

on the transition between different conductance states in memristors, which is typically triggered 

by voltage pulses. Specifically, according to the programmed voltage pulses, the conductance of 

memristors positively and negatively changes, enabling weight increase and decrease, respectively 

[3]. However, memristors are not flawless and intrinsically suffering from their variability issues. 

The physical mechanism of the conductance modulation in most prospective synaptic devices is 

typically an ionic reconfiguration process based on electro/thermo-dynamics [7, 8]. This atomic-

level random process is responsible for unavoidable variations including nonlinearity, device-to-

device, cycle-to-cycle, and ON/OFF conductance variations [9]. We discuss nonlinear property 

and cycle-to-cycle variation in the following sub-sections. 
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3.2.2. Nonlinearity of Memristors 

The conductance of the memristor (G) represents the weight of the synapse and it needs to 

be updated frequently during the data training process as determined by learning algorithms. In 

such updating process, the conductance can either increase in a process as long-term potentiation 

(LTP) or decrease in a process as long-term depression (LTD), as shown in Figure 4 (a). Ideally, 

when LTP or LTD occurs, the change in the conductance of an ideal synapse device is proportional 

to the number of input pulses. Unfortunately, in reality, such change mismatches the input pulse 

due to the nonlinearity of memristors. For instance, as demonstrated in Figure 4 (b), the curve 

(black) represents the conductance of an actual memristor device as a function of the number of 

input pulses where the pulses have the same duration and the same amplitude. While the line (red) 

in Figure 4 (b) represents the function of the ideal case. In LTP, as shown in Figure 4 (b), assuming 

in a weight update process, the device’s conductance needs to be updated from point a to b. 

Usually, the corresponding number of pulses is calculated according to the ideal case (red). But, 

when these pulses are applied to the actual device, instead of changing from point a to b, the device 

conductance changes from point a to c. Therefore, the actual change of conductance and the 

required change are quite different. Similar weight updating error occurs in the LTD process. 

Consequently, the nonlinearity of the memristor causes the weight change of the synapse device 

to be inconsistent with the change required by the learning algorithm, thereby reducing the 

accuracy of ANN’s recognition. 
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(a)                                                    (b)                                                (c) 

Figure 4. The conductance change (weight updating) curve. (a) Conductance changes with 

identical input pulses. (b) Weight updating process based on linear line. (c) Weight updating 

process based on a piecewise line. 

We adopt a general conductance change behavior model [9] that is defined by the following 

equations: 

𝐺𝐿𝑇𝑃 = 𝐵 (1 − 𝑒(−
𝑃

𝐴
)) +  𝐺𝑚𝑖𝑛                                                              (3) 

 

𝐺𝐿𝑇𝐷 = −𝐵 (1 − 𝑒(−
𝑃−𝑃𝑚𝑎𝑥

𝐴
)) +  𝐺𝑚𝑎𝑥                                                       (4) 

 

𝐵 =
𝐺𝑚𝑎𝑥−𝐺𝑚𝑖𝑛

1−𝑒
(

−𝑃𝑚𝑎𝑥
𝐴

)
                                                                             (5) 

where Gmax, Gmin, and Pmax are directly extracted from the actual test data [9], which represents the 

maximum conductance, minimum conductance, and the maximum pulse number required to 

switch the device between the minimum and maximum conductance states. A and B are the 

parameter that controls the nonlinear behavior of the weight update. In this model, by adjusting A, 

the conductance curve is labeled with a nonlinearity value (NL) from +6 to -6, which represents 

the extent to the curve deviates from the ideal linear device and is illustrated in Figure 5. Here the 

positive (+) and negative (-) signs are merely to label LTP and LTD, respectively. 
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Figure 5. Conductance change curves under various nonlinearity of LTP and LTD. 

 

3.2.3. Cycle-to-cycle Variation of Memristors 

Memristors can achieve multiple conductance states. In our learning system, the 

conductance of each memristor represents the weight of each synapse. As shown in Figure 6, 

positive and negative input voltage pulses that are larger than the threshold voltage can switch a 

memristor gradually from Gmin to Gmax or from Gmax to Gmin, where Gmin and Gmax represent 

minimum conductance and maximum conductance, respectively. Thus, the conductance/weight 

increase process is called long-term potentiation (LTP) and the conductance/weight decrease 

process is called long-term depression (LTD) [48]. 

In the backpropagation phase of the DP-SGD algorithm, the weight update values (∆w) 

will be translated to a number of LTP or LTD pulses and applied to the synaptic array. The amount 

of conductance change should be linearly proportional to the number of write pulses; however, 

this linear change is broken by memristor variations. Among all variations of memristors not 

attributed to manufacturing process, cycle-to-cycle variation is caused by intrinsically stochastic 

resistance switching mechanisms [49-52] that can be approximated as a Gaussian or normal 

distribution [45, 46, 53-57]. It originates from the random formation and disruption of conducting 
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filaments [51] and the co-existence of multiple sub-filaments, where the active, current-carrying 

filament may change from cycle to cycle [52, 58]. To prove such randomness introduced by each 

programming operation, 500 cycles [59] and 5000 cycles [56] of experimental data are collected. 

Cycle-to-cycle variations result in the different updated conductance when the same updating 

signal in different updating cycles is applied to a memristor, even when the initial conductance is 

the same. 

 

Figure 6. Long-term potentiation process (LTP), long-term decrease process (LTD), and cycle-

to-cycle variation of a memristor. NLevel represents the number of conductance states of a 

memristor.  

3.2.4. Artificial Neural Networks (ANN) and Memristor  

ANN are computing systems vaguely inspired by the biological neural networks that 

transform inputs to desired outputs by feed-forward networks. As shown in Figure 7, each neuron 

in the network takes a weighted sum of the outputs of the prior layer, and then transfer the sum to 

the next layer.  

In the hardware implementation, the neural network can be directly mapped into a crossbar 

from where the inputs are connected into the rows and the outputs are connected into the columns. 
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Memristor-based crossbar circuit can store the synaptic weight and calculate the desired result 

(Sum of Product), at the same time, extremely improving the system efficiency. The desirable 

properties of memristors support the memristor-based crossbar circuit to be a promising substitute 

technology to traditional ones so that researchers begin realizing device-engineering and array-

integration hardware implementation of memristors. Usually, as shown in Figure 7, in the 

hardware application of the neural network, memristors act as synapses in crossbar structure and 

locate in each cross point.  

 

Figure 7. Hardware implementation of neural networks using memristor crossbar. Vi, Gi,j, and Ij 

represent the input signal in ith row, the conductance of the memristor in jth column and ith row, 

and the output current that represent the dot product result of V and G, respectively.  
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Figure 8. Block diagram of circuit flow of a three-layer ANN.  

 

3.3. Differential Privacy 

When deep learning algorithms work on the edge for human-related applications, IoT 

devices will collect data, which in some cases may contain quite personal and high-value user 

information, therefore raising significant concerns regarding information privacy. It is thus 

possible for the private data to be misused, or to be hacked by outside attacks. Therefore, some 

sort of privacy protection method is required to guarantee a strong notion of privacy, while 

preserving learning accuracy. A traditional privacy protection method is anonymization or de-

identification, which removes attributes in the data and returns a sampled data to protect privacy. 

However, it is still possible to discern information about the datasets, which is known as linkage 

attacks, statistical inference attacks, generative adversarial networks (GANs) based attack, and re-

identification attacks [60, 61]. For example, if we use deep learning for cancer diagnosis, when we 

release a learning model, we may unintentionally disseminate information about the training 

dataset so that a malicious attacker could identify individuals diagnosed with cancer. Another 
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privacy protection method is via cryptography such as homomorphic encryption, but it requires 

large computational overhead [62]. Currently, differential privacy [10] is one of the most popular 

technologies for privacy-preserving deep learning, realized by introducing perturbations. 

Differential privacy (DP) provides a mathematical constraint for the privacy loss associated with 

any data release from a statistical database. In edge computing, federated learning is a recent 

advance in private learning, where the model is trained in a decentralized manner without sharing 

the raw data. It prevents a third party from storing personal data as well as performing learning 

tasks on that data. Despite such privacy improvements, local differential privacy is necessary for 

federated learning because the weight updates uploaded by individual edge devices may still reveal 

private information. Adding noise to the weights/gradients during training on local data prior to 

aggregation by an untrusted server provides greater privacy protection to users [63]. Differential 

Privacy (DP) is a system that publicly shares data set information by describing the group pattern 

in the data set while concealing personal information in the data set. The idea behind differential 

privacy is that if the impact of any single replacement in the database is small enough, the query 

results cannot be used to infer the information of any single individual, thus providing privacy. 

Another way to describe differential privacy is as a constraint on the algorithm used to publish 

summary information in the statistical database, which limits the disclosure of private information 

recorded in the database. For example, some government agencies use differentiated private 

algorithms to publish demographic information or other statistical summaries, while ensuring the 

confidentiality of survey responses, and companies use differentiated private algorithms to collect 

information about user behavior, while controlling and even controlling internal analysts. Roughly 

speaking, if the observer who sees its output cannot judge whether a particular individual's 

information is used in the calculation, then the algorithm is differentially private. Differential 
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privacy is usually discussed in the context of identifying individuals whose information may be in 

the database. In other words, the basic idea of this model is to add specific noise so that inserting 

or deleting a record in a dataset does not statistically affect any calculated output. DP provides 

provable guarantees of privacy, mitigating the risk of exposing sensitive training data in machine 

learning [64]. Differential privacy promises a powerful standard for privacy guarantees either on 

algorithms or databases [39, 44, 64]. DP protection technology is recognized as a rigorous and 

robust protection model.  

Firstly, the definition of ε-differential privacy and equation are given below. 

Definition [10]: A randomized mechanism A satisfies ε-differential privacy when any 

adjacent input d and d’, and any output S of A is defined by, 

Pr[𝐴(𝑑) = 𝑆] ≤ 𝑒𝜀 × Pr[𝐴(𝑑′) = 𝑆]                                          (6) 

where d and d’ are adjacent inputs that differ in a single entry. In our work, for instance, each 

training dataset is a set of image-label pairs. The d and d’ are two sets that only one image-label 

pair is present in one set and absent in the other. The parameter ε is the privacy budget, which 

evaluates the privacy guarantee of the randomized mechanism A. A smaller value of ε means the 

closer recognition accuracies can be got from adjacent inputs and indicates a stronger privacy 

guarantee. By this definition, privacy preservation can be calculated and evaluated through ε.  

Typically, adding noise calibrated to the global sensitivity is a general method for 

approximating a function f, denoted as ∆𝑓, which is the maximal value of ||𝑓(𝑑) − 𝑓(𝑑′)|| among 

any input pair of d and d’ [10, 64]. For instance, the Laplacian mechanism is defined by,  

𝐴𝑓(𝑑) = 𝑓(𝑑) + 𝐿𝑎𝑝(∆𝑓/𝜀)                                                 (7) 

where 𝐿𝑎𝑝(∆𝑓/𝜀) is a random variable sampled from the Laplace distribution with scale Δf/ε. 
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Secondly, the definition of (ε, δ)-differential privacy is given below [9, 10]. A randomized 

mechanism, A, satisfies (ε, δ)-differential privacy when any adjacent input datasets, d and d’, and 

any output, S, of A satisfy the following equation.  

Pr[𝐴(𝑑) = 𝑆] ≤ 𝑒𝜀 × Pr[𝐴(𝑑′) = 𝑆] + 𝛿                                      (8) 

In our study, each training dataset is a set of image-label pairs. Given a negligibly small 

probability, δ, parameter ε is the privacy budget, which measures the privacy bound of the 

randomized mechanism, A, for adjacent datasets. A smaller value of ε means higher 

indistinguishability, thus a stronger privacy guarantee. By this definition, privacy preservation can 

be calculated and evaluated through ε, given δ. 

3.4. Differentially Private SGD Algorithm (DP-SGD)  

DP-SGD is a modification of the Stochastic Gradient De-scent (SGD) algorithm that is 

popular and serves the basis for many optimizers in machine learning [44]. Models trained with 

DP-SGD have provable privacy guarantees in terms of DP. Instead of working only on final 

parameters from the training process, DP-SGD controls the influence of training data during the 

training process. Figure 8 outlines the principles for training a model with weight parameters, θ, 

by minimizing the loss function.  

At each step of the DP-SGD [44], it computes the gradient for a random subset of examples, 

clips each gradient, computes the average, adds noise in order to protect privacy, and takes a step 

in the opposite direction of this average noisy gradient. Two operations are needed to ensure that 

stochastic gradient de-scent is a differentially private algorithm. The first is to clip the gradient 

computed on each training image to limit how much each training image can impact model 

parameters. The algorithm clips each gradient by a clipping threshold, C. In this paper, we use L2 

norm of gt(xi) to represent ||gt(xi)||2, which is explained in Figure 8. The second is to sample and 
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add random noise to randomize the algorithm. Thus, it is statistically im-possible to identify 

whether a particular sample is included in the training set.  

 

Figure 9. Outline of DP-SGD. Symbols and parameters: input dataset, weights θ, loss function 

L(θ), gradient g, learning rate ηt, noise scale σ, group size L, gradient norm bound C, total weight 

update step T, the square root of the largest eigenvalue of the matrix gt(xi)*gt(xi), ||gt(xi)||2, where 

gt(xi)* denotes the conjugate transpose of ||gt(xi)||2. 

 In this paper, we achieve the algorithmic essence of DP-SGD using a memristor-based 

neural network and our proposed methods. We realize a privacy-preserving memristor-based 

learning system without introducing extra computational processing or noise generation units. 
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4. MITIGATING NONLINEAR EFFECT OF MEMRISTIVE SYNAPTIC DEVICE FOR 

NEUROMORPHIC COMPUTING 

Memristors offer advantages as a hardware solution for neuromorphic computing, 

however, their nonlinear device property makes the weight update inaccurately and reduces the 

recognition accuracy of a neural network. In this paper, a piecewise linear (PL) method is proposed 

to mitigate the nonlinear effect of memristors by calculating the weight update parameters along a 

piecewise line, which reduces errors in the weight update process. It mitigates the nonlinearity 

impact without reading the precise conductance of the memristor in each updating step, thereby 

avoiding complex peripheral circuits. The effectiveness of the proposed PL method with 

respectively 2-segment, 3-segment, and 4-segment models in two split selection strategies is 

investigated and the impact of various variations are considered. The results show that under 

different nonlinearity, the PL method can increase the recognition accuracy of MNIST handwriting 

digits to 87.87%-95.05%, as compared to 10.77%-73.18% of the cases without the PL method. 

4.1. Introduction 

Device scaling on the CMOS technology that effectively benefits the cost, speed, and 

power efficiency of Integrated Circuits (ICs), has driven the boom of the computing systems over 

the past several decades. Unfortunately, the increasing physical restrictions such as 

thermodynamic limits including quantum tunneling [1] make COMS device scaling reach a 

plateau, which suppresses the further progress of computing systems in large data centers or the 

Cloud, and also obstruct the fast deployment of sensors and actuators for the Internet of Things 

(IoT) [2]. Meanwhile, neuromorphic computing using bio-inspired learning algorithms has 

emerged and achieved tremendous success. However, due to the separated computation unit and 

memories [3], conventional von Neumann-based computing platform results in insufficient 
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bandwidth and overlarge power consumption, particularly for the fast training and/or classification 

tasks in neuromorphic computing, such as real-time online recognition. Therefore, new synapse 

devices and technologies with remarkable performance and less cost are urgently needed. 

Memristors are one of such promising devices. A memristor is an analog device to exploit the 

multilevel conductance states, to regulate the flow of electrical current, and to store the amount of 

charge that has previously flowed through it [4, 5]. As a result, it can not only act as the non-

volatile memory, but realize the in-memory calculation which brings high potential to implement 

neural networks in hardware [3]. 

In a memristor-based neuromorphic computing platform, memristors are connected as 

neuron devices that implement the function of the Sum of Product (SOP). Weight update depends 

on the transition between different conductance states in memristors, which is typically triggered 

by voltage pulses. Specifically, according to the programmed voltage pulses, the conductance of 

memristors positively and negatively changes, enabling weight increase and decrease, respectively 

[9]. However, memristors are not flawless and intrinsically suffering from their variability issues. 

The physical mechanism of the conductance modulation in most prospective synaptic devices is 

typically an ionic reconfiguration process based on electro/thermo-dynamics [7, 8]. This atomic-

level random process is responsible for unavoidable variations including nonlinearity, device-to-

device, cycle-to-cycle, and ON/OFF conductance variations [3]. Especially, the nonlinearity 

makes it challenging to determine a proper width or amplitude of input signals for achieving the 

desired conductance of memristors. It is reported that the linear conductance change is the major 

requirement of a memristor-based neuromorphic computing to realize high accuracy for the online 

learning [9]. However, four state-of-the-art memristors in literature – Ag:a-Si [17], TaOx/TiO2 

[18], PCMO [19], and AlOx/HfO2 [20] are all characterized by device nonlinearity. For example, 
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the accuracy of recognition based on Ag:a-Si with nonlinearity decreases over 20% than that 

without nonlinearity [3, 17]. 

Therefore, a new technique is proposed to use pulses programming method to update the 

weight following the nonlinear curve of memristors, thereby enhancing the accuracy of the 

learning algorithms. 

4.2. Methodology 

To mitigate the impact of nonlinear property of memristors on neuromorphic computing, a 

Piecewise Linear (PL) method is proposed in this paper. As shown in Figure 3 (a), instead of 

calculating the number of required pulses along the ideal curve (green), the PL method performs 

the calculation along a polyline (pink), which fits the actual device property better than the ideal 

curve (green). Thus, the error that incurs from the nonlinearity of memristors is reduced. For 

example, Figure 9 (a) and Figure 9 (c) present the same conductance change curve without and 

with the PL method. After the same number of pulses are applied to points a and b, the conductance 

difference between the actual points d and c in Figure 9 (c) is reduced than that in Figure 9 (a).  

In Figure 3 (a), the polyline is composed of two lines, and we call it a 2-segment PL model. 

Similarly, based on the number of lines in the polyline, this method can be applied in the 3-segment 

(Figure 9 (d)) and a 4-segment PL model. From a qualitative point of view, the 3-segment and 4-

segment PL models result in further error reduction as compared to the 2-segment model. 

Next, we analyze the implementation process of the PL method. To make the change of 

conductance along with a piecewise line, instead of using the pulses with the same duration, the 

PL method uses different durations of pulses. First, we select split points to generate a polyline, 

then assume that the slope of the ideal conductance curve is k0 and the polyline slopes are {k1, k2, 

…, kn}. Then, we apply n types of pulses that are defined by the original pulse and these slopes, 
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which have the same amplitude. When the conductance change is required, one of the n types of 

pulses is selected. Specifically, the PL method scales the duration of pulses to k0/ki times of the 

original duration to compensate the conductance change caused by the nonlinear effect. In this 

way, the larger/smaller the line’s slope is, the shorter/longer the duration is. However, if a large 

weight update that crosses the turning point, the PL method will cause deviations using a single 

pulse type. We will discuss this case in section V. B. To implement the PL method, a set of memory 

is also needed to store the segment information, which is used to select a slope before each weight 

update.  The configurations of the PL method and its detailed working flow are presented in the 

section IV based on digits pattern recognition task.                 
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Figure 10. Conductance change diagram. (a) LTP, (b) LTD, (c)2-segment model, (d) 3-segment 

model. 
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4.3. Application on Digits Image Recognition 

To verify the effectiveness of the proposed PL method, we adopt the neural network 

hardware platform, NeuroSim+ [9, 48], to perform handwriting recognition using the Stochastic 

Gradient Descent (SGD) machine learning algorithm based on the MNIST database. The neural 

network of this simulator includes three layers with 400 neurons, 100 neurons (hidden layers), and 

10 neurons, respectively. Each simulation trains up to 125 epochs. Each epoch selects 8,000 

images randomly from 60,000 training images and takes 10,000 images as a testing dataset. The 

result data that shown in this paper is an average result of 10 simulations which is defined as a 

group.  

As discussed in Section III, the proposed PL method needs to select the split points to 

generate a polyline. Also, the PL method can select to be used in only one process (LTP or LTD) 

or both process (LTP & LTD). These configurations determine the total segment number, the 

required types of pulses, and the size of memory. The more segments, the less weight deviation 

that is caused by the nonlinearity but with higher circuit cost. In order to investigate the tradeoff 

among these configurations, we conduct two split selection strategies and three models including 

2-segment, 3-segment, and 4-segment models, and apply the PL method in LTD or LTP as well as 

LTD & LTP. In addition, further simulations are conducted to verify the effectiveness of the PL 

method under memristor’s variations, based on 4-segment PL model.  

4.3.1. Split Selection Strategies and 2/3/4-segment Models 

Split selection strategies include middle strategy and slope strategy. With middle strategy, 

the split points are selected to divide the conductance range into n equal segments. With slope 

strategy, the split points are selected to minimize the average difference between the actual curve 

and the polyline. The detailed illustration and points choosing method are shown in the Appendix. 
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When the PL method needs log2(n)-bit to store the conductance range information apart from the 

slope strategy in LTD & LTP that needs 2log2(n)-bit. This difference is because when using the 

PL method in LTD & LTP with slope strategy, the conductance at split points in LTP usually 

differs from the points in LTD. But they are equal when using middle strategy, thus, the memory 

can be shared between LTP and LTD. Additionally, the 2-segment, 3-segment, and 4-segment 

models are developed to verify the PL method with different split points number, which are also 

illustrated in the Appendix. 

4.3.2. Working Flow of the PL Method 

Based on MNIST handwritten database and SGD algorithm, the hardware working flow of 

the PL method with different configurations is shown in Figures 10, 11, and 12. First, the PL 

method provides various configurations that are needed to be determined before the hardware 

implementation. We choose segment model and split strategy of the PL method based on 

nonlinearity property of memristor devices that are used as synapses device. Accordingly, circuit 

parameters including pulses types and memory space are determined. The detailed configuration 

steps are 1) We investigate the NL value of the curve that represents conductance changes of the 

memristor to be applied with pulses; 2) A group of split points {M1, M2, …, Mn-1} in this updating 

curve are selected to identify n segments and n lines. The slope values of these lines {k1, k2, …, 

kn} are obtained based on Equation 9 and the pulses types are determined based on these slopes; 

3) A log2(n)-bit memory is needed to store the segment information of each device. 

𝑘𝑖 = (𝐺𝑖 − 𝐺𝑖−1)/(𝑃𝑖 − 𝑃𝑖−1)                                                (9) 

where 0 < i <n; ki, represent the slope of the line end with the points Mi and Mi-1; Gi and Pi represent 

the conductance and the pulse number corresponding to Mi, respectively. Here, Mi represents the 
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split point in the set of {M1, M2, …, Mn-1}, which is shown in the first step and it can also be the 

initial end of the updating curve M0 and the last end Mn. 

Second, at the beginning of the training process, all weights are initialized and these 

weights segment information are stored in memory, which are used to choose input pulses’ type 

for the first-time weight update. Here, the range of conductance is divided by the split points. 

Third, we follow SGD algorithm with data input, forward propagation, and backward propagation, 

then get the number of pulses to be applied for each memristor for weight updating. Next, by 

reading the stored segment information, the pulses duration is selected among the type-fixed 

pulses. Then, for each memristor after applying selected pulses, a comparison circuit is used to 

recognize the current segment information, thereby updating log2(n)-bit memory. The comparison 

circuit works right after the weight update for each memristor to make sure current segment 

information can be gotten no matter how large the conductance needs to be updated or how much 

the variation is during the update. Fourth, the third step is repeated until the training operation is 

completed. 

Given that the PL method offers multiple application strategies, which is needed to further 

investigate, in the next section the PL method is applied in 18 configurations for 10-digit 

recognition task based on a hardware simulator. 

Figs. 10, 11, and 12 show the curves for NL from 0 to 6 of LTP and with NL from 0 to -6 

of LTD for 2-segment, 3-segment, and 4-segment models, respectively. For memristors with the 

same NL, the difference between the curve and the polyline decreases as the segment number 

increasing. The middle strategy is the split points are selected with the values that can divide the 

conductance range into n equal segments. Points M in Figs. 10 (a) (b), 11 (a) (b), and 12 (a) (b) 
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represent split points with middle strategy for 2-segment, 3-segment, and 4-segment models and 

they are obtained by the Equation 10.  

𝐺𝑀𝑖 = (𝐺𝑚𝑎𝑥 − 𝐺𝑚𝑖𝑛) × (𝑖/𝑛) + 𝐺𝑚𝑖𝑛                                    (10) 

where GMi, Gmax, Gmin, and n represent the conductance of split point Mi (i=1, 2, …, n), the 

maximum conductance, the minimum conductance, and the number of the segment. The slope 

strategy is the split points are selected to minimize the average difference between the actual curve 

and the polyline. Points M in Figs. 10 (c) (d), 11 (c) (d), and 12 (c) (d) represent split points with 

slope strategy for 2-segment, 3-segment, and 4-segment models and they are obtained by the 

algorithm below. 
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(a)                                                                    (b) 

 

(c)                                                                    (d) 

Figure 11. 2-segment model. (a) LTP and middle split-point, (b) LTD and middle split-point, (c) 

LTP and slope split-point, (d) LTD and slope split-point. 
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(a)                                                                    (b) 

 

(c)                                                                    (d) 

Figure 12. 3-segment model. (a) LTP and middle split-point, (b) LTD and middle split-point, (c) 

LTP and slope split-point, (d) LTD and slope split-point. 
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(a)                                                                    (b) 

 

(c)                                                                    (d) 

Figure 13. 4-segment model. (a) LTP and middle split-point, (b) LTD and middle split-point, (c) 

LTP and slope split-point, (d) LTD and slope split-point. 
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Algorithm: Split Points M with Slope Strategy 

    Input: memristor conductance change curve function f1(x), ideal linear 

conductance change function f2(x), points number n, cycle index k. 

1: for i=1, 2, …, k-1 do 

2:        F(x)=f1(x)-f2(x)  

3:        Gdiff_max=max(F(x)) 

4:        XMi=F-1(Gdiff_max) 

5:        Mi (XMi, f1(XMi)) 

6:        Update f2(x) to a function of polyline that ends with Mmin,  

           M1, …, Mi, and Mmax.         

7: end for 

8: select n-1 points from M1, …, Mk-1 

9: return M1, …, Mn-1 

Figure 14. Algorithm of Split Points M with Slope Strategy. 

4.4. Results and Discussion 

A comprehensive suite of digit recognition simulations has been conducted to explore the 

proposed PL method that aims to mitigate the nonlinearity of memristors in a hardware 

implementation for a neural network. We perform 49 groups simulations to explore 49 different 

memristor devices whose NL in LTP is from 0 to 6 and NL in LTD is from 0 to -6. In each group, 

10 simulations with the same setting are conducted to get a representative average result. As the 

original case without the PL method, Figure 15 shows the recognition accuracy based on 49 

memristors with different NL. The accuracy is represented by a colored square. Figure 16 shows 

18 cases that are obtained from different combinations of different segment models and split 

selection strategies. To compare the overall effectiveness of the PL method among the original 

case and other 18 cases, the overall accuracy results are calculated by averaging the accuracy using 

different memristors under 49 NL combinations. Also, the minimum result and the maximum 

result (expect case without nonlinearity: LTP=0, LTD=0) are shown under each figure in Figures. 

15 and 16. It can be concluded that with the PL method, the recognition accuracy of the learning 
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algorithm can be improved to 87.87%-95.05% for 49 NL cases as shown in Figure 16, as compared 

to 10.77%-73.18% for that without the PL method as shown in Figure 15. 

 
Figure 15. (a) Flow chart of hardware-based neural network, (b) Circuit parameters 

configuration, (c) Block diagram of circuit flow. 

4.4.1. Working Flow of the PL Method 

As also shown in Figure 16, among 18 cases, the case with configuration of 4-segment, 

middle strategy, and both applied process (LTD & LTP) can achieve overall accuracy 91.54% and 

minimum accuracy 87.87% among 49 memristors with various NL. It indicates that utilizing the 

proposed PL method, even memristors with high nonlinearity (e.g. NL: (6, -6)) can be used as a 

synapse for an accepted recognition accuracy in neuromorphic hardware. As compared with the 

original case in Figure 15 whose overall accuracy is 25.16%, the PL method enables at least 20% 

higher overall accuracy as shown in Figure 16. In particular, for 2-segment, 3-segment, and 4-
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segment models with the PL method applied in both processes (LTD & LTP), the overall 

accuracies are increased by 59.5%, 64.5%, and 66.4%, respectively. Additionally, it can be 

observed in Figure 16, under the same circumstances, the case with higher segments shows higher 

overall accuracy. For example, in LTP & LTD with slope strategy, the overall accuracy of the 4-

segment model is 91.01%, which is higher than 84.63% of the 2-segment model and 89.67% of 

the 3-segment model. It indicates that a polyline with more segments fits the actual curve better 

than that with fewer segments, resulting in a higher overall accuracy. 

 

Figure 16. Original recognition accuracy for memristors with nonlinearity property. Minimum 

accuracy is 10.77%. Overall (Average) accuracy is 25.16%. Maximum accuracy (with NL) is 

73.18%. Without nonlinearity accuracy (NL (0,0)) is 95.55%. 

 

 



 

47 

 

 LTD LTP LTD & LTP 

2
-s

eg
m

en
t 

m
o
d

el
 M

id
d

le
 

   

  11.09% 52.36% 93.11%   18.32% 61.31% 92.22%   42.75% 78.83 % 92.21%  

S
lo

p
e 

   

   10.56% 45.67% 93.17%   15.89% 53.87% 90.81%   53.17% 84.63% 93.23%  

                 

3
-s

eg
m

en
t 

m
o
d

el
 M

id
d

le
 

   

  10.09% 60.87% 94.91%   71.65% 85.85% 94.82%   72.09% 86.20% 94.89%  

S
lo

p
e 

   

   10.94% 55.12% 94.78%   70.89% 85.20% 95.26%   86.31% 89.67% 94.84%  

Figure 17. The prediction accuracy of digit recognition with PL method in different 

configurations. The numbers under each figure are minimum accuracy, overall (average) 

accuracy, and maximum accuracy. 
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Figure 17. The prediction accuracy of digit recognition with PL method in different 

configurations (continued). The numbers under each figure are minimum accuracy, overall 

(average) accuracy, and maximum accuracy. 

 

 

Figure 18. The recognition accuracy of the MNIST handwriting digits when the nonlinearity is 

NL: (6/-6) that is considered as the worst nonlinearity case. 

4.4.2. Stability of Recognition Accuracy 

We further analyze the stability of the recognition accuracy enabled by PL. As shown in 

Figure 17, memristors with NL: (6/-6) that is considered as the worst nonlinearity case is taken as 

an example to show the recognition accuracy change during the training process. The nonlinearity 
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property causes the accuracy of the original case to be stuck at 10%.  The top line shows the ideal 

case that obtained by a pure learning algorithm without nonlinearity involved. The blue cross line, 

yellow star line, and the green circle line show the 2-segment, 3-segment, and 4-segment case with 

middle strategy and LTD & LTP, respectively. In Figure 17, each line has value fluctuations that 

are determined by the SGD algorithm. The 4-segment model has less fluctuation as compared to 

the 3-segment and the 2-segment model. As a result, the model with more segments can get more 

stable recognition accuracy. In addition, for the training process of neural network, at the 

beginning, because the weights are initially randomized, they will change a lot to fast converge 

with increasing training samples. Then the weight will be stable after several epochs.  As shown 

in Figure 17, when the number of training samples reaches 5% of the total, the recognition accuracy 

begins to stabilize. Therefore, even if there is a large weight change and weight deviation in the 

early stage of the training, after several initial epochs, the weight updating will shrink down, then 

a single pulse as input is adequate to induce conductance change to cover such weight updating. 

Therefore, our method is still suitable for this learning/training mode. Furthermore, in most neural 

network algorithms, the rate of weight updating can be adjusted by a given parameters, which also 

could help make the proper function when using the PL method. 

4.4.3. Impact of LTD and LTP 

Furthermore, as shown in Figure 16, when the PL method applies only in LTD process and 

remain LTP process, the nonlinear effect of LTD is mitigated and the NL of LTP becomes the 

main factor of the accuracy lose. This is because when one process (LTD or LTP) updating 

performance is improved, the nonlinearity in this process has less effect on the result and the other 

process performance dominates the results’ tendency. Therefore, if an asymmetric device has a 

relatively small linearity of LTD, but an aggressive nonlinearity of LTP, it is recommended to 
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apply the PL method in LTP only, which reduce the cost. Accordingly, the PL method applied in 

LTP benefits more for memristors with high NL of LTP and low NL of LTD. In our simulations, 

on the one hand, we use asymmetric devices, on the other hand, the LTP decides the weight 

increasing process that is used to enhance the connection between two neurons, which is more 

critical and sensitive. So, in Figure 16, the PL method applied for LTP achieves 8.2%-33.2% higher 

accuracy than that for LTD. Finally, when the PL method applies in LTD & LTP, the nonlinear of 

both processes is mitigated, and the overall accuracy is constantly higher than one process 

condition. 

4.4.4. Impact of Split Selection Strategies 

In addition, as shown in Figure 16, for 2-segment, 3-segment, and 4-segment models, when 

the PL method applies in three conditions (LTD, LTP, and LTD & LTP), the middle strategy shows 

difference as (6.7%, 7.4%, -5.8%), (5.8%, 0.7%, -3.5%), and (5.6%, -0.2%, 0.5%) compared with 

the slope strategy. It indicates that as the segment increase, the accuracy difference between middle 

and slope strategy decrease. This is because, with more segment’s divisions, the polyline 

introduced by the PL method fits the conductance curve better so that the difference between these 

two strategies gets smaller and smaller. For the middle strategy, when the PL applies in LTD 

(LTP), only lower left corner (upper right corner) of the results are improved. Such unbalanced 

optimization for various NL causes higher overall (average) accuracy than the slope strategy. 

However, when the PL method applies in LTD & LTP, the slope strategy shows more uniform 

accuracy improvement and gets higher overall (average) accuracy improvement than the middle 

strategy. Accordingly, from the view of overall (average) accuracy, the middle strategy is better 

for one process implement (LTD or LTP) but the slope strategy is better for both processes (LTD 

& LTP). 
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(a) 

  
 10.77% 25.16% 73.18%   38.15% 82.76% 93.17%  

without PL method 1-bit/2-pulse 

  
 76.97% 90.49% 95.26%   88.16% 92.18% 95.26%  

2-bit/3-pulse 2-bit/8-pulse 

 

(b) 

Figure 19. (a)The improvement of recognition accuracy. The red outline shows the cases that 

have accuracy improvement over 70%. (b) The highest accuracy achievement under the same 

cost. The number under each figure means minimum accuracy, overall accuracy, and maximum 

accuracy (except ideal case NL: (0,0)). 
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4.4.5. Impact of NL 

The effectiveness of the PL method is also influenced by NL. Figure 18 (a) shows the 

amount of recognition accuracy improvement using 4-segment PL model compared with the 

original one without PL applied.  Among 49 NL cases (expect case without nonlinearity: LTP=0, 

LTD=0), 38 cases achieve over 70% accuracy improvement with a large NL, which are ranged 

with a red curve, 5 cases achieve 55%-70% improvement with a moderate NL, and 5 cases achieve 

20%-40% improvement with a small NL.   

4.4.6. Storage and Pulses Cost of PL Method 

To implement the PL method, log2(n)-bit and n pulses with different durations are needed, 

as shown in Table 1. Although more segments with LTD & LTP cases obtain higher accuracy, 

more bits of memory and types of pulses are required, increasing the cost overhead. To represent 

the relationship between average accuracy of 49 various memristors and cost of the PL method, 

the accuracy index is calculated based on Equation 11. The high accuracy index indicates the high 

comprehensive efficiency. 

Accuracy index =  (Accuracy –  C1) / (B +  α × P +  C2)                      (11) 

where C1 represents the overall accuracy of the original case, which is 25.16%; C2 represents a 

basic cost of the peripheral circuit, which is determined by a practical situation, and it is set to 7 

based on the layout of the hardware simulator [9] that we adopt in this paper; B and P represent 

the cost of the bits of storage and the cost of pulse generators; α represent the cost ratio between 

B and P, respectively. The accuracy index range is shown in Table 1 when α ranges from 0.1 to 1, 

which refers to practical circuit design [9, 65]. Thus, the accuracy index that is shown as a 

reasonable range to reflect the trade-off between the cost and the accuracy requirement. For 

example, if α equals 1, the 3-segment model with middle strategy and LTP shows the highest 
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accuracy index (5.1), which results in less than 4% accuracy loss as compared that with slope 

strategy and LTD & LTP, but only need half of pulse generators and 66.7% memory cost, it has 

the highest comprehensive efficiency.  

Finally, taking the cost as a primary consideration, we compare the performance of the PL 

method. Figure 18 (b) shows the highest accuracy achievement under the same cost for 49 

memristors among results in Figure 16, which includes three representative cost profiles. Using 

the PL method with a cost of 1-bit/2-pulse, the overall accuracy can be 82.76%, which is increased 

by 57.6% compared with the original case. With the cost of 2-bit/3-pulse, the overall accuracy 

reaches 90.49%, which has 7.73% higher than the cost of 1-bit/2-pulse. The 2-bit/8-pulse case 

needs nearly three times more pulses than the cost of 2-bit/3-pulse, but the accuracy improvement 

is approximately the same as 2-bit/3-pulse. Accordingly, although the cases with a cost of 2-bit/3-

pulse can enable a better tradeoff, if the cost saving has a higher priority, the 1-bit/2-pulse is a 

better choice. 

Table 1. Cost and Overall Accuracy with the PL Method in Different Cases. a 

 model strategy #Bit #Pulse Acc LTD (%) Acc Index Acc LTP (%) Acc Index 

LTP or 

LTD 

2 Middle 1 2 52.36 2.7~3.3 61.31 3.6~4.4 

Slope 1 2 45.67 2.1~2.5 45.19 2.0~2.4 

3 Middle 2 3 60.87 3.0~3.8 85.85 5.1~6.5 

Slope 2 3 55.12 2.5~3.2 85.52 5.0~6.5 

4 Middle 2 4 59.58 2.6~3.7 86.94 4.8~6.6 

Slope 2 4 53.95 2.2~3.1 87.17 4.8~6.6 

     Accuracy (%) Accuracy Index 

LTD 

& LTP 

2 Middle 1 4 78.83 4.5~6.4 

Slope 2 4 84.63 4.6~6.3 

3 Middle 2 6 86.20 4.1~6.4 

Slope 3 6 89.67 4.0~6.1 

4 Middle 2 8 91.54 3.9~6.8 

Slope 3 8 91.01 3.7~6.1 

original (without PL) 0 0 25.16 0 
a #Bits, #Pulse, and Acc represent cost of the bits of storage for per synapses, cost of the types of 

pulses to generate for the neural network, and recognition accuracy of simulator, respectively. 
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4.4.7. Variations of Memristors 

Because of physical limitations of memristors, ON/OFF ratio variation (Gmax/Gmin), 

minimum conductance variation (Gmin), maximum conductance variation (Gmax), cycle-to-cycle 

variation (CtoC), and device-to-device variation (DtoD) [9] exist in the application of memristor 

based hardware implementation. To explore the effectiveness of the PL method, we investigate 

these variations following standard/Gaussian distribution N (µ, σ) into consideration using 4-

segment model and middle strategy. In our simulations, ON/OFF ratios are configured from 13 to 

14. Minimum conductance subjects to N (Gmin, σ×Gmin), and maximum conductance subjects to N 

(Gmax, σ×Gmax). Device-to-device variation represents nonlinearity variation of memristors in 

crossbar array, which subjects to N (NL(LTP), σ) and N (NL(LTD), σ) distribution and cycle-to-

cycle variation represents conductance deviations in each weight update, which is illustrate as 

Equation 12 [9]. 

𝐺 =  𝐺 +  (𝐺𝑚𝑎𝑥 − 𝐺𝑚𝑖𝑛)  ×  𝑁 (0, 𝜎)  × 𝑁𝑝𝛼                                (12) 

where Np represents the needed pulse number in each weight update, α represents the impact of 

Np and it is set to be 0.5 in our simulations. Above, LTP, LTD, Gmax, and Gmin are fixed parameters 

for each simulation. Table 2 shows two circumstances of variation and Table 3 shows the 

recognition accuracy for memristors under different circumstances. In Table 3, for the original 

circumstances without the PL method, the recognition accuracies are lower than 57%. This is 

because the SGD algorithm has the property of sublinear convergence under certain conditions. 

However, after adding nonlinear parameters and variation parameters, such conditions are 

destroyed, resulting in convergence failure [66-68]. The PL method provides solution on 

mitigating impact of memristors’ nonlinearity property, thereby avoiding convergence breakage. 

As shown in Table 3, for small variation (Var. 1), the PL method can keep the accuracy large than 
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70%, which is 55% improvement on average compared with the case without the PL method for 

NL from (0, 0) to (6, -6). For large variation (Var. 2), recognition accuracies decrease, but they 

still have 39% improvement on average for NL from (0, 0) to (6, -6). It concludes that even with 

various variations, the PL method is still efficient to improve the recognition accuracy, although 

its performance degrades when large variations involve. 

Table 2. Variations Cases. 

 Variations 

DtoD σ CtoC σ Gmax σ Gmin σ Gmax/Gmin 

Var. 1 a 1 1% 18% 18% 14 

                    Var. 2 2 3% 24% 30% 13 
a
Var. 1 and Var. 2 represent two circumstances that contain five variations. 

Table 3. Recognition Accuracy with Variations. 

 
Nonlinearity (LTP, LTD) 

(1, -1) (2, -2) (3, -3) (4, -4) (5, -5) (6, -6) 

Without the PL 

method 
Original accuracy 56.7% 31.7% 18.0% 14.8% 11.2% 11.8% 

With the PL 

method 

No variations 94.6% 92.8% 90.4% 88.7% 88.1% 88.3% 

With Var. 1 89.1% 85.0% 79.1% 76.0% 74.4% 71.1% 

With Var. 2 78.9% 70.5% 62.5% 59.8% 58.3% 52.5% 

 

4.4.8. Different Neural Network 

To verify the effectiveness of the PL method when the neuron network changes or becomes 

more complex, we conduct simulations of neural network with different number of neurons using 

4-segment model and middle strategy. For memristors with NL from (0, 0) to (6, -6), Table 4 

shows the recognition accuracy of neural networks with the neuron number in hidden layers are 

40, 100, and 160, respectively. The results as over 83% recognition accuracy verify that the PL 

method is still effective when the structure of the neural network changes (100 neurons in hidden 

layers resulting in Figs. 5 and 6). This is because the proposed method focuses on optimizing the 

hardware performance of the neural network by improving device-level. When the neural network 
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changes or the learning task becomes more complex, the PL method mitigates the nonlinearity 

impact of the memristor, thereby making the recognition of the memristor-based hardware are 

close to the results from pure algorithm. Actually, the PL method is independent of the structure 

of the neural network and complexity of the task.   

Table 4. Recognition Accuracy of Networks with Different Neurons.  

#N a 
Nonlinearity of memristor (LTP, LTD) 

(0,0) (1,-1) (2,-2) (3,-3) (4,-4) (5,-5) (6,-6) 

40 92.2% 92.1% 91.0% 88.4% 85.9% 84.7% 83.5% 

100 95.5% 94.7% 92.7% 90.7% 88.9% 88.0% 88.5% 

160 95.8% 95.2% 92.1% 90.4% 88.7% 87.4% 88.6% 
a #N represents the number of neurons in hidden layer of neural network. 

4.4.9. The PL Method and Other Works 

Table 5. The Comparison of the State-of-art. 

 [2] [9] [34] [35, 36] This 

Without precise read before writing × √ √ √ √ 

Without always change pulse amplitude √ √ √ × √ 

Without always change pulse duration × × √ √ √ 

Nonlinearity almost disappeares √ √ × √ √ 

 

The PL method is a simple, feasible, and universal method. As shown in Table 5, as compared 

with the state-of-art, the PL method does not need to read the conductance of memristor in every 

write step and does not need to change the amplitude or the duration of the update-pulses each 

time so that it avoids complex peripheral circuits. What’s more, with more segments, the 

nonlinearity of memristor almost disappears. Accordingly, the PL method is an effective technique 

to address the weight deviation issue caused by the nonlinearity property of memristors; also, it 

provides multiple configurations to meet different requirements of various applications. 
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4.5. Conclusion 

In this chapter, a PL method has been presented to mitigate the weight update error caused 

by the nonlinearity property of memristors. The 2-segment, 3-segment, and 4-segment models in 

two split selection strategies have been developed, which results 18 configuration cases. As 

compared to that without the PL method, each case provides over 20% higher overall accuracy. 

Also, this method realizes higher improvements of the recognition accuracy for higher NL and it 

achieves at least 87.87% accuracy for all 49 NL cases, which indicates that even devices with high-

nonlinearity (e.g. NL:(6, -6)) can be used as a synapse in neuromorphic hardware implementation. 

Also, when various variations of memristors exist, the PL method is investigated to verify its 

effectiveness. In addition, the following conclusions can be drawn from our study: 1) The proposed 

PL method with more segments shows higher overall accuracy and stability; 2) From the view of 

overall (average) accuracy, the middle strategy is better for one process implement (LTD or LTP) 

but the slope strategy is better for both processes (LTD & LTP); 3) The PL method realizes higher 

improvements of the recognition accuracy for higher NL; 4) The PL method provides flexible 

configurations so that it can achieve 57.6% recognition accuracy improvement in a low-cost 

situation, but if a higher accuracy is desirable, additional cost can be taken to realize 67.02% 

accuracy improvement. Finally, as compared with the state-of-art, the PL method avoids complex 

peripheral circuits, and with more segments, the nonlinearity impact of memristor to the 

neuromorphic hardware is almost negligible. 
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5. MEMRISTOR-BASED NEUROMORPHIC HARDWARE IMPROVEMENT FOR 

PRIVACY-PRESERVING NEURAL NETWORK 

Because of collecting a large amount of personal data, when artificial neural network 

(ANN) is used in human related topic, it has raised great concern on privacy preservation. A robust 

solution is to introduce noise injection mechanism as differential privacy that promises strong 

theoretical privacy guarantees. However, privacy-preserving ANN with noisy input data has a 

substantial risk of reducing the recognition accuracy. Therefore, it is urgently needed to have 

technologies that can make users’ data applied to neural networks while strictly protecting 

sensitive information. In this paper, a method is proposed to address this accuracy degradation by 

optimizing the performance of memristor in weight updating processes. Instead of complying with 

the traditional hardware and algorithm, the proposed method calculates update parameters along a 

piecewise line by using different input pulses. The proposed method can mitigate nonlinear 

problem of memristor without pre-reading the precise current conductance each time, thereby 

avoiding complex peripheral circuits. The effectiveness of the proposed method with respectively 

2-segment, 3-segment, and 4-segment models is investigated. The results show that under different 

nonlinearity and different perturbation noise required by differential privacy theory, the proposed 

method can increase the recognition accuracy of MNIST handwriting digits by 39.67% on average, 

which provides more space and margin for privacy-preserving technology. 

5.1. Introduction 

Privacy preservation is a critical challenge for ANN. The privacy preserving in ANN is to 

release statistical information from collected datasets without compromising the privacy protection 

of the individual respondents. An effective method is to introduce a randomized noise mechanism 

for differential privacy technology to quantify the protection ability. Usually, software-based 
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machine learning algorithms easily generate such randomized noise [44]. However, noisy and 

distorted data would lead to a degradation of the recognition accuracy in ANN. Accordingly, 

solutions to balance privacy preserving and recognition accuracy are indeed needed. One popular 

solution is adopting a specific algorithm, but with considerable computation overhead, which is 

neither acceptable for a general-purpose computing system such as data center because of the 

increasing workload, nor sufficient to satisfy the portable and edge computing system due to the 

resource-constrained, such as mobile devices, wearable devices, and IoT devices. Therefore, in 

this paper, we propose a memristor-based neuromorphic hardware improvement to enable privacy-

preserving ANN without accuracy degradation. That is to use linear optimization (PL) method to 

alleviate nonlinearity of memristors for weight updating in ANN to counteract recognition 

degradation due to noise injection, as shown in Figure 19. Therefore, privacy-preserving ANN 

provides enough space for randomizing noisy data to ensure that the publicly visible information 

do not change much if one individual in the dataset changes, which is enabled by differential 

privacy technology - a strictly provable, quantized, and security-controlled method.  

        

Figure 20. Concept of memristor-based neuromorphic hardware improvement for privacy-

preserving ANN. 
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Figure 1 Concept of memristor-based neuromorphic hardware improvement for privacy-preserving 

ANN. 
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5.2. Methodology 

5.2.1. Memristors 

To implement the piecewise linear (PL) method that is introduced in the section 4, firstly, 

because of variations exist, we need to find the average normalized conductance change curve of 

over 1000 representative memristor samples. In this case, although the proposed method solves 

nonlinear problems in varying degrees for each device, it can still greatly alleviate the overall 

weight-deviations problem of a memristor-based array, which will be discussed in Section V. F. 

Then, we need to choose split points that can divide the conductance curve into several segments. 

Thus, the piecewise line can be gotten. Next, the duration of input pulses can be calculated by the 

slope of the original ideal line, k0, and the slopes of the piecewise line, {k1, k2, …, kn}. Specifically, 

the PL method scales the duration of pulses to k0/ki times of the original duration to balance the 

conductance change caused by the nonlinear effect. To implement the PL method, a set of memory, 

log2(n)-bit memory, is also needed to store the segment information, which is used to select a 

slope before each weight update. Here, n represents the segment number, such as two, three, and 

four. In this way, the larger/smaller the line’s slope is, the shorter/longer the duration can be 

selected. Finally, after each weight update, the comparison operation should be completed to make 

sure the memory is updated based on the current conductance range of each memristor. This 

comparison does not need to read precise conductance of memristors but needs to compare with a 

reference value to recognize the current segment information of memristors. 

5.2.2. Differentially Private Transformation 

According to [64], differential privacy is immune to post-processing: A data analyst, 

without additional knowledge about the private database, cannot compute a function of the output 

of a private algorithm and make it less differentially private. This property of differential privacy 
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supports the differentially private transformation algorithm [10, 39]. This paper adopts the 

Laplacian mechanism and follows the private transformation algorithm [39] where the privacy 

budget ε can be proved to be calculated with given input data and the neural network by the 

following equation. 

ε =  2σ                                                               (13) 

where σ is the noise scale in private transformation algorithm in [39]. 

5.3. Experimental Evaluation 

In this section, digit recognition tasks are used as experimental examples to evaluate the 

effectiveness of the PL method that aims to mitigate the effect of a memristor’s nonlinearity in a 

hardware implementation. A comprehensive suite of simulations has been conducted to explore 

the space of privacy-preservation using the proposed PL method in memristor-based ANN. We 

adopt the neural network hardware platform NeuroSim+ [48] with nonlinearity property injection, 

as well as private transformation algorithm [39] to perform hardware-based privacy-preserving 

recognition through the Modified National Institute of Standards and Technology (MNIST) 

database [19]. The neural network of this simulator includes 400 neurons as input, 100 neurons as 

a hidden layer, and 10 neurons as an output layer, which is used for recognizing 10 number digits. 

Each simulation trains up to 125 epochs. Each epoch selects 8,000 images randomly from 60,000 

training images and takes 10,000 images as a testing dataset.  

5.3.1. Models  

The proposed PL method needs to select the split points in order to determine the types of 

pulses. According to the discussion of the weight update error in Section IV, the more segments, 

the less weight deviation that is caused by the nonlinearity but with higher circuit cost. Thus, in 

order to investigate the tradeoff between the recognition accuracy of privacy-preserving ANN and 
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the cost of the PL method, we conduct three models including 2-segment, 3-segment, and 4-

segment models.  

As shown in Figures 10, 11, and 12, for 2-segment, 3-segment, and 4-segment models, split 

points are selected where they can divide the conductance range into two, three, and four equal 

parts, respectively.  

5.3.2. Impact of Private Perturbation 

To explore the impact of PL method on the memristor-based privacy-preserving ANN, 

simulations with ε from 4 to 16 that reflects the strength of private preservation are conducted. The 

smaller the ε is, the larger the noise injection is needed, vice versa. To compare ANN with different 

nonlinearity of memristor, firstly, we conduct six groups of simulations with six different 

memristors that have the same absolute nonlinear value of LTP and LTD process. As shown in 

Figure 20, in each figure, the accuracy increases as the ε increases and all cases with the PL method 

have better performance as compared with the original case without the PL method applied. 

Among the three models of the PL method, the model with a higher segment shows higher 

accuracy. What’s more, as the memristors’ nonlinearity of ANN increase from (1/-1) to (6/-6), the 

differences between different models become larger and larger. 

It concludes that the accuracy of 4-segment model not only keeps an accuracy over 70% 

when ε is larger than 5, but also has less than 10% accuracy difference from NL (1/-1) to NL (6/-

6). However, the original model without the PL method gets much more increasing accuracy loss 

(at least 10%) as nonlinearity increases. Therefore, the 4-segment PL method shows more benefits 

as the nonlinearity of memristor increases in ANN. Furthermore, in some cases, the accuracy with 

the privacy preservation gets even higher accuracy when the PL method applied than the case 

without privacy preservation, for example, for 4-segment model, in NL (1/-1), (2/-2), (3/-3), (4/-
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4), (5/-5), and (6/-6), when ε ≥ 6.7, 5.7, 4.4, 4, 4, and 4, respectively. This indicates the PL 

method makes the memristor-based ANN hardware get more space for privacy preservation, which 

would lead to stronger privacy preservation. In addition, the PL method provides various PL 

models that can be chosen according to the nonlinearity of memristor. When the nonlinearity of 

the memristor device is relatively small, such as (1/-1) and (2/-2), the results of the 3-segment 

model are similar to that of the 4-segment model. Therefore, in this case, considering trade-off the 

performance and cost, the 3-segment is a better choice. 

ε=6.7

                  

ε=5.7

 

(a) NL (1/-1)                                                 (b) NL (2/-2)      

Figure 21. Recognition accuracy of the MNIST handwriting digits applying four method models 

with different private perturbation. The NL (x/-y) means the LTP nonlinearity of memristor is x 

and the LTD nonlinearity of memristor is y.                                     
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ε=4.4

                  

ε=4

 

(c) NL (3/-3)                                                 (d) NL (4/-4)  

ε=4

                  

ε=4

 

(e) NL (5/-5)                                                 (f) NL (6/-6) 

Figure 21. Recognition accuracy of the MNIST handwriting digits applying four method models 

with different private perturbation (continued). The NL (x/-y) means the LTP nonlinearity of 

memristor is x and the LTD nonlinearity of memristor is y.                                     
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(a) small noise (ε=16) 

 

 
(b) middle noise (ε=5.7)  

 

Figure 22. Recognition accuracy of the MNIST handwriting digits with the training images when 

the nonlinearity is NL (6/-6) that is considered as the worst nonlinearity case.  
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 (c) large noise (ε=4) 

Figure 22. Recognition accuracy of the MNIST handwriting digits with the training images when 

the nonlinearity is NL (6/-6) that is considered as the worst nonlinearity case (continued).  

5.3.3. Models Stability   

Then, we take the worst nonlinearity case of memristor (NL (6/-6)) as an example to 

explore the impact of different PL method models with ε = 16, 5.7, and 4, on recognition accuracy 

during the training process.  

As shown in Figure 21, the accuracy of each PL model has a short time of fluctuation 

before convergence, which is decided by the Stochastic Gradient Descent (SGD) algorithm of the 

hardware simulator. However, these fluctuations are different for different models. The 4-segment 

model always gets the highest accuracy as well as the most stable accuracy plateau and the 3-

segment model is also more stable than the 2-segment model. The fluctuation of accuracy increases 

as the noise level increases. In addition, because a larger segment model makes weight updating 

more fit to the real memristor, causing a smaller weight updating deviation, the case with more 

segments has higher and more stable recognition accuracy during the training process. 



 

67 

 

 

Figure 23. Recognition accuracy of the MNIST handwriting digits without the privacy-

preservation and PL method. The average accuracy of the 49 memristors’ nonlinearity cases is 

55.97%.  
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Figure 24. The recognition accuracy of memristor-based ANN with different models for 49 

nonlinearity cases of memristor. 
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5.3.4. Privacy-preserving Space for Various Nonlinearity   

Since for a memristor, the NL of LTP is not usually equal to the NL of LTD [17-20], we 

further investigate 49 different memristor devices whose NLs of LTP and LTD are from 0 to 6 (-

6). For those 49 memristors, we perform 49 simulations in four models (original case without the 

PL method, 2, 3, and 4 segment models) and with eight privacy protection noises, respectively. 

We also simulated the ANN without privacy protection and PL method, resulting in Figure 22, 

where the recognition accuracy result is represented by a colored square and the average accuracy 

of these 49 memristor nonlinearity cases is 55.97%, which is regarded as a parameter that reflects 

the overall performance of the original ANN. Next, Figure 23 shows recognition accuracies of 

ANN hardware without PL applied and with three PL models applied, respectively. It shows the 

results of three noise level applied (ε=16 (small), 5.7 (middle), and 4 (large)). To compare the 

overall effectiveness of the proposed method, the average accuracy results are calculated by 

averaging the accuracy of 49 NL cases, which is shown under each figure. The results show an 

increasing accuracy, when the segment in PL model increases, the noise level decreases, and the 

nonlinearity decreases, respectively. When the 4-segment PL model is applied and ε equals 5.7, 

the average can reach 75.46% that is a 47.74% improvement compared to the result 27.72% for 

that without the PL model. Figure 24 shows the accuracy improvement in three noise level 

applying the 4-segment model. It shows that the average accuracy improvements are 37.05%, 

47.73%, and 34.22%, respectively. Moreover, to study the average accuracy improvement of the 

PL method, Table 6 lists the average accuracy for four models with the ε between 4 and 16. As 

listed in Table 6, when the PL method applied, the case with the average accuracy that is larger 

than the case without noise (55.97%), gives more space for privacy-preservation. 

   



 

70 

 

   
37.05% 47.73% 34.22% 

(a) small noise (ε=16) (b) middle noise (ε=5.7) (c) large noise (ε=4) 

 

Figure 25. Recognition accuracy improvement of 4-segment LO model. The average accuracy 

improvement of each figure is shown under each figure.  

 

 
(a) Without PL method 

 

Figure 26. One cycle timing schematic in weight update process. (a) Without PL method, (b) 

With PL method. The memory represents the added memory component and the memristor 

represents the memristor that acts as a synapse in neural network. 
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(b) With PL method 

 

Figure 26. One cycle timing schematic in weight update process (continued). (a) Without PL 

method, (b) With PL method. The memory represents the added memory component and the 

memristor represents the memristor that acts as a synapse in neural network. 

Table 6. Cost and Average Accuracy with Different Models. 

Model original 2-seg 3-seg 4-seg 

Bit # cost 0 1 2 2 

Pulses # cost 2 4 6 8 

Average 

Accuracy 

(%) for 

49 NL 

cases a 

ε=4 19.72% 35.23% 47.21% 53.94% 

ε=4.4 20.70% 39.33% 53.66% 60.94% 

ε=5 24.37% 45.02% 58.62% 68.87% 

ε=5.7 27.72% 50.06% 64.77% 75.46% 

ε=6.7 33.56% 55.20% 71.95% 81.17% 

ε=8 40.93% 62.73% 78.31% 85.94% 

ε=10 48.07% 65.59% 82.69% 89.18% 

ε=16 54.25% 69.56% 85.59% 91.29% 

No noise 55.97% - - - 
a The data in bold show the cases that have higher accuracy than the original case without LO 

method applied (55.97%) as well as without privacy preservation. 
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5.3.5. Cost Analysis   

Models with more segments have better performance of ANN, but they need more cost of 

storage space and circuits to generate more types of pulses as listed in Table 6. However, some 

nonlinearity cases, their performance with 2-segment or 3-segment is similar to 4-segment model, 

such as memristors with NL (1/-1) in Figure 23 (a). Therefore, although the 4-segment model 

achieves the highest average accuracy for 49 NL cases, we should consider different NL cases 

independently to lower the unnecessary cost of storage space and circuits. Also, the PL method 

brings additional access in order to read and write the memory used for storing segment 

information. As shown in Figure 25, these accesses do not induce extra latency, because they are 

conducted with memristors’ reading and calculation at the same time, nearly hidden and covered 

in memristors’ operations. The proposed method only brings latency overhead for the comparison 

operation, as shown in Figure 25. But such comparison time is only a small ratio in one cycle. 

Finally, as compared with state-of-art works [2, 9, 34-36, 39], the proposed method needs less 

circuit complexity including a simpler pulse generator for the same amplitude pluses. 

5.3.6. Variations of Memristors  

The physical mechanism of the conductance modulation in most prospective synaptic 

devices is typically an ionic reconfiguration process based on electro/thermo-dynamics. This 

thermally activated ion migration and process variations are responsible for unavoidable variations 

including nonlinearity, device-to-device, cycle-to-cycle, and ON/OFF conductance variations [7, 

9, 69]. Considering variations exist among real devices, we simulate five variations that subject to 

standard normal distribution N (µ, σ) to explore the effectiveness of the 4-segment PL method. In 

our simulation, minimum conductance, maximum conductance, and device-to-device variation 
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subject to N (Gmax, σ×Gmax), N (Gmin, σ×Gmin), and N (NL(LTP), σ) and N (NL(LTD), σ), 

respectively. Cycle-to-cycle variation is illustrated as Equation 14 [9]. 

𝐺 =  𝐺 +  (𝐺𝑚𝑎𝑥 − 𝐺𝑚𝑖𝑛)  ×  𝑁 (0, 𝜎)  × 𝑁𝑝𝛼                                (14) 

where Np represents the needed pulse number in each weight update, α represents the impact of 

Np and it is set to 0.5 in our simulations. ON/OFF ratios are configured as 16 in variation 1 and 

14 in variation 2. For Variations 1 and 2 in Table 7, we set σ of minimum conductance, maximum 

conductance, device-to-device, and cycle-to-cycle variation as 6%, 6%, 1/1, 1, and 18%, 18%, 3/3, 

3, respectively [3]. 

In the presence of variations, the proposed method can keep recognition accuracies higher 

than 75% when noise level and variations are both small. Under the same circumstance without 

the PL method, recognition accuracies are not higher than 12%. Although as the variations and 

noise level increase, the accuracies of cases with the PL method decrease, they are still much 

higher than the accuracies without the PL method. It concludes that in real device condition when 

various variations exist, the proposed PL method is still proved to be an effective method for 

privacy preserving. 

Table 7. Recognition Accuracy with Different Variations. 

Epsilon 16 5.7 4 

Method PL Original PL Original PL Original 

Variation 

1 

(2/-2) 88.89% 10.98% 76.75% 11.02% 61.59% 11.51% 

(4/-4) 84.12% 10.99% 69.27% 10.81% 50.56% 11.39% 

(6/-6) 76.57% 11.36% 47.45% 10.90% 36.60% 9.53% 

Variation 

2 

(2/-2) 73.22% 10.44% 39.63% 10.35% 37.63% 13.27% 

(4/-4) 64.15% 11.01% 36.94% 10.74% 29.76% 12.17% 

(6/-6) 58.09% 11.73% 38.80% 11.51% 29.43% 10.11% 
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5.3.7. Comparison with Other Works 

As listed in Table 8, instead of optimizing the algorithm for privacy preservation [39], the 

proposed PL method is simple and feasible to addresses accuracy degradation due to privacy 

preservation by optimizing ANN in the hardware. As compared with the state-of-art [2, 9, 34-36, 

39], the PL method does not need to read the precise conductance of memristor before every write 

operation and does not need to change the amplitude of the update-pulses each time so that it 

avoids complex peripheral circuits. What’s more, with a 4-segments model, the PL method almost 

immune to the nonlinearity of memristor. Because our simulations are all based on the standard 

SGD algorithm and a regular hardware simulator, the recognition results still have a large space to 

be improved by using a more efficient ANN algorithm or by high-performance memristor devices. 

The method we propose is a universal method that works for all memristor-based hardware with 

nonlinear characteristics. Accordingly, the PL method is an effective technique to address the 

weight deviation issue caused by the nonlinearity property of memristors in privacy-preserving 

ANN; also, it provides multiple configurations to meet different requirements of privacy 

preservation. 

Table 8. The Comparison of the State-of-art. 

 [39] [37] [34] [2] [35] [36] This 

work 

Without precise read-before-write √ √ √ × √ √ √ 

Without always change pulse amplitude √ √ √ √ × × √ 

Without always change pulse duration √ × √ × √ √ √ 

Almost immune to nonlinearity × √ × √ √ √ √ 

No need for algorithm optimization × √ √ √ √ √ √ 
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5.4. Conclusion 

In this paper, the linear optimization (PL) method is proposed to improve the performance 

of memristor-based privacy-preserving ANN and it is verified based on MNIST database, the 

differentially private algorithm, and the memristor-based neural network simulator. Instead of 

adopting the traditional algorithm-based technology, the PL method focuses on hardware 

implementation to enable privacy preserving ANN. It does not need to read the precise 

conductance of memristor before every write operation in weight-updating process and does not 

need to change the amplitude of the update-pulses each time in ANN, which avoids complex 

peripheral circuits. The 2-segment, 3-segment, and 4-segment models for 49 types of memristors 

with nonlinearity from (0/-0) to (6/-6) have been developed to investigate the effectiveness of the 

proposed method, the results indicate 34.22% to 47.73% average recognition accuracy 

improvement when the privacy budget ε ranges from 4 to 16. This concludes: 1) the proposed 

privacy-preserving ANN has an increasing accuracy, when the segment in PL model increases, the 

noise level decreases, and the nonlinearity decreases, respectively; 2) a PL model with more 

segments not only has a stronger immunity to nonlinearity but also gets higher and more stable 

accuracy; 3) the proposed method is proved to be effective when variations exist. Furthermore, in 

some cases, since the accuracy with privacy preservation gets even higher accuracy, the PL method 

is applied to provide more space and margin for privacy preservation. Finally, the PL method aims 

at mitigating the nonlinearity impact of memristor devices; therefore it can be adapted to many 

other memristor-based hardware systems. Consequently, the PL method is proved to be an 

effective technique that can prevent accuracy loss and increase privacy preservation space for 

privacy-preserving ANN. 
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6. MEMRISTOR BASED VARIATION ENABLED DIFFERENTIALLY PRIVATE 

LEARNING SYSTEMS FOR EDGE COMPUTING IN IOT  

Edge AI (Artificial Intelligence) achieves real-time local data analysis for IoT systems, 

enabling low-power and high-speed operation, but comes with privacy-preserving requirements. 

Memristor based computing system is a promising solution for edge AI, but it needs a low-cost 

privacy protection mechanism due to limited resources. In this paper, we propose a Noise 

Distribution Normalization (NDN) method to add Gaussian distributed noise through hardware 

implementation, thereby achieving differential privacy in edge AI. Instead of using traditional 

algorithmic noise-insertion methods, we take advantage of inherent cycle-to-cycle variations of 

memristors during the weight-update process as the noise source, which does not incur extra 

software or hardware overhead. In one case study, the proposed method realizes ultra-low-cost 

DP-SGD (Differentially Private Stochastic Gradient Descent) for edge AI in IoT systems, 

achieving a 3.5% to 15.5% average recognition accuracy improvement under different noise levels, 

as compared with a baseline mechanism. 

6.1. Introduction 

Artificial intelligence involves many sensitive data, such as private, corporate, and national 

privacy information, which urgently needs effective privacy protection technologies. Differential 

privacy [64] is a popular solution that can provide a quantifiable indicator for privacy protection. 

From the perspective of differential privacy, machine learning algorithms could be designed to 

perform privacy preserving learning by introducing random noise [64]. However, the great 

problem is existing: 1) Machine learning training involves massive calculation, which introduces 

a large workload for hardware, especially for some real time applications such as online learning. 

2) When learning systems involve privacy protection, noise injection is needed in each training 
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stage [44, 70]. Such a high-cost training application further challenges hardware technology as 

well as impedes the development of privacy protection in ANN.  

To decrease the cost, many algorithm level solutions are proposed, for example, binary 

neural networks (BNN) [71] and neural network compression [72]. In addition, various hardware 

accelerators, such as Field Programmable Gate Arrays (FPGA), Application Specific Integrated 

Circuit (ASIC), Graphics Processing Units (GPUs), and Tensor Processing Unit (TPU), are 

developed. Nevertheless, the memory wall always exists [8] because of traditional Von Neumann 

architecture. Thus, emerging notions such as resistive computing, quantum computing, molecular 

computing, neuromorphic computing, memristor devices, quantum dots, and spin-wave devices, 

are explored. Among those technologies, memristor-based in-memory processing architecture is a 

promising candidate because memristors have desirable metrics and CMOS process compatibility 

[73]. The notion of memristor was predicted dozens of years ago and its physical realization was 

demonstrated by Hewlett-Packard Lab in 2008 [4, 5]. A memristor has a simple three-layer 

structure whose conductance value can be changed with the applied pulse, which can achieve 

multiple conductance states, small scale size (less than 2 nm), high switching speed (less than 1 

ns), and low programming power consumption [8]. Because of these metrics, memristor-based 

crossbar architecture achieves fast dot-product operations [74], which have been applied to 

fabricate neural network circuits such as compression/filtering [2] and image classification [35, 

36].  

As for privacy protection in ANN, in [40], low-voltage static random-access memory 

(SRAM) chips are used to add failure as noise for training data, but the noise only follows a 

uniform distribution and does not satisfy the differential privacy theory for Gaussian and Laplace 

distribution. In [45, 46], in order to generate random numbers with high randomness, dedicated 
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random number generation modules, such as physical unclonable function (PUF) and random 

number generator, are designed. These modules are accurate but require significant additional 

circuitry. Also, all the above work is based on CMOS technology, and not compatible with 

memristor-based learning systems. In [47], an advanced learning system is implemented based on 

memristor arrays, but noise in training data for theoretical privacy guarantees use software 

methods to seriously complicate calculation.  

 

Figure 27. Hardware implementation of neural networks using memristor crossbar. Vi, Gi,j, and Ij 

represent the input signal in the ith row, the conductance of the memristor in the jth column and ith 

row, and the output current that represents the dot product result of V and G, respectively. 

What is more, as for memristors, some researchers point out the existence of non-ideal 

properties that includes non-linearity, device-to-device variation, cycle-to-cycle variation, 

maximum conductance variation, and minimum conductance variation [9, 47, 75, 76]. These non-

ideal properties degrade the accuracy of a memristor-based learning system, however, such 

variations can be also considered as inherent resources for noise generation that is necessary for 

differentially private learning systems.  

In this paper, we take the cycle-to-cycle variation as an advantage to realize hardware-

based Gaussian noise injection. As a consequence, this paper explores differentially private 
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learning systems and proposes a hardware-based solution by utilizing the non-ideal properties of 

memristors. Also, optimization methods are proposed to improve the utility of neural networks. 

The proposed methods add Gaussian noise distribution to a system without adding computational 

complexity and introducing extra hardware, which greatly improves the power and computation 

efficiency.  

6.2. Gaussian Distribution of Cycle-to-Cycle Variation  

6.2.1. Mathematical Expression of Cycle-to-Cycle Variation 

As discussed in Section III.D, when a memristor is incented by an input pulse, its 

conductance is changed not only by the designed value, (Gmax - Gmin)/NLevel, but also by cycle-to-

cycle variation, X. Here X is modeled as standard normal distribution, N (0, σ), where the noise 

scale, σ, is determined by the pulse width [45, 46, 53-57]. When taking n input pulses as an 

example, the total conductance variation (Gvar) generated in one memristor can be represented by 

Equation 15. 

𝐺𝑣𝑎𝑟 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛 

𝑋1~𝑁(0, 𝜎1
2),  𝑋2~𝑁(0, 𝜎2

2), … ,  𝑋1~𝑁(0, 𝜎𝑛
2)                                 (15) 

where X1, X2, ……  , Xn are cycle-to-cycle variation variables that are introduced by input pulses 

from the 1st pulse to the nth pulse, respectively; and σ1, σ2, … , σn represent the standard deviation 

of the noise of each input. Because the widths of weight updating pulses are the same and applied 

independently, X1, X2, ……  , Xn are independent and identically distributed random variables, 

which indicates their means and variance are identical (σ1 = σ2 = …… = σn = σin). Then, based on 

probability theory [77, 78], the variable Gvar follows a joint Gaussian distribution  that can be 

represented as shown in Equation 16, with a probability density function (PDF) shown in Equation 

17. 
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𝐺𝑣𝑎𝑟 ~ 𝑁 (0, 𝑛𝜎𝑖𝑛
2)                                                              (16) 

𝑓(𝐺𝑣𝑎𝑟) =
1

𝜎𝑖𝑛√2𝑛𝜋
𝑒

−
1

2𝑛
(

𝐺𝑣𝑎𝑟
𝜎𝑖𝑛

)
2

                                                       (17) 

6.2.2. Cycle-to-Cycle Variations of Positive and Negative Pulse Pairs 

As discussed above, due to cycle-to-cycle variation, which is an inherent characteristic of 

memristors, even in a routine weight update process, model parameters of a memristor-based 

hardware system suffer from random noise addition. An input pulse introduces cycle-to-cycle 

variation by changing memristor conductance by (Gmax - Gmin)/NLevel; and as shown in Figure 8, a 

positive pulse and negative pulse make conductance increase and decrease, respectively. Thus, 

when the number of such positive and negative pulses are equal, this is equivalent to adding cycle-

to-cycle noise that follows a Gaussian distribution. For example, when we apply one positive pulse, 

the conductance of the memristor changes from G0 to G1, as shown in Equation 17. And after then 

applying one negative pulse, it changes from G1 to G2, as shown in Equation 18, where X1 ~ N (0, 

𝜎1
2) and X2 ~ N (0, 𝜎2

2). Now add Equations 18 and 19, and let 𝑋1 + 𝑋2 = 𝐺𝑎𝑑𝑑 , which results in 

Equation 20. Finally, let 𝜎1
2 + 𝜎2

2 = 𝜎𝑎𝑑𝑑
2 , which yields Equation 20. 

          𝐺1 =  𝐺0  + ((𝐺𝑚𝑎𝑥 − 𝐺𝑚𝑖𝑛)/𝑁𝐿𝑒𝑣𝑒𝑙) ×  1 +  𝑋1                               (18) 

          𝐺2 =  𝐺1 − ((𝐺𝑚𝑎𝑥 − 𝐺𝑚𝑖𝑛)/𝑁𝐿𝑒𝑣𝑒𝑙) ×  1 +  𝑋2                               (19) 

𝐺2 = 𝐺0 + 𝑋1 + 𝑋2 = 𝐺0 +  𝐺𝑎𝑑𝑑 

𝐺𝑎𝑑𝑑~𝑁(0, 𝜎𝑎𝑑𝑑
2 )                                                            (20) 

Based on probability theory [77, 78], X1 and X2 are independent random variables. 

Assuming that 𝜎1
2 + 𝜎2

2 = 𝜎𝑎𝑑𝑑
2 , then after applying a pair of positive and negative pulses, the 

effective noise introduced to the target memristor follows a joint Gaussian distribution, N (0, 

𝜎𝑎𝑑𝑑
2 ). Hence, applying m positive/negative pulse pairs to a memristor injects noise that follows 
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the joint Gaussian distribution, N (0, m𝜎𝑎𝑑𝑑
2 ), without requiring additional circuitry. With such a 

noise injection method, the scale of injected noise is decided by m, the number of positive/negative 

pulse pairs, and their pulse width.  

It should be noted that due to the various types of memristors, when we apply this 

positive/negative pulse pair method, the intrinsic characteristics of the specific memristor need to 

be considered. For memristors discussed in [79-82], the conductance only changes when the 

amplitude of the input pulse is larger than the threshold voltage, and its duration is larger than the 

switching time, which is the necessary condition for noise injection. Therefore, for this kind of 

memristor, the minimum noise injection is constrained by its threshold voltage and switching time. 

Nevertheless, as for memristors discussed in [5, 83, 84], the conductance change and cycle-to-

cycle variation exist whenever any input is applied, so, the injected noise can be set at a much 

smaller scale.  

In this paper, we denote noise injection method by using positive/negative pulse pairs as 

the PN method. 

6.3. Noise Injection in Accordance with DP  

For a memristor in a learning system, when n pulses are applied (assume n is a positive 

integer), the injected noise, Gvar, regarded as system built-in noise, follows a joint distribution N 

(0, n 𝜎𝑖𝑛
2 ). However, for different memristors, the injected noise is not identical, and the 

independent Gaussian noise is impractical to be obtained in a trackable form. Hence, this causes 

difficulty in tracking the consumed privacy budget and evaluating utility loss. Therefore, this paper 

proposes a hardware-based noise distribution normalization (NDN) method to normalize 

introduced noise for all weights (conductance of memristors) in a learning model. The proposed 

method transfers non-beneficial random noise of cycle-to-cycle variations into a valuable measure 
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for privacy protection by using the proposed PN method, which improves the utility of the privacy-

preserving neural network with an excellent privacy guarantee. 

6.3.1. Noise Distribution Normalization (NDN) Method 

As discussed in Section IV, for each memristor, Gvar is built-in noise of an AI algorithm. 

Gadd by PN method is adjustable noise for implementation of adjustable noise injection. Variables 

Gvar and Gadd are independent but not identical Gaussian random variables. Let, Gnoise=Gvar+Gadd, 

then we get the following equation. 

𝐺𝑛𝑜𝑖𝑠𝑒~𝑁(0, 𝑛𝜎𝑖𝑛
2 + 𝑚𝜎𝑎𝑑𝑑

2 )                                                  (21) 

We propose Noise Distribution Normalization (NDN) method to achieve DP protection by 

hardware implementation. To ensure that every gradient carries noise with the same distribution 

injected, first we clip the gradient into 𝑛𝑐, which is a constant value. Second, for one memristor, if 

the needed pulses 𝑛  >=  𝑛𝑐 , let 𝑛  =  𝑛𝑐 ; otherwise, keep n value and let  

𝑚=( 𝑛𝑐- 𝑛)*𝜎𝑖𝑛
2/𝜎𝑎𝑑𝑑

2 . Given that the proposed method is hardware-based, where σ is related to 

actual characteristics of memristors, when we implement this method, 𝜎𝑎𝑑𝑑  can be tuned to a value 

that ensures m is an integer. Hence, when the needed pulses are 𝑛 ≥ 𝑛𝑐,  𝑛𝜎𝑖𝑛
2 + 𝑚𝜎𝑎𝑑𝑑

2 =𝑛𝑐𝜎𝑖𝑛
2 ; 

and when the needed pulse𝑠 are 𝑛 < 𝑛𝑐, 𝑛𝜎𝑖𝑛
2 + 𝑚𝜎𝑎𝑑𝑑

2 = 𝑛𝜎𝑖𝑛
2 + ((𝑛𝑐 − 𝑛) ∗ 𝜎𝑖𝑛

2/𝜎𝑎𝑑𝑑
2 )) ∗

𝜎𝑎𝑑𝑑 
2 =  𝑛𝑐𝜎𝑖𝑛

2 . In so doing, for every memristor at each weight update, 𝐺𝑛𝑜𝑖𝑠𝑒 follows a N (0, 

 𝑛𝑐𝜎𝑖𝑛
2 )  Gaussian distribution, with a PDF as shown in Equation 22. 

𝑓(𝐺𝑛𝑜𝑖𝑠𝑒) =
1

𝜎𝑖𝑛√2 𝜋𝑛𝑐
𝑒

−
1

2 𝑛𝑐
(

𝐺𝑛𝑜𝑖𝑠𝑒
𝜎𝑖𝑛

)
2

                                              (22) 

6.3.2. Privacy Analysis 

To ensure that our design preserves the DP notion, we need to first guarantee that each 

gradient descent step is (𝜀, 𝛿)-differentially private. For our crafted Gaussian distribution and PDF 
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with  𝐺𝑛𝑜𝑖𝑠𝑒 ~ 𝑁 (0,  𝑛𝑐𝜎𝑖𝑛
2 ) that we use to sample noise, by the standard definition in [64], one 

needs to ensure that 𝜎𝑖𝑛√𝑛𝑐 ≥ √2log (1.25 𝛿⁄ ) 𝜀⁄  and 𝜀 < 1. For the former inequality, it can be 

easily satisfied by adjusting the number of pulses,  𝑛𝑐 , while the later inequality is selected 

artificially at runtime. In light of this, our Gaussian distribution can guarantee the DP notion for 

each iteration in Figure 8.  

Next, we need to prove the overall process of running the DP-SGD algorithm in memristor 

crossbar for the DP notion, and theoretically evaluate how much privacy budget costs to preserve 

DP. First, since at each iteration we independently sample random noise from the identical 

Gaussian distribution  𝑁 (0,  𝑛𝑐𝜎𝑖𝑛
2 ) by applying the same number of pulses to the memristor 

crossbar, according to the composition theorem of (𝜀, 𝛿)-differential privacy [64], the overall 

process still preserves the DP notion. Next, based on the privacy amplification theorem [85], for 

the process of random sampling with probability L/N, as in Figure 8, each iteration is 

technically 𝑂((𝜀𝐿 𝑁⁄ ), 𝛿𝐿/𝑁)-differentially private. Then, the strong composition theorem implies 

that, for a sufficiently large number of iterations, T (i.e., we expect T ≫ 𝑁/𝐿 and each sample is 

examined multiple times), the overall budget cost is 𝜀𝑡𝑜𝑡 = Ω((𝐿/𝑁)√𝑇log(1 𝛿⁄ )log (𝑇 𝛿⁄ )/

𝜎𝑖𝑛√𝑛𝑐). It is worth noting that [44] developed a moment accountant technique to obtain a much 

tighter bound on the accumulated privacy budget, which allows for using a smaller variance value 

in the Gaussian distribution. Here, our intention is only to prove and showcase the preservation of 

DP and its estimated cost, despite loose privacy loss. Interested readers are referred to [44] for the 

details on the moment accountant analysis. 
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Figure 28. Outline of the proposed methods.                                            

6.4. Case Study and Discussions   

As discussed in Section V, the proposed memristor-based NDN method can effectively 

realize DP by injecting normalized random noise to edge AI in IoT systems. In this Section, based 

on a hardware machine learning platform that consists of memristor crossbar array and peripheral 

circuits, we perform a case study that implements the DP-SGD algorithm by noise distribution 

normalization (NDN). 

6.4.1. Implementation of DP-SGD via Hardware in Edge AI 

As illustrated in Figure 8, two modifications (Clip Gradient and Add Noise) are needed to 

ensure that the proposed stochastic gradient descent (SGD) follows a DP algorithm. For the first 

modification, in order to constrain how much each individual training sample can influence the 

resulting gradient computation (model parameters), the sensitivity of each gradient needs to be 

bounded. For the second modification, it is necessary to randomize the behavior of the algorithm 

to make it statistically impossible to identify whether a particular training sample is included in 

the training dataset, which can be achieved by adding random noise to the clipped gradients. 

For the first modification, Figure 8 shows that the gradient clipping process needs to 

calculate the L2 norm of the gradient matrix. These processes inevitably increase the computational 
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load of the system. We propose a clipping method that is the first step of the NDN method to meet 

the requirement of clipping without matrix calculation. The clipping operation sets an upper 

boundary on gradients to bound the influence of each individual example on gradients. A smaller 

upper boundary has a stronger limitation of the gradient. When the NDN clip boundary is small 

enough, the L2 norm of the gradient is always less than 1. In this circumstance, L2 norm computing 

is simplified because 1 is always chosen as the maximum value in the first modification according 

to the DP-SGD shown in Figure 8. As shown in Figure 28, in our hardware implementation, this 

method uses simple hardware units - comparators to compare gradient value with a reference 

gradient value. When the gradient is clipped, the maximum number of weight update pulses is 

fixed. Accordingly, the system saves the cost of matrix calculation and also ensures that the degree 

of each training sample’s impact on model parameters is bounded.  

The second modification can be implemented by the PN method, which is the second step 

of the NDN method. The PN method adds random noise by applying extra input pulse pairs to 

memristors. As discussed in Section IV, in each step, when extra PN pairs of input pulses are added 

to each memristor, the amount of the designated change in conductance caused by such positive 

and negative pulses counteract each other, such that only random noise is added to the memristor 

conductance. Since the weight increase and decrease need different programming voltage 

polarities, the weight update process (writing process for the model parameter) requires two steps 

with positive and negative voltages, respectively. Figure 28b shows the hardware implementation 

flow of the NDN method. Hence, when using hardware that combines a memristor array-based 

learning circuit along with the NDN method, the DP-SGD can be implemented using the existing 

hardware with minimal additions.  
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To verify our proposed methods for edge AI, we adopt the neural network hardware 

platform, NeuroSim+ [48]. This is a memristor-based circuit model of neuro-inspired architectures 

to emulate the circuit behavior of an online learning recognition scenario with Modified National 

Institute of Standards and Technology (MNIST) [21] dataset. The neural network topology of this 

simulator includes input layer, hidden layer, and out-put layer, with 400 neurons, 100 neurons, and 

10 neurons, respectively. The simulator emulates hardware to train the network with images 

randomly chosen from the training dataset MNIST, which includes 60,000 images, and classify 

the testing dataset with 10,000 images. The training process has two parts, feed-forward 

propagation and backpropagation, which includes weighted sum operation, neuron activation 

operation, recognition, and deviation calculation. The deviations are used to update the 

conductance of memristors using identical positive input pulses or identical negative input pulses. 

We integrate our proposed NDN method into this simulator to train privacy-preserving multi-layer 

neural networks, such that we can only use hardware that consists of memristor array and 

peripheral circuits to realize DP-SGD behavior. 

 

(a) 

Figure 29. Workflow of the NDN method, where n represents the number of pulses that are used 

to update a weight and m represents the number of positive and negative pulse pairs. (a) 

Example: after applying the NDN method, for memristor A n=Nc, m=0; for memristor B, n=j, 

m=Nc-j. (b) Hardware implementation flow of the Noise Distribution Normalization method. 
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(b) 

Figure 29. Workflow of the NDN method, where n represents the number of pulses that are used 

to update a weight and m represents the number of positive and negative pulse pairs (continued). 

(a) Example: after applying the NDN method, for memristor A n=Nc, m=0; for memristor B, n=j, 

m=Nc-j. (b) Hardware implementation flow of the Noise Distribution Normalization method. 

6.4.2. Results of Clipping NDN 

To explore the effect of the Clipping step of NDN, the Clipping method is applied to a fully 

connected neural network without the PN method and without cycle-to-cycle variation. As 

discussed in Section VI.A, the clipping operation limits the scale of gradient, and a smaller clip 

boundary has a larger limitation of the gradient. Also, as each gradient value is clipped, the number 

of pulses is also clipped, and the influence of each image is limited. In our simulation, we use a 

clip boundary to clip the gradient of each weight. Then, the number of pulses for each weight is 

obtained, where the number of Pulse = rounding (clipping (gradient) * learning_rate * NLevel). The 

rounding operation converts the value to its nearest integer number. In our case, when the clip 

boundary is less than 0.2, the L2 norm of the gradient is always smaller than 1. Therefore, the 
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clipping method saves the matrix calculation cost of DP-SGD based hardware systems. Figure 29 

shows the recognition accuracy of MNIST handwriting digits as the clip boundary value changes. 

These results indicate that as the clip boundary decreases, the recognition accuracy stays at a high 

level, which concludes that the clipping operation does not degrade performance of the three-layer 

neural network based on the DP-SGD algorithm.  

 

Figure 30. Recognition accuracy of MNIST under various clip boundaries. 

6.4.2. Results of NDN Method 

Since many types of memristors exist, the proposed methods are explored with various 

configurations, including the twelve noise levels shown in Table 9. Figure 30 shows recognition 

accuracy of MNIST handwriting digits under various noise levels with and without NDN method. 

The one without NDN method is named Original, and it does not consider cycle-to-cycle variation 

as noise injection, but instead adds Gaussian noise via software. As shown in Figure 30, under 

Nc=1 and Nc=2, the average recognition accuracy of these ten variation circumstances with NDN 

method is improved by 7.4% and 3.5%, respectively, as compared with the Original case. Figure 

30 also provides a recognition accuracy comparison, but with different Nc and different variation 

levels (levels from 2 to 8). It shows that the NDN method has 15.5% higher accuracy on average 

as compared to the Original method. This is because for memristor-based learning system in the 

Original case, cycle-to-cycle variation still exists, in addition to the noise added via software, 
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which leads to prediction accuracy loss. Such loss will be larger than the case with NDN method 

that only considers the inherent cycle-to-cycle variation without additional noise injection via 

software. These results support the proposed NDN method as an effective optimization method 

that can improve the utility of a memristor-based differentially private learning model. 

Table 9. Sigma Parameter of Cycle-to-Cycle Variation* 

Level 1 2 3 4 5 6 

σ/(Gmax-Gmin) 1% 2% 3% 4% 5% 6% 

Level 7 8 9 10 11 12 

σ/(Gmax-Gmin) 7% 8% 9% 10% 11% 12% 

*The σ value of Gaussian Distribution for Cycle-to-Cycle variation is represented by the percentage of 

memristor’s conductance range [24], [29].  

 

         

(a) Nc=1,                                                           (b) Nc=2 

Figure 31. Recognition accuracy of MNIST handwriting digits under various noise levels. 
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(a) NDN                                         (b) Original 

Figure 32. Recognition accuracy of MNIST handwriting digits under various noise levels and 

different number of pulse pairs: (a) using NDN method, where the x-axis represents the number 

of pulse pairs, Nc; (b) Original case, where the x-axis has the same noise scale as (a). 

 

Figure 33. Recognition accuracy of training process using NDN method under three noise levels, 

where σ for small noise, medium noise, and large noise equals 3%, 6%, and 12%, respectively.  

6.4.3. Comparison with Existing Work 

As listed in Table 10, as compared with the state-of-art, [40, 46, 47], instead of 

implementing the DP-SGD algorithm for privacy preservation by a traditional computing system, 

the proposed NDN method adds Gaussian noise for memristor-based hardware using inherent 

cycle-to-cycle variation. Thus, the memristor-based machine learning system does not require an 
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additional random noise generator. Also, the scale of injected noise can be adjusted by changing 

the number of PN pulse pairs. For the DP-SGD algorithm, the Clipping method of NDN limits the 

impact of each training data on model parameters and saves the cost of the L2 norm matrix 

calculation. 

Table 10. The Comparison with State-of-the-Art. 

 [47]  [40]  [46] This work 

Realize hardware-based privacy protection × √ × √ 

Without extra random noise generator × √ × √ 

Without always adding random noise for each cell × × × √ 

Compatible with memristor-based hardware √ × √ √ 

 

6.4.4. Nonlinearity 

In general, the amount of conductance change of memristors sometimes is different as the 

number of pulses increases, which is attributed to the nonlinearity (NL) of the weight modulation. 

In other words, every pulse results in a different response in the weight modulation depending on 

the current weight state [7] when we apply a pair of positive and negative pulses to a memristor 

with the NL consideration, as shown in Figure 39, where 𝐺𝑋 = 𝐺𝑋1 − 𝐺𝑋2, Equation 20 can be 

rewritten as follows:  

𝐺2 = 𝐺0 + 𝐺𝑋 + 𝐺𝑎𝑑𝑑                                                  (23) 

where  𝐺0 + 𝐺𝑋 has the same conductance range as 𝐺0, which is from 𝐺𝑚𝑖𝑛 to 𝐺𝑚𝑎𝑥. When we 

map the memristors’ conductance to the gradient of DP-SGD, both 𝐺0 in Equation 20 and 𝐺0 +

𝐺𝑋 in Equation 23 are mapped to the same range, which is from 0 to 1. Thus, when we consider 

the NL effect of memristors, the global sensitivity of gradient remains unchanged, and so will the 

noise scale of 𝐺𝑎𝑑𝑑 (i.e., variance of the Gaussian distribution). Therefore, the NDN method still 

conforms to the DP theory.   



 

92 

 

We conduct experiments to explore the NDN method considering the NL of memristors. 

We adopt the NL definition from [86], where NL ranges from 0 to 1. As shown in Table 11, with 

NL ranging from 0.05 – 0.25, recognition accuracy with NDN is still 9.3% on average higher than 

the Original case without NDN. This shows the effectiveness of the proposed method, where the 

NL is being used as an advantage instead of degrading accuracy, as already discussed in Section 

VI.B.2. Although the NL property does degrade the performance of memristor based learning 

system, a memristor-based learning system can achieve an acceptable performance with the NL 

and the proposed NDN method. Moreover, researchers have proposed memristors with a small NL 

[18] as well as methods to solve the NL issue [41, 76]. Thus, the proposed method is still effective 

even with the NL property. 

 

Figure 34. Nonlinearity effect on conductance modulation of memristors. 

Table 11. Recognition Accuracy with NDN Method and Nonlinearity. 

Nonlinearity (NL) 0.00 0.05 0.15 0.25 

NDN 92.4% 90.2% 77.5% 59.3% 

Original 91.0% 87.3% 67.2% 44.5% 
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6.4.5. Scalability and Endurance 

Many applications employing a neural architecture use memristors in the edge, where our 

proposed method can be adopted, including for example, face classification with artificial neural 

network (ANN) structure [87, 88], handwritten digits classification [89] and image processing [2] 

with convolutional neural network (CNN) structure, memristor-based edge detection [90], and 

pattern recognition with recurrent neural network (RNN) [91]. Our proposed method is generic 

and can be applied to any memristor-based learning system. However, the number of neurons and 

layers in deep learning neural networks may cause scalability issue for a memristor-based array. 

[92] solves this issue by using a chip-level hierarchical architecture that divides large arrays into 

groups of synaptic sub-arrays and connects each sub-array using an H-tree structure. To further 

explore network scalability, we simulated the learning tasks introduced in Section VI.B using the 

various network structures listed in Table 12, which shows that power increases with number of 

neurons, but accuracy also increases; hence, there is a tradeoff between power and accuracy. Note 

that memristor array power is calculated based on wire resistance, reading, and the weight update 

writing process. 

Another challenge for memristor crossbar arrays is the sneak path issue, which severely 

degrades read sensing margin [93]. One solution is to increase the minimum conductance value, 

but this degrades ON/OFF ratio of memristors. Our experiments utilize a one-transistor one-

resistor (1T1R) array to avoid sneak path current problems [48]. 

Table 12. Total Power of Memristor-Based Array in Learning Device. 

Number of Hidden Layer Neurons 50 100 150 200 

Power (10-7 J) 3.2 4.3 5.3 7.1 

Recognition Accuracy (%) 90.2 91.1 92.2 92.8 
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The failure rate, endurance, and aging issues also impact the performance of memristor-

based edge systems. Typical memristor failure rate is less than 10% [94]. As shown in Table 13, 

we have conducted learning tasks with up to 10% failure rate, while recognition accuracy shows 

no obvious degradation. This indicates that neuromorphic architectures are more robust to 

variations because in the learning process, weights updates frequently in each epoch to compensate 

for mismatch resulting from variations. Memristors have high endurance (120 billion cycles) and 

retention (10 years) even when they undergo high frequency writing and reading in learning 

systems [86], which qualifies them for most edge computing IoT applications. 

Table 13. Recognition Accuracy with Various Failure Rates. 

Failure Rate 0% 5% 10% 

Recognition Accuracy 92.4% 90.7% 90.6% 

 

Additionally, the conductance range of memristors may deviate from the original state over 

time. As shown in Table 14, the recognition accuracy decreases by 27.74% when conductance 

drifting is 30%, but it does not show a significant decrease when it is 10% or 20%. 

Table 14. Recognition Accuracy with Conductance Drifting. 

Maximum Conductance Drift 0% 10% 20% 30% 

Recognition Accuracy 92.4% 92.0% 91.4% 63.7% 

 

6.5. Conclusions   

To meet the high-speed, low-power, and low computing-cost requirements of edge 

computing in IoT systems, we propose a universal memristor-based method that can be used to 

realize a privacy-preserving learning system. The proposed Noise Distribution Normalization 

(NDN) method consists of a Positive/Negative Pulse Pair (PN) method and a Clipping method. 

The PN method can generate adjustable Gaussian noise based on cycle-to-cycle variation of 
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memristors, without extra hardware or a random noise generator, making it possible to meet the 

noise-injection requirement of the Differential Privacy (DP) mechanism. And the Clipping method 

that uses comparator units can normalize the introduced noise from the PN method.  

In the case study of a memristor-based neural network hardware platform, we implement 

the DP-SGD algorithm via hardware-based NDN method, and at the same time avoid the L2 norm 

calculation of gradient matrices, thereby reducing computational cost. Experiment results indicate 

a 3.5% to 15.5% average recognition accuracy improvement using the proposed NDN method and 

a 9.3% average improvement when the nonlinearity of memristors is considered, as compared to 

the Original case that adds noise via software. Also, the scalability and endurance for the proposed 

system are considered. Consequently, the proposed method is an effective technique that provides 

a low-cost hardware solution for the notion of DP in memristor-based learning systems. 
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7. CONCLUSIONS 

Analog architectures integrate memory and computation and perform computation via 

certain analog operations, which has potential to achieve significant power and performance 

improvement compared to conventional von-Neumann architectures. This research focuses on 

hardware techniques for improving performance of memristor-based mix signal learning system.  

First, a linear optimization method is proposed to address the accuracy degradation by 

optimizing the performance of memristor in the weight updating processes. Instead of complying 

with the traditional hardware and algorithm, it calculates the update parameters along a piecewise 

line by using different input pulses. The proposed method can mitigate the nonlinear problem of 

memristor without prereading the precise current conductance each time, thereby avoiding 

complex peripheral circuits. The PL method provides flexible configurations so that it can achieve 

57.6% recognition accuracy improvement in a low-cost situation, but if a higher accuracy is 

desirable, additional cost can be taken to realize 67.02% accuracy improvement. As compared with 

the state-of-art, the PL method avoids complex peripheral circuits, and with more segments, the 

nonlinearity impact of memristor to the neuromorphic hardware is almost negligible. 

Second, the proposed PL method is applied for memristor based privacy preserving neural 

network. We use PL method to alleviate nonlinearity of memristors for weight updating in ANN 

to counteract recognition degradation due to noise injection. Therefore, privacy-preserving ANN 

provides more space for randomizing noisy data, which ensures that the publicly visible 

information do not change much if one individual in the dataset changes. The 2-segment, 3-

segment, and 4-segment models for 49 types of memristors with nonlinearity from (0/-0) to (6/-6) 

have been developed to investigate the effectiveness of the proposed method, the results indicate 
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34.22% to 47.73% average recognition accuracy improvement when the privacy budget ε ranges 

from 4 to 16. 

Third, system A hardware solution of memristor based in-memory computing is proposed 

to enable energy efficient privacy preserving technology in ANN. The proposed solution breaks 

the limitations of traditional software-based noise-adding mechanisms of DP. We utilize inherent 

cycle-to-cycle variations of memristors and apply the proposed variation-based pulse pair method 

during the weight update process. The proposed method can generate adjustable Gaussian noise 

based on cycle-to-cycle variation of memristors, without extra hardware or a random noise 

generator, making it possible to meet the noise-injection requirement of the Differential Privacy 

(DP) mechanism. In the case study of a memristor-based neural network hardware platform, we 

implement the DP-SGD algorithm via hardware-based method. Experiment results indicate a 3.5% 

to 15.5% average recognition accuracy improvement using the proposed method and a 9.3% 

average improvement when the nonlinearity of memristors is considered. Consequently, the 

proposed method is an effective technique that provides a low-cost hardware solution for the 

notion of DP in memristor-based learning systems. 
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