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ABSTRACT 

Vasoactive intestinal peptide (VIP) regulates clock gene expression in the brain that 

synchronizes diurnal feeding behaviors in mammals. In the gastrointestinal (GI) tissues, VIP 

influences host nutrient absorption from ingested food, and regulates host metabolic functions. 

VIP signaling ensures efficient nutrient absorption by influencing ghrelin and leptin expression 

to balance caloric intake. Importantly, obese humans have elevated plasma VIP levels, 

supporting its association with fat mass accumulation. In contrast, VIP deficiency leads to weight 

loss and reduced adiposity, while disrupting epithelial cell nutrient absorption, tight junctions 

and mucus secretion. Moreover, VIP regulates host glucose metabolism as VIP knockout mice 

are pre-diabetic with elevated blood glucose and insulin levels. In addition to metabolism, VIP is 

anti-inflammatory and when knocked out, results in exacerbated inflammatory bowel disease 

(IBD) pathology. The GI track is also home to ≈40 trillion bacteria, called the gut microbiota, 

which unlock additional calories from fiber for the host. Microbiota dysbiosis is caused by 

dysfunction in biological systems downstream from VIP signaling, including dysregulated 

expression of host clock genes, metabolic hormones, immune-relevant mediators and metabolic 

and inflammatory disease states, like obesity and IBD. It is not known, however, whether the 

VIP signaling axis contributes to the maintenance of the gut microbiota structure and diversity. 

We hypothesized that VIP deficiency will cause gut dysbiosis, lower bacterial diversity and 

reduce its energy extraction potential. To this end, we isolated fecal samples from VIP knockout 

mice (VIP-/-) and employed 16S rRNA sequencing. VIP deficiency (VIP-/- and VIP-/+) resulted 

in marked gut microbial compositional changes and reduced bacterial diversity compared to male 

and female VIP+/+ littermates (n=48). Increased abundance of Bacteroides, Parabacteroides and 

Helicobacter genera (gram-negative, GN), with reductions of Lachnospiraceae NK4A136, 
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Oscillibacter and Ruminiclostridium genera (gram-positive, GP), were the driving force for the 

observed increase in the GN/GP ratio. A predicted algorithm program, called PICRUSt, showed 

changes in microbial metabolism consistent with elevated lipopolysaccharide metabolism and 

reduced intake of fiber in VIP-/- mice. These data support that VIP regulates intestinal 

homeostasis by maintaining microbiota balance, diversity and energy harvesting potential, while 

upholding an anti-inflammatory tone by limiting lipopolysaccharide biosynthesis. 
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1. INTRODUCTION 

This first paragraph summarizes the structure and assists in visualizing the makeup of 

each of the five chapters of my dissertation. The first chapter consists of a literature review, 

while chapters 2, 3, and 4 concentrate on performed research with the 5th holding the references. 

Chapter 1 delves into the history of vasoactive intestinal peptide (VIP) and its receptors, 

discusses G-protein coupled receptor signaling and describes the roles of VIP in bodily systems 

and disease. The second chapter contains a literature review of recent microbiome research and 

discusses our 16S rRNA sequencing findings regarding changes in the intestinal microbiota due 

to the genetic silencing of the VIP ligand in both sexes of mice. The third chapter reviews the 

role of VIP in the immune system. It discusses my cAMP quantification contributions towards a 

laboratory publication, research into different receptor profiles of human T-cell lines, and how 

VIP signals through each receptor on T-cells, as well as eosinophilic differentiation of VPAC2 

knockout mice whom exhibit a delayed eosinophilic response during allergic asthma versus wild 

type. A side-collaboration with Dr. Nawarathna’s laboratory in the Department of Electrical and 

Computer engineering is discussed in chapter 4. My contributions to this project included qRT-

PCR expertise which were used to determine the efficacy of the new iLluminate-miRNA 

microRNA detection technique. The last chapter (5) contains references for all of the previous 

chapters. I hope you enjoy reading this dissertation as much as I enjoyed writing it and learn 

something new and interesting along the way. 

1.1. General introduction and background 

1.1.1. Vasoactive intestinal peptide 

Vasoactive intestinal peptide (VIP) is a 3.3 kilodalton (kDa) protein consisting of 28-

amino acids (AA), and is expressed heterogeneously in mammalian tissues. VIP was first 
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discovered in porcine intestines by Sami Said and Viktor Mutt in 1970 who hypnotized there 

were vasoactive proteins located in the gut (Said and Mutt 1970). Two years later, the same two 

scientists confirmed VIP’s vasodilatory role using canine femoral arteries (Said and Mutt 1972). 

The peptide’s discovery in the intestines, and its vasoactive activity resulting in increased artery 

diameters, contributed to its designation as vasoactive intestinal peptide or VIP for short. 

Located on position 25.2 of the longer arm of the 6th human chromosome (Kitts et al. 2016), VIP 

is a member of a family of evolutionarily related proteins called the Secretin family (Ulrich, 

Holtmann, and Miller 1998). This peptide family is composed of 15 known peptide hormones 

whose ligands share amino acid similarity, and their endogenous receptors possess structural 

likeness (Millar, Newton, and Roseweir 2012). Some of these peptides include: glucagon, gastric 

inhibitory polypeptide (GIP), secretin, pituitary adenylate cyclase activating polypeptide 

(PACAP) (see table 1) (Segre and Goldring 1993). When aligned at the amino acid level, as 

displayed in Table 1, the members of this family share AA sequence similarities, with the 

primary AA sequences of VIP and PACAP sharing the most at 68% similarity (Ng et al. 2012). 

This AA similarity permits cross-reactivity, called receptor shuffling (Hamann, Hartmann, and 

van Lier 1996), allowing VIP and PACAP ligands to bind common receptors (Shivers et al. 

1991). 
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Table 1. Amino acid (AA) sequence comparison between VIP and the other Secretin family 

members. 

Family 

member 

(% similarity) 

Amino acid residues 

VIP (100%) 
HSDAV FTDNY TRLRK QMAVK KYLNS ILN 

 

PACAP (68%) 
HSDGI FTDSY SRYRK QMAVK KYAAV VL 

 

PHI-27 (39%) 
HADGV FTSDF SRLLG QLSAK KYLES LI 

 

Secretin (32%) 
HSDGT FTSEL  SRLRE GARLQ RLLQG LV 

 

GHRH (29%) 
YADAI FTNSY RKVLG QLSAR KLLQD DIMSE QQGES NQERG ARARL 

 

Glucagon 

(18%) HSQGT FTSDY SKYLD SRRAQ DFVQW LMNT 
 

GIP (10%) 
YAEGT FISDY SIAMD KIHQQ DFVNW LLAQK GKKND WKHNI TQ 

 

Transthyretin 

(7%) 

GPTGT GESKC PLMVK VLDAV RGSPA INVAV HVFRK AADDT WEPFA SGKTS 

ESGEL HGLTT EEEFV EGIYK VEIDT KSYWK ALGIS PFHEH AEVVF TANDS GPRRY 

TIAAL LSPYS YSTTA VVTNP KE 

 

1.1.1.1. VIP amino acid sequence  

Table 1 utilizes single letter abbreviations for amino acids. The three letter primary amino 

acid sequence for human VIP is His-Ser-Asp-Ala-Val-Phe-Thr-Asp-Asn-Tyr-Thr-Arg-Leu-Arg-

Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu-Asn-Ser-Ile-Leu-Asn (Mutt and Said 1974). 

Determined by Edman degradation, this amino acid sequence is completely conserved in other 

mammals studied, such as cows, mice, rats, horses and dogs. So far, the guinea pig is the only 

mammal studied whose VIP AA sequence is not 100% identical to humans. Their VIP sequence 

is 86% homologous at the amino acid level due to four amino acid substitutions (Du et al. 1985). 

Table 2 compares VIP sequences between a variety of different species. What is made clear by 

analysis of these AA sequences is that VIP has been evolutionarily conserved for over hundreds 

of millions of years. Evidence for this was provided by Kumar and Hedges, who analyzed 

differences between 658 nuclear genes to determine that Cod (Gadus morhua), from class 
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Actinopterygii, and humans (Homo sapiens) from class Mammalia, are evolutionarily separated 

by over 450 million years (Kumar and Hedges 1998). Maintenance of AA sequence identity of 

VIP between Cod and Human (83%, see table 2) (Smalley, Barrow, and Foster 2009), suggests 

an essential role for the VIP peptide and may explain its stringent evolutionary sequence 

conservation over this geological time-frame of nearly half a billion years.  

 

 

Figure 1. The evolutionary history of the secretin-glucagon superfamily.  

Hundreds of millions of years of evolution have resulted in the formation of different ligands 

from one ancestral gene (PACAP/glucagon). It is currently theorized that numerous 

duplications of the gene have resulted in our current repertoire of ligands. (Figure from 

Handbook of Hormones, 2016, and Yoshio Takei  (Takei 2016)). 
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Table 2.  VIP AA sequence homology among different species  

Species 

% sequence 

homology to 

human VIP 

VIP amino acid residues 

Human pig mouse cow rat horse 

dog cat (Du et al. 1985) 

100% HSDAV FTDNY TRLRK QMAVK KYLNS ILN 
 

Guinea pig (Smalley, Barrow, and 

Foster 2009) 

86% HSDAL FTDTY TRLRK QMAMK KYLNS VLN 
 

Chicken (Nilsson 1975) 
86% HSDAV FTDNY SRFRK QMAVK KYLNS VLT 

 

Alligator (Wang and Conlon 1993) 
86% HSDAV FTDNY SRFRK QMAVK KYLNS VLT 

 

Frog (Chartrel et al. 1995) 
86% HSDAV FTDNY SRFRK QMAVK KYLNS VLT 

 

Cod (Thwaites et al. 1989) 
83% HSDAV FTDNY SRFRK QMAAK KYLNS VLT 

 

This table was recreated from data compiled by (Smalley, Barrow, and Foster 2009). 

1.1.1.2. Creation of the VIP protein  

VIP is initially translated into a 170-amino acid polypeptide, [prepro-VIP], which is post-

translationally tailored to generate the full length, 28 AA VIP ligand (Kristensen, Georg, and 

Fahrenkrug 1997). Biosynthesis of the prepro-VIP forerunner supplies, PHI (peptide histidine 

isoleucine) in mice, or its human counterpart PHM (peptide histidine methionine), or a C-

terminally extended form of PHI/M, called PHV (peptide histidine valine) in all species (Harmar 

et al. 2012), and VIP in all species, by proteolytic processing (visualized in figure 2) (Noguchi et 

al. 1989). Post-translational proteolytic processing allows for removal of the signal sequence 

once the protein has been directed to the lumen of the endoplasmic reticulum (Tsukada et al. 

1985). As the prepro-VIP protein migrates to the Golgi apparatus, proteases tailor it to yield VIP 

and related peptides for secretion, thus generating multiple peptide products (Ballesta et al. 

1985). 
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Tissue-specific variations in the generation and processing of prepro-VIP along with 

alternative splicing at the mRNA level (Fahrenkrug 1985) are additional mechanisms that can 

alter expression levels of the prepro-VIP related peptides, resulting in differential expression 

profiles of VIP and PHM/V in various tissues (Ishihara et al. 1992). Importantly, it should be 

noted that each of the three bioactive peptides are encoded entirely within a single gene 

(PHM/PHI/PHV encoded by exon 4 and VIP encoded by exon 5) (You et al. 1995; Kitts et al. 

2016), thus allowing mRNA splicing mechanisms to tailor the final mRNA product with both or 

one of the VIP-related peptides encoded in the processed mRNA template. Examples of 

expression of VIP have come from measurements of cerebral cortex and suprachiasmatic nucleus 

extracts revealing that among the peptides synthesized downstream of the prepro-VIP peptide, 

VIP was found in the highest concentrations (Mikkelsen and Fahrenkrug 1994). Analysis of 

these peptides in the gastrointestinal tract (focused organ for chapter 2 research), revealed greater 

expression of VIP-immunoreactive nerves. VIP and PHI concentrations were similar in all 

regions of the gut except the fundus (cranial portion of the stomach), where VIP presence far 

exceeded PHI (Bishop et al. 1984). Various biologically active peptide derivatives of VIP 

include: VIP4–28, VIP6–28 and VIP10–28. VIP4–28 acts as a potent agonist for VIP’s vasoactive 

intestinal peptide/pituitary adenylate cyclase activating polypeptide receptor 1 (VPAC1) receptor 

and acts as an antagonist for the VPAC2 receptor (Summers et al. 2003). VIP6–28 and VIP10–28 

both act as antagonists for both VIP receptors (discussed later) (Fishbein et al. 1994; Mohney 

and Zigmond 1998; Turner, Jones, and Bylund 1986). 
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PHI 

Figure 2. Central dogma scheme for the VIP gene.  

The VIP gene consists of 7 exons (rectangles) transcribed into an mRNA molecule as 

indicated. This is translated into a 170-amino acid polypeptide known as prepro-VIP. The 

signal peptide, sometimes referred to as the localization sequence, is a short N-terminal 

peptide that directs the protein towards the secretory pathway (Blobel et al. 1979). Post 

processing results in the formation of PHM (human) (27 AA), PHI (mouse) (27 AA), PHV 

(all species) (42 AA), and VIP (all species) (28 AA) (Dejda, Matczak, and Nowak 2004), 

which are present in various concentrations in most regions of the body (Palle, Ottesen, and 

Fahrenkrug 1992). 
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1.1.2. Pituitary adenylate cyclase-activating peptide (PACAP): gene to protein 

PACAP, the member of the Secretin family that shares the greatest AA similarity (68%) 

to VIP and is hypothesized to be the progenitor gene for VIP. As demonstrated in figure 3, 

PACAP is also organized at the DNA level and synthesized into a bioactive peptide in a similar 

fashion to VIP. This likeness at the DNA and protein level gives support for a gene duplication 

mechanism giving rise to VIP, GHRH, and secretin genes (see Figure 1). The name pituitary 

adenylate cyclase activating polypeptide originates from this protein’s ability to activate the 

adenylyl cyclase enzyme in pituitary cells (Miyata et al. 1989). At least two forms of PACAP are 

synthesized and denoted by a number that refers to its AA length. For example, PACAP-27, 

consists of 27 AA, and is very similar in length to VIP sharing 68% AA sequence similarity 

(Miyata et al. 1990). At the C-terminal end, PACAP-38 is extended C-terminally by an 

additional 11 amino acids. The initial translated precursor polypeptide, which is later post-

translationally modified by proteases to form both forms of PACAP, is called prepro-PACAP 

(Okazaki et al. 1992). Similar to VIP’s prepro precursor, this 176 AA sequence also encodes an 

additional bioactive peptide called PRP (PACAP-related peptide) and PACAP (Hosoya et al. 

1992). Depending on intracellular processing location, the PACAP sequence results in a 

mutually-exclusive PACAP-27 or PACAP-38 protein from the prepro-PACAP precursor (Tam, 

Lee, and Chow 2007). 
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1.1.3. G-protein coupled receptors 

VIP and PACAP are part of the secretin superfamily of peptide hormones, which signal 

through G-protein coupled receptors (GPCRs) (Bell 1986). The secretin superfamily is 

Figure 3. Information flow for the PACAP gene.  

The gene that encodes for PACAP consists of 5 exons that are transcribed and translated into 

the 176 AA prepro-PACAP protein precursor. Post-translational modification of this 

polypeptide results in the formation of PRP (29 AA) and PACAP-27 (27 AA) or PACAP-38 

(38 AA), all of which are present in all species (Tam, Lee, and Chow 2007; Lee et al. 2009). 
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comprised of evolutionarily related peptides that cross link GPCRs to induce signal transduction 

(Parker et al. 1984). GPCRs are the largest family of receptors comprising over 800 unique genes 

encoded in the human body (Bjarnadottir et al. 2006). Crystallographers Robert Lefkowitz and 

Brian Kobika, both received the Nobel prize in chemistry in 2012 for their discovery of GPCR 

structure (Kobilka 1995). Found primarily in eukaryotes, GPCR’s are vital to cellular function, 

and they represent about 3% of encoded genes within in the human genome (based on an 

estimate of 22 thousand genes in the human genome) (Fredriksson et al. 2003). To date, around 

45% of all pharmaceutical drugs target GPCR’s, and/or associated upstream/downstream 

signaling molecules (Drews 2000), further supporting these receptors as an important “lynchpin” 

regulating human health and disease (Overington, Al-Lazikani, and Hopkins 2006). All known 

cellular effects mediated by VIP and PACAP are manifested through the binding and subsequent 

signal transduction from at least three endogenously expressed GPCRs that will be the focus of 

the next section (Leceta et al. 2000).  

1.1.3.1. VIP Receptors denoted as VPAC1 and VPAC2 

The receptors for VIP  and PACAP include vasoactive intestinal peptide/pituitary 

adenylate cyclase activating polypeptide receptor 1 (VPAC1) and VPAC2, while PACAP 

preferentially (1000x greater affinity compared to VIP) binds to pituitary adenylate cyclase-

activating polypeptide receptor type I (PAC1) (Nussdorfer and Malendowicz 1998). As the 

naming implies, VPAC1 and VPAC2 are receptors for both VIP and PACAP, while PAC1 

preferentially binds to PACAP. VIP does bind to PAC1, but the binding affinity is a thousand 

times lower than PACAP. Both VPAC1 and VPAC2 bind VIP and PACAP with equal affinity 

(Kd ≈ 1 nM). PAC1 has high affinity for PACAP-27 and PACAP-38 (Kd ≈ 0.5 nM), and low 

affinity for VIP (Kd > 500 nM) (Shivers et al. 1991) (Robberecht et al. 1991). This was 
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determined with receptor autoradiography, where excess VIP did not displace either PACAP-27 

or 38 (Shivers et al. 1991). For this reason, VPAC1 and VPAC2 do not discriminate between 

either VIP or PACAP peptide, where PAC1 is more selective towards PACAP. VPAC1 is 

located at position 22.1 of the short arm of the third human chromosome (position 72.5 of the 

long arm of the ninth mouse chromosome), VPAC2 is located at position 36.3 on the long arm of 

the seventh human chromosome (position 62.6 on the long arm of the twelfth mouse 

chromosome), and PAC1 is found at position 14 on the short arm of the seventh human 

chromosome (position 7 on the short arm of the seventeenth mouse chromosome) (Kitts et al. 

2016).  

1.1.3.2. GPCR characteristics 

GPCRs are characterized by a few similar features. First, the amino terminus of the 

GPCR polypeptide exists in the extracellular environment, called the ectodomain and this N-

terminus makes up part of the ligand binding site. The peptide chain then “snakes” through the 

plasma membrane seven times (Palczewski et al. 2000). This membrane spanning alpha-helical 

hydrophobic region was, and continues to be, problematic with respect to obtaining enzyme 

crystals, due to its extensive hydrophobic (e.g. greasy) nature, and is why GPCRs have been 

historically so difficult to obtain X-ray structure information (Gether and Kobilka 1998). The 

carboxyl terminus, which resides within the cytoplasm, interacts with signaling proteins to 

transmit information from the plasma membrane to internal locales in the cell (Michino et al. 

2009). One important signaling protein target that the C-terminus recognizes upon ligand 

binding-induced conformational changes are heterotrimeric G proteins (Gilman 1970).  

The repeated zigzagging of the protein’s primary sequence through the plasma membrane 

results in the formation of three extracellular and intracellular loops connecting the seven 
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transmembrane domains of the GPCR protein (see Figure 4) (Trumpp-Kallmeyer et al. 1992). 

The transmembrane domains work to lock the protein into the membrane and form the three 

intracellular and extracellular loops (ICL1-3, ECL1-3).  The extracellular loops are important for 

receptor stability and work with the ectodomain for ligand recognition, binding and specificity 

(Cook and Eidne 1997). Together the intracellular loops 2 and 3 form a guanine-nucleotide 

exchange factor (GEF) responsible for signal transduction (Natochin, Gasimov, and Artemyev 

2001). These structural features are all shared by the 800 different GPCR receptors in the human 

body and have been categorized into multiple groups that will now be discussed. 

Figure 4. Defining characteristics of GPCRs. 

The two horizontal lines represent the phospholipid bilayer of the plasma membrane of the 

cell. A GPCR is defined as a receptor which contains 7 transmembrane domains. These are 

accompanied by 3 intracellular, 3 extracellular loops, an N-terminus ectodomain, and an 

intracellular C-terminus region. 

1 2 3 

1 
2 3 
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1.1.3.3. Class 1 GPCRs 

GPCRs are categorized into five individual GPCR families (Fredriksson et al. 2003; 

Graul and Sadée 2001; Bockaert and Pin 1999). The first family, commonly known as class 1 or 

class A, possesses the largest molecular mass of the GPCR families (Angel, Chance, and 

Palczewski 2009). Class 1 family GPCRs perform a multitude of critical biological functions, 

including light detection, hormonal secretion and extracellular signaling (Kakarala and Jamil 

2014). Currently, receptors in class 1 have been divided into 19 sub-groups (Joost and Methner 

2002). Since rhodopsin was the first discovered member of this family, Class 1 is also frequently 

referred to as the rhodopsin family. Rhodopsin, the eponym for this family, was the first GPCR 

classified in this family and is a light-sensitive receptor found in the rods of the retina and is 

involved in visual transduction. This receptor binds to a light sensitive biological pigment, 

known as retinal, that absorbs energy in the visible range (~400 – 700 nm) range of the 

electromagnetic radiation spectrum causing it to change its shape, which in turn causes a 

conformational change in Rhodopsin initiating signal transduction and the conversion of light 

into electrical signals (Farrens et al. 1996). Class 1 GPCRs bind their ligands between the outer 

1/3 of the transmembrane region of the protein (Trumpp-Kallmeyer et al. 1995) (see figure 5). 

1.1.3.4. Class 2 GPCRs 

The second receptor family is titled class 2, class B, or the secretin family. This family 

binds VIP, PHM/I, PHV, PACAP, PRR, glucagon, secretin, peptide HI-27, transthyretin 

(prealbumin), GIP (gastric inhibitory peptide) and GHRH (growth hormone-releasing hormone), 

(non-exhaustive list) (Laburthe, Couvineau, and Tan 2007). All members of this family 

physically recognize peptide ligands, unlike class 1, that can recognize different classes of 

molecular signals, including photons (Okada et al. 2001), and chemical pheromones (Choi et al. 
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2003). Class 2 GPCRs have an extended N-terminal domain, called the ectodomain, which 

assists in binding their peptide ligands (Pantaloni et al. 1996). To illicit down-stream signaling, 

the ligands bind between the amino terminal domain and the transmembrane domains (Hoare 

2005). 

1.1.3.5. Class 3, 4, and 5 GPCRs 

The class 3 GPCRs or class C, is referred to as the glutamate family of GPCRs and 

possesses a distinct extracellular domain called the Venus flytrap module (VFTM) (Wu et al. 

2014; Bargmann 1997). This domain functions in a similar trapping manner as the carnivorous 

plant, Dionaea muscipula or Venus flytrap. The ligand binds the extracellular ectodomain and 

the receptor closes around it (Pin et al. 2004). The adhesion family, also called class 4 or class D, 

has an extremely long amino terminal domain, in comparison to other GPCR families, which 

does not bind to peptides but rather to components of the extracellular matrix (Bjarnadóttir et al. 

2004). An example of this family is G protein-coupled receptor 56 (GPR56), whose ligand is 

type III collagen (Luo et al. 2011). The final family is called Frizzled GPCRs, class 5, or class E. 

This unconventional group contains the remainder of GPCRs that do not fall into classes 1-4 

(Schulte and Bryja 2007). Frizzleds are activated by the wingless/int1 (WNT) family of 

lipoglycoproteins (Koval et al. 2011). 
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Class 1 Class 2 

Class 3 

Class 4 
Class 5 

Figure 5. The 5 classes of GPCRs.  

Schmatic representation of all five GPCR classes with ligand binding sites denoted by 

diamonds. All of these classes share certain defining characteristics. For example, they share 

a seven-transmembrane region, but the location of ligand binding differs for all five classes 

as depicted. N-terminus (NH2) and C-terminus (COOH) are indicated for each GPCR class. 

Venus Fly Trap mechanism (VFTm) is emphasized for class 3 GPCRs. 
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1.1.3.6. VIP signaling via Heterotrimeric G-proteins 

Once VIP binds to one of its class 2 receptors (VPAC1/2 Kd ≈ 1 nM) (PAC1 Kd ≈ 1 µM) 

(Shivers et al. 1991) (Robberecht et al. 1991), the ligand binding causes conformational changes 

within the GPCR structure, which illicit downstream signaling by binding and activating 

heterotrimeric G-proteins (Unger et al. 1997; Baldwin, Schertler, and Unger 1997). Three 

individual subunits make up heterotrimeric G-proteins, called alpha, beta, and gamma proteins 

(Noel, Hamm, and Sigler 1993). These are not integral membrane proteins. The alpha subunit is 

targeted to and becomes associated with the cell membrane through a lipid palmitoyl post-

translational modification (PTM), that inserts the alpha subunit into the cell’s plasma membrane 

(Linder et al. 1993). The alpha-protein is activated when bound to GTP (guanosine triphosphate). 

Upon the hydrolysis of GTP to GDP (guanosine diphosphate), the alpha protein becomes 

inactivated (Coleman et al. 1994; Markby, Onrust, and Bourne 1993). 

The G-alpha subunit exists in several sub-types. For class 2 GPCR’s the primary subunits 

are Gαs (adenylate cyclase stimulator) and Gαi (adenylate cyclase inhibitor) (Sprang 1997). The 

Gαs subunit increases the production of intracellular cAMP (cyclic adenosine monophosphate) 

from ATP (adenosine triphosphate) hydrolysis by binding to and stimulating the enzyme 

adenylyl cyclase (Gilman 1990). The Gαi subunit counteracts the Gαs subunit and inhibits the 

conversion of ATP to cAMP (Coleman et al. 1994). The adenylyl cyclase enzyme contains one 

binding site for Gαi and another for Gαs (Tang and Gilman 1991; Gilman 1984). A Nobel prize 

was awarded to Alfred Gilman in 1994 for his work on the regulation of adenylyl cyclase by G 

proteins (Gilman 1995). 

The gamma subunit also utilizes a lipid moiety for insertion into the plasma membrane’s 

phospholipid bilayer (Linder et al. 1991). Under physiological conditions the beta and gamma 
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subunits are typically found together, and are collectively known as the beta-gamma complex 

(Pitcher et al. 1992). These three G-proteins are found as a heterotrimeric complex only when the 

alpha subunit is in the inactive, or off state (GDP bound). Upon ligand/ GPCR binding the α-

subunit dissociates from the beta-gamma dimer, inducing the α monomer to exchange GDP for a 

free GTP; Thus activating the α-subunit. (Oldham and Hamm 2008). Gα/GTPactive then moves 

within the membrane plane from the receptor to bind to adenylyl cyclase and increase its Kcat and 

formation of the secondary signaling messenger, cAMP (visualized in figure 6) (Robishaw, 

Smigel, and Gilman 1986). 
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VPAC1/2 

Figure 6. VIP/VPAC1/2 signaling by eliciting [cAMP] through heterotrimeric G-

protein activation of adenylyl cyclase.  

The binding of the VIP ligand causes a conformational change in the VPAC1/2 GPCR for Gα 

binding and its exchange of GTP for GDP to its active form. The Gα GTP active protein 

dissociates from the Gβγ complex to bind and activate adenylyl cyclase, which coverts ATP to 

cAMP and organic phosphates. The Gα GTP active becomes inactivated as the GTP is replaced 

by GDP, which allows for the reformation of the heterotrimeric G-protein and terminates the 

signal as Gαs GDP inactive dissociates from adenylyl cyclase resulting in the reduction of its 

activity. Figure recreated by author and based on Respiratory Research 2003 (Billington and 

Penn 2003). 

other 

signaling 

pathways 
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1.1.3.7. G-protein signaling 

The cycle of G-protein signaling begins with ligand binding. Once binding has occurred 

to its cognate receptor, conformational changes in the GPCR allow for the binding of the 

heterotrimeric G-protein complex by physically engaging the alpha subunit. Once bound to the 

receptor, the alpha subunit is in the off-state and bound to GDP. It becomes induced to exchange 

GDP for GTP by binding to the GPCR, thereby converting Gα into an active, or the on-state. The 

GPCR, therefore, acts as a guanine nucleotide exchange factor (GEF) by stimulating the release 

of GDP and allowing the binding of GTP (Luttrell, Daaka, and Lefkowitz 1999; Buday and 

Downward 1993). The activated state of Gα/GTP induces the dissociation of the alpha-subunit 

from the beta-gamma complex. This dissociation results in an activated alpha subunit bound to 

the GPCR and the beta-gamma complex moving away to induce other signaling that will not be 

discussed (van Biesen et al. 1995). Here, the beta-gamma complex functions as a negative 

regulator of the Gα protein. In the heterotrimeric form, the Gβγ subunit also increases the affinity 

of the G protein for GDP, keeping it in an inactive state (Brandt and Ross 1985). The alpha 

subunit preferentially binds to the GPCR if complexed with the beta-gamma complex and 

therefore the Gα subunit is delivered to the GEF-activating GPCR to induce: 1. Exchange GDP 

for GTP and 2. Gα GTP:active dissociation for the Gβγ dimer (Naor, Benard, and Seger 2000) 

(Markby, Onrust, and Bourne 1993). 

The active Gα/GTP subunit binds to adenylyl cyclase increasing its enzyme kinetics to 

promote increasing the conversion of ATP to cAMP; a necessary secondary messenger for 

protein kinase A (PKA) activation and other down-stream signaling molecules (Dessauer and 

Gilman 1997). The alpha subunit is categorized as a GTPase, hydrolyzing GTP to GDP + 

inorganic phosphate (Kleuss et al. 1994). Upon binding to its target, in this case adenylyl 
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cyclase, the active alpha subunit hydrolyzes GTP to GDP inducing its off-state and dissociation 

from adenylyl cyclase (Cassel and Selinger 1978). Thus, intrinsic GTPase activity limits its time 

bound to adenylyl cyclase and acts as a self-limiting “timer” for adenylyl cyclase activation. The 

kcat for this reaction is very slow and takes about 5 minutes. The free roaming G-alpha subunit 

(GDP) re-attaches to a beta-gamma complex to form a heterotrimeric G-protein complex 

(Logothetis et al. 1987). This cycle of activation and inactivation allows for intracellular 

signaling to occur. These steps occur for VIP’s two primary receptors VPAC1 and VPAC2 

(Murthy et al. 1993). 

1.1.4. Adenylyl cyclase enzyme 

In mammals, currently there are ten known isoforms of adenylyl cyclase enzymes, 

dubbed ADCY1 through ADCY10 (Hanoune and Defer 2001). Of these ten, ADCY1 through 

ADCY9 are transmembrane enzymes, while ADCY10 is the only soluble form identified to date 

(Chen et al. 2013). Found primarily in the male spermatozoa, ADCY10 functions independent of 

G protein dependent signaling, but rather acts as a pH (potential of hydrogen) sensor within the 

cell. Researchers discovered ADCY10 when trying to understand the cAMP-dependent 

activation process in mature male sperm (spermatozoa) (Chen et al. 2000). ADCY1 through 

ADCY9 are made up of a single polypeptide (~154 kDa (Neer 1976)) and have very similar 

structures (Harayama 2013). 

The ADCYe proteins are comprised of two transmembrane domains (TMD) 1 and 

TMD2. Each transmembrane domain has a cluster of 6 transmembrane segments that “wind” 

through and anchor the enzyme into the plasma membrane (Tang and Gilman 1995). The small 

bridge between TMD1 and TMD2 is named the C1 domain, while the peptides near the 
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carboxylic acid terminus are called the C2 domain. Each of these domains is further separated 

into 2 sections, called C1a and C1b, and C2a and C2b (Zhang et al. 1997).  

When these two domains are distal from each other (figure 7), the adenylyl cyclase 

enzyme is in its inactive state. The Gαs/GTP subunit unifies these two domains by joining the 

C2a domain with the C1a and C1b domains. The dimerization of these two domains then allows 

for the enzymatic conversion of ATP to cAMP and pyrophosphate (Yan et al. 1996; Whisnant, 

Gilman, and Dessauer 1996; Yan et al. 1997; Zimmermann, Zhou, and Taussig 1998). The Gαi 

subunit reverses these steps and switches adenylyl cyclase into the off state. The small “bridge” 

created by Gαs acts as the binding site for Gαi inactivating the enzyme and stopping cAMP 

production (Dessauer et al. 1998). Interestingly Gαs GTP active binding to adenylyl cyclase is 

responsible for generating a Gαi GTP active binding site, therefore allowing the cell to limit 

adenylyl cyclase acitivity even more rapidly than the GTPase activity of Gαs. 

The G-beta-gamma complex that dissociates from the Gαi/αs proteins can also act upon 

adenylyl cyclase (Diel et al. 2006). A binding site for the Gβγ complex is present on adenylyl 

cyclase and can act to temporarily upregulate this enzyme (Chen et al. 1995). In addition to 

adenylyl cyclase activation from Gαs, Gβγ can also activate adenylyl cyclase and i[cAMP] 

elevation (Inglese et al. 1994) (Wittpoth et al. 1999). Adenylyl cyclase can also be activated by 

directly bypassing the GPCR, through forskolin, a tool to induce cAMP production, which binds 

to the Gαs site on adenylyl cyclase (Shu and J. Scarpace 1994), and can increase its enzymatic 

activity by 103 (Liu et al. 1997). The cAMP produced by adenylyl cyclase continues the 

downstream signaling of the GPCR and is pictured in figure 7. The amount of cAMP produced 

along with the pathways activated/inhibited by cAMP are cell specific. 
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Figure 7. Schematic representation of the enzymatic regulation of AC by G-protein 

binding. 

The adenylyl cyclase enzyme contains 12 trans-membrane anchors (TMD1 and TMD2), with 

a C1 and C2 domain, which needs to become “tethered” together to promote a functional 

active site for conversion of ATP to cAMP + Pi. Activation by Gαs “wraps” the C2a domain 

over the C1 domain and increases the enzymatic activity of AC. This “wrap” creates a 

binding site for Gαi, which reverses the domain overlap and halts enzymatic activity and 

subsequent cAMP production.  
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1.1.5. Multiple GPCR pathways 

GPCRs like VPAC1/2 through their heterotrimeric G-proteins, can activate several 

different pathways. Through adenylyl cyclase, the cAMP pathway can stimulate hormone 

receptors (Filardo 2002; Reiter et al. 2001; Ji et al. 2002), activate protein kinase A (PKA) 

(Thevelein and de Winde 1999), stimulate cyclic nucleotide-gated (CNG) ion channels (Rakhilin 

et al. 2004) and nucleotide exchange factors directly activated by cAMP (EPAC) (Borland, 

Smith, and Yarwood 2009), all of which illicit downstream signaling pathways of their own. 

These pathways modulate cell adhesion and migration (Kinashi and Katagiri 2005), vascular 

inflammation regulation (Schmidt et al. 2007), cytokine signaling regulation (Sands et al. 2006), 

cell proliferation modulation (Stork and Schmitt 2002), cellular differentiation (Hoffman et al. 

1994), and cellular hypo/hypertrophy (Ulucan et al. 2007). The variety, cellular concentrations, 

intracellular targeting GPCRs through heterotrimeric G-proteins and the competition between 

Gαs, Gαi and Gβγ binding, can all impact VIP’s ability to illicit cellular effects (Hillenbrand et al. 

2015). Moreover, newer models of GPCR functional activity have demonstrated the importance 

of extra/intracellular proteins on GPCR activation. This overturns the simple “on/off” theory, 

adding additional complexity to these receptors (Maudsley et al. 2012). 

1.1.6. Biological functions of VIP signaling 

1.1.6.1. VIP receptor localization 

Over the past half century, VIP research has demonstrated that this peptide plays 

important biological roles in the brain, gastrointestinal tract, cardiovascular system and immune 

system. Although VIP receptors are disseminated throughout the body, the expression patterns of 

VPAC1 and VPAC2 receptors differ. VPAC1 is found in the liver, kidneys, spleen, breast tissue, 
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prostate, bladder, immune cells, lungs, gastrointestinal mucosa, thyroid, and lymphoid tissues 

(locations represented in figure 8) (Reubi 2000).  

In the central nervous system (CNS), VPAC1 is found the supraoptic nucleus, pyriform 

cortex, the putamen, and the pineal gland. The VPAC2 receptor is found throughout smooth 

muscle layers in blood vessels, gastrointestinal tract, lung, reproductive tract. It is also found in 

the vasculature of the kidney, the colon, the thyroid, pancreas, and immune cells (Harmar et al. 

2004). In the CNS, VPAC2 is found in the amygdala, the hypothalamus, the thalamus, 

periventricular nucleus, cerebral cortex, and the suprachiasmatic nucleus (Vertongen et al. 1998) 

(Usdin, Bonner, and Mezey 1994). 

1.1.6.2. VIP signaling in the nervous system 

Through VPAC2, VIP serves as a master regulator of the circadian rhythm, managing the 

oscillation of our endogenous 24-hour circadian clock in the brain (Pauls et al. 2014) (Vosko et 

al. 2015). This circadian regulation was discovered by Harmar et. al who generated a VPAC2 

knockout mouse strain. They discovered that the disruption of this signaling pathway resulted in 

disrupted wheel-running activity when compared to the WT strain. Clock genes, which act as 

circadian pacemakers in the brain, were found to be weakly expressed in the VPAC2 receptor 

knockout mice with their rhythmicity disrupted upon dark conditions (Harmar et al. 2002). VIP 

signaling is also upstream of brain-derived neurotropic factor (BDNF), which is critical in 

day/night synchronization and neural structural plasticity, the ability of the brain to strengthen 

and create new synaptic connections (Girardet et al. 2013).   

To determine the signaling pathway responsible for VIP’s neuroprotective effects against 

neuro-excitotoxicity, it was demonstrated that VIP’s protection was lost in VPAC2 knockout 

mice and/or when VPAC1 agonists were utilized (Rangon et al. 2006). Through the VPAC1 
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receptor, VIP stimulates neuroprotective proteins, which have been implicated in the treatment of 

Alzheimer’s disease (Gozes 2001). VIP is also linked in neurotoxicity reduction, through its 

recognition of neurotoxins, which are plaque forming substances including β-amyloid (Offen et 

al. 2000). VIP’s ability to prevent neurodegeneration, suggests the potential therapeutic use of 

VIP in neurogenerative disorders like multiple sclerosis and Parkinson’s disease (Delgado and 

Ganea 2003; Korkmaz et al. 2010; Fernandez-Martin et al. 2006).   

 

 

Figure 8. Locations of VIP receptors.  

The distribution of VPAC1/2 receptors throughout the human body suggests the importance 

of this peptide signaling in physiology. Human body picture is a public domain image 

(Wikimedia commons). 
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1.1.6.3. The gastrointestinal tract and VIP 

In the gastrointestinal tract, VIP functions as a promoter of intestinal barrier homeostasis 

and a protector against inflammatory bowel diseases (IBD) by downregulating inflammatory 

cytokine production (Wu, Conlin, et al. 2015). VIP promotes intestinal barrier homeostasis by its 

ability to restore protein kinase C (PKC) pathways disrupted during infection (Morampudi et al. 

2015). Mice deficient in VIP (VIP knockout; VIPKO), have demonstrated distorted colonic 

crypts, defective epithelial proliferation and increased permeability (Wu, Conlin, et al. 2015).  In 

the mucosa-associated lymphoid tissues (MALT) of the gastrointestinal tract, VIP upregulates 

cell junctions and decreases intestinal permeability, reducing pathogen uptake (Abad et al. 2003; 

Jonsson, Norrgard, and Forsgren 2012). VIP’s regulation of smooth muscle contraction, is also 

involved in gastric motility, peristalsis and sphincter function (Love, Go, and Szurszewski 1988; 

Biancani et al. 1988). Moreover, VIP acts as an important metabolic regulator in both the brain 

and gut and its removal in mice results in weight loss and fat storage deficits, supporting the 

notion that VIP signaling is an essential regulator to metabolic homeostasis (Vu et al. 2015). 

VIP signaling plays a key role in appetite control, fat mass accumulation, and metabolic 

hormone regulation. VIPKO mice, when compared to their wild type (WT) littermates, showed 

significantly lower body weight and lower body fat percentage. Interestingly, while they 

consumed similar amounts of food as WT littermates, they consumed food throughout the day 

and night, whereas the WT mice consumed their food during the night (mice are nocturnal 

animals). In the VIPKO mice, researchers found increased leptin, “the full hormone” and 

decreased ghrelin, “the hunger hormone” which works in opposition of leptin. These levels 

remained unchanged after food consumption (Vu et al. 2015).  Leptin acts as satiety sensor, 

notifying your brain you have eaten enough, while ghrelin informs your body you need to eat 
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(Schussler et al. 2012).  Research by Liu et al. analyzing gene pathways predisposing individuals 

to obesity demonstrated that the VIP signaling pathway was the most important in the 

development of higher BMI and body fat ass. This study genotyped ~500,000 single-nucleotide 

polymorphisms in 1,000 US caucasian males analyzing over 960 different pathways to establish 

VIP’s reputation (Liu et al. 2010). 

1.1.6.4. Role of VIP in the cardiovascular system 

The substantial cardiovascular effects of VIP suggest that this peptide is important in 

regulation of arterial blood flow, cardiac contraction, and heart rate. Two years after its 

discovery, VIP was found to relax vascular smooth musculature. As the Hagen-Poiseuille law 

states, this reduces the pressure upon arterial walls, allowing for greater blood flow (Said and 

Mutt 1972). Research in feline craniums demonstrated that VIP’s involvement in lowering blood 

pressure was extended to neurogenic dilation, or a severe drop in blood pressure that reduces the 

amount of blood returning to the heart (Bevan et al. 1986). During disrupted heart rhythm or 

atrial fibrillation, oxygen scarcity and heart failure, VIP is released by intracardiac neurons 

around the atrioventricular nodes to reduce blood pressure (Xi et al. 2013). In healthy subjects, 

VIP infusions caused sustained vasodilation and decreased arterial pressure (Frase et al. 1987). 

Exogenous released and endogenously injected VIP can significantly increase heart rate and has 

a more potent effect on heart rate than norepinephrine (Henning and Sawmiller 2001). VIP 

deficiency has also displayed lower body temperatures, due to weaker heart rates caused by 

disrupted physiological circadian rhythmicity in the heart (Schroeder et al. 2011). It’s ability to 

reduce blood pressure has resulted in its consideration as a drug for pulmonary hypertension 

treatment (Petkov et al. 2003).  
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1.1.6.5. Immunoregulation by VIP 

With respect to immunity, VIP acts as a chemoattractant (e.g. acts as a chemical 

recruiter) of leukocytes and mediates anti-inflammatory effects (El-Shazly et al. 2013). In 1978, 

it was discovered that VIP can be produced by immune cells (Cutz et al. 1978). A few years 

later, mast cells were found to produce a truncated form of VIP (10-28), which acts as an 

antagonist to VIP signaling by competing for VPAC1/2 binding sites (Wershil et al. 1993). 

Examples of VIP’s anti-inflammatory role include its inhibition of proinflammatory cytokines 

like TNFα, IL-6, and IL-12 to name a few. It also upregulates the production of IL-10, a potent 

anti-inflammatory cytokine (Feldmann, Brennan, and Maini 1996). VIP supports the survival and 

generation of TH2 cells (Delgado 2003).  

During sepsis, VIP is significantly increased in plasma assisting in inflammation 

reduction (Kuncova et al. 2011). VIP’s extensive presence throughout the gastrointestinal tract, 

its involvement in inflammatory bowel diseases as well as the disruption of the intestinal 

epithelium in VIP knockout mice, eludes to its importance in the alimentary canal. Changes in 

receptor expression in resting versus activated lymphocytes, along with delayed eosinophilic 

response during allergy in VPAC2 knockout mice, advocates for its significance as an immune 

modulator (Dorsam et al. 2010; Vomhof-DeKrey and Dorsam 2008). To gain a better 

understanding of VIP’s role in the digestive and immune systems, microbiome and eosinophil 

differentiation experiments were conducted (discussed in chapter 2 and 3). 
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2. VIP/PHI DEFICIENCY CAUSES MOUSE GUT DYSBIOSIS 

2.1. Our microbiota 

Altogether, it is estimated that our planet is host to nearly 6 x 1030 bacterial cells. This far 

exceeds the biomass of all other kingdoms (animalia, plantae, fungi and protists) on the 

phylogenetic tree of life (Whitman, Coleman, and Wiebe 1998). The bustling communities of 

symbiotic, commensal, and pathogenic microorganisms that call our body home are our 

microbiota. This term is very general, and includes all microorganisms like, viruses, archaea, 

fungi and bacteria existing in an environment. The microbiome on the other hand refers to the 

genetic composition of this microbiota or all the genes of a microbial population. Bacteria, the 

largest kingdom of prokaryotes inhabit all known environments on our planet. They are found in 

even the most environments, such as deserts, rainforests, the frozen tundra and plains. They can 

even survive in harshest known surroundings, like the town of Pripyat, Ukraine, which has been 

saturated with high-levels of radiation since the level 7 nuclear energy accident (Chernobyl 

disaster) in 1986 (Zavilgelsky et al. 1998). Research by Igor Shuryak has demonstrated 

cooperation between these communities, where radiosensitive bacteria are protected from 

ionizing radiation by neighboring radio-resistant ones (Shuryak et al. 2017). Bacteria have also 

been found to dominate the harsh environments of deep-sea hydrothermal vents, once thought to 

be void of life (Xu et al. 2014).  

2.1.1. Discovery of E. coli and the coining of the microbiome 

The discovery of Escherichia coli, by Theodor Escherich in the 1880’s, opened the door 

to the isolation of numerous oral, digestive, and respiratory flora. It led to the realization that we 

are not “alone”, and that our bodies play host to numerous other organisms. Since then, 

researchers have speculated on the importance of our bacterial communities. To gain a better 
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understanding of the significance of our microbiota, the use of pathogen-free laboratory animals 

was suggested in 1962 (Petter-Lane 1962). The utilization of germ-free animals has been critical 

in illuminating the interplay between our bodies and the microorganisms that “call it home”. 

Although the individual who first coined the term “microbiome” is uncertain, it was first 

authored in a manuscript by John Whipps in 1988 (Whipps JM 1988).  

2.1.1.1. Relative number of bacteria 

Although many publications credit Dwayne Savage for determining the intestinal 

bacterial load in late 1972, it was T. D. Luckey from the University of Missouri, Columbia, 

whom postulated that the microbial population of our bodies, our microbiota, outnumber our 

cells 10 to 1 (Savage 1977; Luckey 1972). Luckey estimated there were 37.2 x 1013 bacterial 

cells with an estimated 3.72 x 1013 human cells (Bianconi et al. 2013). This number (37.2 x 1013) 

was estimated based upon the total number of microbes/gram found in the intestinal tract and the 

total volume capacity of the alimentary tract estimated to be 1 L. Nearly four and a half decades 

later, T. D. Luckey’s hypothesis was challenged and reanalysis by Ron Sender who calculated 

that the ratio was closer to 1 to 1. This was based upon the revised total volume capacity of the 

intestinal tract to be around 0.4 mL based on magnetic resonance imaging (MRI) scans. Using 

this reduced capacity and the microorganism density throughout the alimentary canal, Sender 

approximated that our microbial populations amounted to nearly 3.7 x 1013 cells, the same 

estimated number of cells that make up our own body (Sender, Fuchs, and Milo 2016). 

In terms of genomics, the 2.91 billion base pair human genome was first published in 

2001 (Venter et al. 2001; International Human Genome Sequencing 2001) and later 

revised/finalized in 2003. Prior to the revealing of its sequence, it was estimated that the human 

genome was composed of nearly 100,000 protein encoding genes. Surprisingly, the human 
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genome project demonstrated that there were only a scant 20,500 protein-coding genes (Clamp et 

al. 2007). In comparison, metagenomic analysis of the human gut microbiota has characterized 

3.3 million non-redundant genes; a gene set around 150 times larger than the human genome. 

Analysis found the human microbiome to contain nearly 8 million unique protein coding genes 

or 390 times more than the human genome (Qin et al. 2010). What consequence could this 

immense genetic content and protein producing potential have on the health and disease of the 

host? 

The 6.5-meter length of the human gastrointestinal tract hosts the highest presence of 

microorganisms and therefore the “lion’s share” of this extended bacterial genome. The 

microbial biomass in the human small intestines reaches cellular densities between 104 and 105 

per milliliter of chime, while the large intestines plays host to considerably higher amounts, 

estimated between 108 and 1011 cells per milliliter of fecal matter (Wang et al. 2005; Wang et al. 

2003). Visualized in figure 9, the microbial biomass changes throughout the alimentary canal, 

with the highest concentration present in the large intestine. This is primarily due to the drastic 

changes in pH that occur throughout the tract and resources availability (Walter and Ley 2011). 

The desire to determine which microbes are present and how they may impact host physiology 

has opened up the field of microbiome sequencing. Its history is discussed in the next section. 
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Figure 9. Diversity of biomass through the human gastrointestinal tract. 

Differences in bacterial load between different parts of the alimentary canal as pH changes. 

Figure recreated by author (GI tract is a public domain image (Wikimedia commons)) and 

based on Jens Walter, Annual Review of Microbiology (Walter and Ley 2011). 
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2.1.1.2. Sequencing and analysis history of the microbiome 

Our ability to determine the nucleotide sequence of a DNA fragment has increased in 

accuracy and speed exponentially over the past century, since Ray Wu first published a method 

for DNA sequencing in 1972 (Wu 1972). This string of nucleotides, the DNA molecules, were 

first identified by Friedrich Miescher in 1871 (Miescher-Rüsch 1871). Nineteen years after the 

accurate deduction of the DNA double helix by James Watson, Francis Crick and Rosalind 

Franklin (Watson and Crick 1953), it was Ray Wu at Cornell who developed the first method for 

DNA sequencing (Wu 1972). Double Nobel laureate and sequencing pioneer, Frederick Sanger 

added his primer-extension technique to create more rapid DNA sequencing techniques (Sanger, 

Nicklen, and Coulson 1977). These techniques will be discussed later in this chapter. 

Sanger was the first to publish an entire genome of an organism; The bacteriophage phi 

X174, which contained approximately 5,375 nucleotides (Sanger et al. 1977). Sanger’s chain-

termination method, better known as Sanger sequencing, was the method of choice for DNA 

sequencing until the mid-2000s. Advancements to the Sanger sequencing technique, including 

faster reading techniques, were responsible for the completion of the first complete human 

genome (Venter et al. 2001; International Human Genome Sequencing 2001). Sequence 

commercialization and advancements in computing have resulted in the creation of numerous 

industrial high-throughput methods, such as Illumina sequencing (used in this study), 454-

Pyrosequencing, Ion Torrent sequencing and Single-molecule real time sequencing. Detailed 

description of these methods will be discussed later in this chapter. 
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2.1.2. Background 

2.1.2.1. The microbiota 

Our understanding of the microbial communities in the environment has surged over the 

past few decades with the development of high throughput DNA sequencing technologies, 

cultivating with next generation sequencing technologies. This is primarily due to the speed and 

accuracy at which these microbes can now be identified as well as computing advances 

(bioinformatics) in analysis of results. Most microorganisms are difficult to culture and thus have 

historically been difficult to identify. Culturing microbes from a variety of environments can also 

result in favorable environments for some and unfavorable for others, thus biasing the results and 

changing the total compositional profile. Utilization of gel electrophoresis technologies by 

Sanger sequencing were slow compared to modern technologies and required immense 

manpower for sequencing. This was because each nucleotide was determined by each individual 

lane in the gel, as demonstrated later in this chapter (2.1.5 Sequencing Techniques). Since then, 

the generation of a more robust Taq polymerase through DNA recombinant technologies, the 

ability to fluorescently tag nucleotides, improvements in fluorophore detection and the 

prodigious advancements in computer science have rendered these older techniques obsolete. 

The identification of microbes using culture-independent DNA sequencing acts as a magnifying 

glass, allowing us to discover and catalog the world of microbes. 
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Figure 10.  Assortment of microbial populations throughout the human body.  

The biodiversity of bacterial communities throughout the human habitat is extreme as shown 

by pie graphs for different regions throughout the body. Visualization of the varied 

populations, demonstrates that our bodies may be better defined as ecosystems.  Figure 

obtained from Elizabeth Costello, Science 2009 (Costello et al. 2009). 
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Our microbiota is comprised of a wide group of microorganisms, ranging from bacteria 

and archaea to fungi and viruses. In total they make up around 3% of our body mass, resulting in 

nearly two and a half kilograms (5.5 lbs.) in an eighty-kilogram (176.4 lbs.) adult. The variety in 

bacterial composition as well as their colonization locations are demonstrated in figure 10. 

Research has shown the importance of the microbial presence with the formation of germ-free 

mice. It has been reported that the microbiota in our gut is responsible for metabolism of non-

digestible carbohydrates to yield short chain fatty acids (SCFA) as a waste product of 

fermentation, which act as an energy source for intestinal epithelial cells (Layden et al. 2013). 

Essential amino acids, vitamin K, B vitamins and folic acid are synthesized by the intestinal 

microbial population and are absorbed by the host (LeBlanc et al. 2013). The regulation of the 

endocrine network by the microbiota through manipulation of bile acids, gastrointestinal 

hormones, lipid metabolites and neurotransmitters has also been demonstrated (Ridlon et al. 

2014; Kasubuchi et al. 2015). 

2.1.2.2. Microbial co-evolution 

The co-existence of microorganisms with animals has been found throughout the animal 

kingdom. Little was understood about our inventory of microbes just a decade ago. The co-

evolution of the host and their microbial counterparts is almost impossible to establish, due to 

lack of coprolites, or fossilized feces. One exception to this was in 2008 when Raúl Tito 

examined two 1,300-year-old paleofecal samples from cave deposits near Durango, Mexico. 

Conclusions from their next generation sequencing study showed the prominence of both 

Bacteroidetes and Firmicutes phyla (Tito et al. 2008), similar to predominant phyla found in the 

current human gut (Qin et al. 2010). 
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The Hologenome theory of evolution developed by Eugene Rosenberg and Ilana Zilber-

Rosenberg, considers both the animal or plant along with all of its associated microorganisms 

together as units of selection in evolution (Zilber-Rosenberg and Rosenberg 2008). The 

Figure 11.  Changes in human gut microbiota diversity based upon location.  

This recreated graph demonstrates the impact of food and our environment on our microbial 

population. Each dot is a raw component score graphed by the researches (recreated here) and 

compared on a principle coordinates analysis (PCA) plot. Samples from individuals with 

comparable diet and locations were clustered together demonstrating similarities between 

them, while differences in diet and location cluster apart. Figure visually adapted from Emily 

Davenport, BMC Biology (Davenport et al. 2017) . 
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importance of bacterial populations in Drosophila melanogaster demonstrated this concept by 

showing that manipulations of fruit fly intestinal flora resulted in altered mating patterns and a 

change in offspring production. (Sharon et al. 2011). Furthermore, changes in gut bacteria also 

modulated body mass of female, but not male fly offspring, suggesting a trans-generational 

effect of parental gut-microbiota (Morimoto, Simpson, and Ponton 2017). 

2.1.2.3. The Homo sapiens ecosystem 

You are your body’s “wildlife” manager. Our bodies represent a biosphere that possesses 

a wide variety of ecosystems, similar to deserts and rainforests, each colonized by different 

animals and planets. These microbes have evolved to replicate and flourish in their particular 

microenvironment on our body. Just like these larger ecosystems on the Earth, various human 

body parts form microbial communities that coexist with us. These ecosystems require 

organisms to be able to obtain resources and survive challenges generated by different variables 

within a particular including temperature, pH, water availability, oxygen richness, and resource 

accessibility. These stressors impact the presence of the microorganisms that reside there, 

altering their composition, genetic materials, metabolites and consequently their impact on our 

bodies (Jordan et al. 2015). The selectivity of the human GI tract in comparison to other 

ecosystems can be seen in figure 13, where two bacterial phyla, Bacteroidetes and Firmicutes, 

primarily dominate the vertebrate gut in comparison to soil samples, where more than 70 

different phyla can be present. 
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Figure 12.  Gut microbiota diversity amongst the biological kingdom Animalia.  

This figure demonstrates that when compared to other residents of the animal kingdom, the 

human intestines are very selective towards microbial populations whereas variations 

between human populations seems indiscernible. Raw component scores from each 

population are represented as colored dots on a PCA plot with the legend equating colors to 

animals. Figure adapted from Emily Davenport, BMC Biology (Davenport et al. 2017).  
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2.1.2.4. Diversity of the gut microbiome 

Within the human gut resides an estimated 160 distinct species of bacteria (Qin et al. 

2010). The majority of these belong to the Bacteroidetes, Firmicutes, Actinobacteria, and 

Proteobacteria phyla. Amongst human populations, the percentage of these phyla differs based 

upon location, diet and environment (Moodley et al. 2009). For example, comparisons between 

the microbial populations of humans residing in industrialized regions, such as the United States, 

versus non-industrialized areas, such as the amazon, (Figure 11) demonstrates the changes in 

diversity of these microorganisms. Analysis by 16S rRNA sequencing, has shown that the 

intestinal microbiota of humans in first world countries, contains lower diversity levels than their 

third world cousins (Davenport et al. 2017). Diversity meaning the difference in abundance 

between the different types of microorganisms that reside within the intestinal tract (analyzed 

through fecal matter) of these populations. 

Detailed analysis of diversity changes in gut microbiota moving to other taxonomic levels 

was accumulated by Davenport et al.. The graphed results (Figure 12) illustrate the changes in 

microbiota during evolution. As the microbial compositions of more evolved organisms are 

analyzed, they cluster closer together, for example in birds (lower on the evolutionary tree) the 

16S reads are dispersed when compared to hoofed mammals (higher on the evolutionary tree) 

whose reads are clustered closer together. This suggests that as more complex species evolve, 

selective pressure is placed on the microbial community that reside on them and their bacterial 

diversity is reduced. Although figure 11 seems to show big differences between human 

populations, analysis against mammals, fish, birds and reptiles, minimizes these distances when 

compared against others in the animal kingdom (Figure 12) (Davenport et al. 2017). 
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Figure 13.  Selectivity of the human gut in comparison to other ecosystems.  

Each color in this bar graph represents the percent of a particular phylum present within a 

sample which is indicated on the x-axis. This demonstrates the selectivity of the vertebrate 

gut and its two primary phyla, Bacteroidetes (red) and Firmicutes (blue), when compared to 

other environments such as soil and salt water. Figure from ('Structure, function and diversity 

of the healthy human microbiome'  2012). 



 

42 

When analyzed, the microbiomes of humans consuming a western diet (60 kcal% fat) vs 

a non-western diet (10 kcal% fat), were considerably different. The western diet microbiomes 

were composed of higher percentages of Bacteroides in comparison to non-western 

microbiomes, that consisted of higher percentages of Firmicutes and Proteobacteria (Rampelli et 

al. 2015; Schnorr et al. 2014; Clemente et al. 2015). The western populations also consisted of 15 

to 30% fewer microbial species than non-western populations. This has led to the hypothesis that 

industrialization and westernization are responsible for the reduction of intestinal diversity (or 

the gradual disappearance in species from the human gut over time). It is theorized this is due to 

the focus on sanitation and drastic changes in our diet, such as increased consumption of animal 

products (Segata 2015). The western diets are also rich in sugars and fats, and poor in fiber; 

which is the opposite of non-western diets. This along with the bigger focus on hygiene and 

greater use of antibiotics in western populations may be responsible for decreased diversity 

(Blaser and Falkow 2009). 

2.1.2.5. Causes of gut microbiota change 

Methods of fetal delivery, such as cesarean section vs natural delivery can inoculate a 

newborn with different bacteria. The natural delivery method results in introduction from the 

mother’s fecal and vaginal microbes, whereas a cesarean birth (C-section) results in the 

introduction of skin microbes (Gueimonde et al. 2006).  In addition to the mother’s skin, C- 

section infants are exposed bacteria present in the operating room (Shin et al. 2015). Babies are 

born with a small placental microbiome present and an intestinal tract that becomes colonized 

with different microbial populations over time (Wassenaar and Panigrahi 2014). These bacterial 

populations constitute the newborns GI tract immediately after birth. For the first three months of 

life, C-section infants, in contrast to natural born babies, possess a lower diversity of 
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Actinobacteria, Bacteroidetes and Bifidobacterium with a concomitant increase in variety of 

Firmicutes in their feces (Rutayisire et al. 2016). Chu et al. have demonstrated that the microbial 

community structure is only impacted by birthing method during the first 6 weeks of life, after 

which it is primarily driven by differences in food intake (Chu et al. 2017). Other studies have 

suggested the change can last 6 to 12 months (Rutayisire et al. 2016) or even up to 2 years 

(Jakobsson et al. 2014). This lack of consistency can be linked to difficulties in controlling infant 

environment and diet. 

The differences in the type of milk fed to the infant can also impact their gut microbiota. 

The specific compounds present in human milk are thought to be involved in the establishment 

and development of the early gut bacteria. Commensal bacterial populations seem to benefit 

from the intake of breast milk in comparison to formula (Holscher et al. 2012). The addition of 

prebiotic oligosaccharides to formula has shown to bring the gastrointestinal microbiota closer to 

that of breast fed infants. These prebiotics also decrease fecal pH and increase short chain fatty 

acids (SCFA) while reducing diarrhea and bringing fecal consistency to a similar level to breast 

fed infants (Vandenplas, Zakharova, and Dmitrieva 2015). By eleven months, the microbiota of 

the infant becomes distinct from their mother (Vaishampayan et al. 2010). After the first year, 

the gastrointestinal microbiota starts to resemble that of an adult human (Palmer et al. 2007). 

From this age (> 1 year), the types of food eaten and the environment in which the child resides, 

play the largest roles in shaping the microbiota composition. As visualized in figure 14, the 

human microbial composition changes with age and influences human health. A study in Japan 

analyzed the microbiomes of subjects ranging from newborns to centenarians and demonstrated 

that the gut microbiota changes throughout our lifespan (Odamaki et al. 2016). Below is a list of 



 

44 

the modifying factors that alter gut microbiota composition throughout life. List generated based 

on data from Abubucker et al. (Abubucker et al. 2012). 

• Infant (up to 2–3 years) 

o Vaginal vs caesarian delivery 

o Gestational age 

o Infant hospitalization 

o Breast vs formula fed 

o Age at solid food introduction 

o Malnutrition 

o Antibiotic treatments 

• Adult 

o Diet 

o Hormonal cycles 

o Travel 

o Therapies 

o Illness 

• Elderly (> 70 years) 

o Lifestyle changes 

o Nutritional changes 

o Increased susceptibility to infections and inflammatory diseases 

o Use of more medications 
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2.1.3. Implications in disease 

The composition of microorganisms that inhabit the human body can vary. Their vast 

metagenomic capability have resulted in the classification of the microbiota as an invisible 

Figure 14.  The change in our intestinal microbiota composition through different 

stages of life.  

This figure complies changes in the main bacterial phyla from different studies and visually 

demonstrates the key established factors that determine how they could change over a 

lifetime. The blue arrow demonstrates human age with above pie charts representing bacterial 

phyla. Figure recreated with data and pie charts from (Ottman, Smidt, and Belzer 2012). 
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endocrine organ. Comparisons between the microbiota and other endocrine organs are discussed 

later in this chapter. An imbalance in this organ/community, through high-fat, high-sugar 

western diets or the excessive use of antibiotics can lead to changes in its composition, as well as 

changes to host endocrine secretions. For example, Aquilera et al. demonstrated that the use of 

antibiotics and stress (water avoidance) resulted in increased bacteria with the ability to adhere to 

the intestinal mucosa (Aguilera, Vergara, and Martinez 2013).  

Barouei et al. showed that a high fat diet altered liver hormones, reduced short chain fatty 

acids (SCFA) in the intestines and urine metabolites along with the intestinal microbiota 

(Barouei et al. 2017). The impact of microbial secretions and their impact on numerous body 

systems has led to the association of the microbiota with a number of diseases, such as metabolic 

syndromes (obesity), diabetes, rheumatoid arthritis, Crohn’s disease, ulcerative colitis, 

cardiovascular disease, autoimmune diseases and neurological disorders such as autism 

(Tremaroli and Backhed 2012; Tilg and Moschen 2014; Singh, Qin, and Reid 2015; Petra et al. 

2015). 

2.1.3.1. Obesity 

Obesity is an energy disorder, where net excess intake of calories compared to energy 

expenditure causes increased fat deposition and body weight. Studies of the microbiome of obese 

and normal mice have demonstrated differences in the composition and function. Obese mice 

particularly exhibited a reduction in the total percentage of Bacteroidetes and an increase in the 

Firmicutes phyla (Ley et al. 2005). The change of this ratio has also been demonstrated in human 

populations. Studies of obese patients revealed the same increase in Firmicutes and decrease in 

Bacteroidetes (Murphy, Velazquez, and Herbert 2015). Interestingly, once these obese patients 
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were placed on a calorie restrictive diet, this F:B relationship reverted to ones found in leaner 

individuals (Ley et al. 2006).  

Using C57BL/6J (B6) WT and Rag1-/- mice, Fredrik Bäckhed, demonstrated that the 

obesity phenotype was transmissible through the microbiota and not dependent on lymphocytes 

(Rag1-/-). In their first experiment (figure 15a), both wild type and germ-free mice were fed a 

high-fat/high-sugar western diet, but the obesity phenotype was only observed in the wild type 

mice. The microbiota of the wild type mouse was altered (↑ F/B ratio) along with weight gain. 

This result suggests that the lack of a microbial community in the germ-free mice protects the 

mouse from died induced obesity. In their second experiment (figure 15b), three groups of germ-

free and three groups of wild type mice were utilized. The wild type mice were split into normal, 

obese and underweight categories. Microbiota from each of these three wild type categories were 

transplanted into each of the three germ-free groups. Remarkably, the previously-germ-free 

recipients group adopted the phenotypes of their donors, resulting in a normal, obese and 

underweight phenotype (Bäckhed et al. 2004). Similar findings have been discovered with fecal 

microbiota transfers from obese human donors to germ-free mouse. The mice in these studies 

have also resulted in donor phenotype adoption. This observation has been contested by other 

researchers who failed to find phyla level differences based upon obesity (Bell 2015; Rabot et al. 

2016). Recent advancements on this ratio have focused on the ratio of gram negative to gram 

positive bacteria rather than the ratio of these two phyla (Kasselman et al. 2018).  
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Figure 15.  Importance of microbiota function in weight control.  

A. The utilization of a high fat/high sugar diet in conventional versus germ free mice results 

in the adoption of an obese phenotype in the conventional wild type mice whereas the germ-

free mice remain resistant to diet induced obesity (DIO). B. Transplantation of the intestinal 

microbiota from wild type, obese, and underweight donors into germ-free mice results in the 

adoption of the donor phenotype in the fecal recipient. Figure recreated and based on data 

from (Clarke et al. 2014).  
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Numerous individual bacteria have been implicated in obesity. One study in Shanghai, 

China, sequenced the microbiome of a morbidly obese volunteer, and found 35% of his gut 

bacteria to be Enterobacter. This opportunistic pathogen dropped to undetectable levels after the 

individual lost 51.4 kg (113.3 lbs.) of his total 174.8 kg (385.37 lbs.) weight, by dieting for 23 

weeks. Upon isolation and introduction of this endotoxin producing pathogen into germ-free 

mice on a high-fat diet, researchers found the mice to become obese and insulin resistant when 

compared to mice not inoculated with the Enterobacter. This same phenotype was not observed 

with normal chow, suggesting a dramatic increase in Enterobacter through high fat diet 

consumption and may contribute to the obesity phenotype in humans (Fei and Zhao 2013). This 

relationship between obesity and the microbiota may hold potential therapeutic implications. 

2.1.3.2. Inflammatory bowel diseases 

Research into inflammatory bowel diseases (IBD) has suggested a link between microbial 

composition and the severity of these conditions (Becker, Neurath, and Wirtz 2015; Sheehan, 

Moran, and Shanahan 2015). An estimated 3 million adults in the United States are diagnosed 

with IBD annually (Dahlhamer et al. 2016). IBD is an umbrella term used to describe chronic, 

idiopathic, inflammatory gastrointestinal (GI) disorders. Ulcerative colitis and Crohn’s disease, 

are collectively defined as inflammatory bowel diseases. These two disorders have distinct 

pathogenic and inflammatory profiles (figure 16). Ulcerative colitis is characterized by 

continuous rectal bleeding, diarrhea, abdominal pain, and mucosal inflammation in the rectum 

that spreads proximally up the large intestine. Crohn’s disease may affect any part of the 

gastrointestinal tract and patients suffer from weight loss, diarrhea and pain with increased risk 

of cancer.  



 

50 

 

The gastrointestinal tract and the microbiota contained within are responsible for food 

digestion, nutrient extraction, absorption and waste expulsion. Disruption of these essential 

processes can be extremely harmful to the body. Researchers have confirmed that IBD patients 

suffer from numerous vitamin deficiencies and have lower levels of minerals, such as zinc, iron, 

and magnesium proposed to be caused by a reduction in intestinal absorption (Valberg et al. 

1986; Dotevall and G Kock 1968; Lomer et al. 2004). A characteristic of IBD is damage to the 

intestinal mucosal epithelium. A study conducted by Sarkis K. Mazmanian showed the protective 

capacity of the human microbiota against IBD inflammatory parameters and epithelial mucosal 

tight junctions. Mazmanian reported that Bacteroides fragilis protected mice from colitis induced 

Crohn’s Disease    Ulcerative Colitis 

 

Figure 16.  Disease state differences between Crohn’s disease and ulcerative 

Crohn’s Disease    Ulcerative Colitis

Figure 16.  Disease state differences between Crohn’s disease and ulcerative colitis.  

This figure demonstrates inflammation patterns (red color) between Ulcerative colitis and 

Crohn’s disease. Ulcerative colitis only affects the large intestine and moves proximally up the 

colon while Crohn’s disease can affect the entire gastrointestinal tract, with a discontinuous 

pattern of inflammation that can develop anywhere throughout the alimentary canal, from the 

mouth all the way to the anus. Image adapted from Wikimedia commons, under the creative 

commons license. 
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by an opportunistic pathogen, Helicobacter hepaticus, through the production of polysaccharide 

A (PSA). This was done by comparing a mutant strain of Bacteroides fragilis that did not 

possess the ability to produce PSA against the wild type strain. Previous studies that analyzed the 

immune response during IBD have demonstrated that IL-17 is a key mediator of colitis (Elson et 

al. 2007). When Mazmanian et al. analyzed the two groups, they observed that mice without 

PSA expressed significantly higher amounts of IL-17 in comparison to their PSA counterparts. 

They concluded that PSA administration was required to suppress IL-17 inflammatory response 

in intestinal immune cells. In contrast, mice housing B. fragilis, but not expressing PSA, 

experienced H. hepaticus mediated IBD. PSA was also found to increase IL-10 production, a 

potent anti-inflammatory cytokine (Mazmanian, Round, and Kasper 2008). PSA mediates 

immune anti-inflammatory response through IL-10 secretion induced by plasmacytoid dendritic 

cell which when exposed to PSA stimulate IL-10 secretion by CD4+ T-cells (Dasgupta et al. 

2014). This along with other studies speak to the importance of a healthy microbiota and to the 

connection between microbial dysbiosis and IBD. 

2.1.3.3. Integumentary system ailments 

 The skin, hair and nails all make up the integumentary system, which is also colonized by 

a heterogeneous population of bacteria. Visualized in figure 17, the variety of microbes that 

inhabit the various regions of the integumentary system demonstrates the various ecosystems 

present on the human body. Colonization of these ecosystems is driven by the ecology of the 

specific environment, which depends primarily on exogenous environmental factors, like 

temperature, sun exposure, humidity, food availability, pH and region of the host (Grice and 

Segre 2011). Skin diseases like psoriasis, acne and eczema all seem to be directly related to 

changes in microbial composition (Kong 2011). The relapsing pruritic inflammatory skin 
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disorder known as eczema has been on the rize over the past 30 years. Ninety percent of eczema 

patients show an increase in the presence of Staphylococcus aureus on their skin, a bacteria not 

seen on control patients. This bloom in S. aureus, decreases microbial diversity on the skin 

possibly driving the pathobiology of eczema (Kong et al. 2012). S. aureus blooms were limited 

by the presense of Staphylococcus epidermidis, which inhibits S. aureus growth (Iwase et al. 

2010). These findings demonstrate a possible novel approach where microbes could be used to 

combat worrisome pathogens instead of current antibiotic therapeutic treatments. 
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Figure 17.  Distribution of bacterial populations on the skin.  

This figure demonstrates the drastic changes in bacterial populations throughout the 

integumentary system. Colors on the pie chart are representative of families of bacteria 

and correspond with skin sites all over the body. The sites seem to group in 

correspondence with the presence of oils and moisture. Figure from Elizabeth Grice, 

Nature (Grice and Segre 2011)  
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2.1.3.4. Immune system disorders 

According to the National Institutes of Health, the immune system is a network of cells, 

tissues, and organs that work together to protect the body from infecticious diseases and self 

diseases like cancers (Candeias and Gaipl 2016). Research into autoimmune diseases, has 

demonstrated a connection between host microbiota and immune response/activation (Thaiss et 

al. 2016). For example, polysccharide A protects against IBD (discussed in 2.1.3.2. 

Inflammatory Bowel Diseases) and is secreted by B. fragilis. Proteolytically processed peptides 

from PSA are presented to CD4 T-cells on MHC class II complexes by dendritic cells resulting 

in cytokine production which stimulates T regulatory (Treg) cell development and increases non-

inflammatory cytokines like IL-10. Utilization of a PSA mutant was unable to restore normal 

immunological function. Germ free mice (not possessing any microbiota) have reported defects 

in splenic size, cell number, and development. The addition of wild type B. fragilis seems to 

restore the mouse spleens to normality, while germ-free mice colonized with B. fragilis with  

mutated PSA, were unable to commence splenic organogensis, demonstrating the direct link 

between PSA from bacteria influencing immune cell numbers (Mazmanian et al. 2005). 

 This relationship is seen in a number of autoimmune disorders such as diabetes mellitus 

type 1. This debilitating disease is caused by the autoimmune destruction of insulin producing β 

cells in the pancreas (Xie, Chang, and Zhou 2014). The rise of this devastating autoimmune 

disorder in the developed world has caused many scientists to purpose a connection to 

environment, diet and the host microbiota (Patterson et al. 2001). Non-obese diabetic (NOD) 

mice can be utilized to better understand type 1 diabetes, due to their spontaneous development 

of the disease. The rates of these incidents can be affected by alterations to their microbiota 

(Sadelain et al. 1990). Amazingly, NOD mice deficient in myeloid differentiation primary 
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response 88 (MyD88) protein are resistant to type 1 diabetes while NOD MyD88WT are not, 

suggesting an innate immune mechanism as MyD88 is essential for toll like receptor signaling 

during PAMP recognition (Wen et al. 2008).  

The pathway for the MyD88 intracellular signaling molecule is initiated from multiple 

toll like receptors (except TLR4 and TLR3) to activate nuclear factor-κB (NF-κB). A study 

conducted by Kubinak et al. demonstrated that signaling through the T-cell MyD88 pathway was 

essential for the development of IgA secreting B-cells in lymphoid germinal centers. This was 

tested by comparing wild type to T-cell specific MyD88 knockout (T-MyD88KO) mice. The T-

MyD88KO mice had reduced numbers of IgA secreting B-cells, suggesting the importance of T-

cell specific MyD88 signaling for germinal center activation of these B-cells. Analysis into the 

impacts on the microbial populations by the research team also showed community 

dissimilarities and changes in the mucosal bacterial populations (Kubinak et al. 2015). Other 

studies have also demonstarted the importance of MYD88 signaling in immune homeostates, 

protection from infection (Brandl et al. 2007) and intestinal epithelial repair (Pull et al. 2005).  

 Another major immune disorder linked with the microbiota is Rheumatoid Arthritis (RA). 

This disease is characterized by chronic pain and inflammation in the joints. Like type 1 

diabetes, RA levels in the developed world are also increasing. Human microbiota dysbiosis 

linked to the widespread use of antibiotics has been considered a culprit in these actions 

(Patterson et al. 2001). Patients suffering from RA present increased Treg cell numbers in 

circulation and increased IL-17 levels in the joints (Hot and Miossec 2011). The cause of this 

increase is currently unkown. Jose Scher has hypothesized that gut disbyosis caused by 

environmental or genetic factors could allow for the domination of harmful microorganisms. 

Expansion of a proinflammatory response along with the activation of other immune components 



 

56 

(T cells, B cells and macrophages) could migrate to synovial tissue within the joints and lead to 

arthritis (Scher and Abramson 2011). 

2.1.3.5. Nervous system disorders 

Variations in the intestinal microbiota have been linked to several nervous system 

disorders like autism, multiple sclerosis (MS) and anxiety. These are hypothesized due to 

molecular interactions between the central nervous system and the intestines, dubbed the 

microbiota-gut-brain axis. This multifaceted axis of communication refers to the cross-talk of 

metabolites between the microbiota and the brain (Burokas et al. 2015).Thus, the microbiota-gut-

brain axis is much more influential than was previously realized. 

According to the National Autism Association, “Autism is a bio-neurological 

developmental disability, which impacts the normal development of the brain in the areas of 

social interaction, communication skills, and cognitive function.” The rise in incidence of this 

disorder has caused scientists to purpose numerous environmental factors that could play a role 

such as antibiotics, drugs, infections and the gut microbiota (Dietert, Dietert, and Dewitt 2011). 

Common symptoms connected with autism include diarrhea, vomiting, constipation and acid 

reflux. Comparative taxonomic analysis of the intestinal microbiota by 16S rRNA sequencing 

between control children and ones suffering from autism, showed the genus Sutterella 

represented 1 to 7% of the autistic children’s microbiomes, and was not detected in the control 

children (Benach, Li, and McGovern 2012). Other studies comparing the two microbiome groups 

have demonstrated greater amounts of Clostridium species in autistic children in comparison to 

controls (Finegold et al. 2002). The use of probiotics  (ingested microorganisms) along with 

targeted short term antibiotics has showed temporary improvements in autism intestinal 

symptoms, which are remarkably similar to those seen in IBD patients (Critchfield et al. 2011).  
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Multiple sclerosis (MS) is characterized by damage to myelin sheaths of neurons, 

demyelination, in the brain and spinal cord (Makris, Piperopoulos, and Karmaniolou 2014). This 

degenerative disease occurs over time and results in a gradual lack of muscle control (Bhargava 

and Mowry 2014). Currently, the best animal model for MS is the induction of myelin proteins 

emulsified in an adjuvant to induce an immune reaction. This induced animal model is called 

experimental autoimmune encephalomyelitis (EAE). The connection between MS and 

environmental factors such as gut commensal bacteria has been established. Research by Ochoa-

Repáraz, demonstrated the reduction of gut bacteria impaired EAE development. They used 

antibiotic treatment to modify the microbial populations and protect against the onset of MS 

(Ochoa-Reparaz et al. 2009).  

A study conducted by Miyake et al. compared patients suffering from MS to those who 

were not diagnosed with the disease. While conducting 16S sequences Miyake found changes in 

MS patients with a depletion in the Clostridia and Bacteroidetes lineages (Miyake et al. 2015). 

Studies analyzing early onset pediatric MS by Tremlett et al. demonstrated changes in their 

microbiota composition. Metagenomic analysis by Phylogenetic Investigation of Communities 

by Reconstruction of Unobserved States (PICRUSt) (discussed later in this chapter), predicted an 

increase in neurodegenerative pathways (Tremlett et al. 2016). The purposed use of targeted 

antibiotics or microbiota transfers may provide novel therapies for patients struggling with these 

neurological diseases (Ren et al. 2017). 

2.1.4. Neuropeptides and the microbiota 

2.1.4.1. The microbiota-gut-brain axis 

The coevolved mutualistic relationship between the host and the gut microbiota has 

brought about multiple communicational pathways between the microbiota, gastrointestinal 



 

58 

track, and the brain. The multiple signaling pathways between the gut microbiota and the brain 

have resulted in their denotation as the microbiota-gut-brain axis (Sampson and Mazmanian 

2015). Imbalances in this bidirectional communicational conduit have been implicated in 

numerous diseases such as IBD, MS, or immune system disorders. An example of this includes 

influence over gastrointestinal hormone production based on the presence of certain probiotics 

(Dockray 2014). These changes in hormones like ghrelin, the hunger hormone, can allow the 

intestinal microbiota to regulate appetite (Darzi, Frost, and Robertson 2011).  

2.1.4.2. Endocrine classification of the microbiome 

The biochemical capacity of the microbiota is colossal. The microorganisms of the 

human gut perform several essential functions though out our body. Due to microbiota’s broad 

influence and its methods of communication with host tissues, researchers have begun to classify 

our microbiota as an additional endocrine organ (Clarke et al. 2014). Messages from this “organ” 

can be carried through the vagus nerve, afferent neurons, cytokines and/or microbial factors 

secreted into the blood stream (Collins, Surette, and Bercik 2012). The composition of the 

microbiome can even impact mammalian emotion. Research by Neufeld et al. has demonstrated 

that germ free mice when compared to specific pathogen-free mice expresses different behaviors. 

These were tested using mazes and locomotor activity (anxiety measurement). In the maze tests, 

germ free mice seemed to be more active over time in contrast to specific germ free mice. It was 

also determined using motor activity tests that the germ free mice acted in a less anxious manner 

(Neufeld et al. 2011). This suggests that the microbial population may assist in our emotional 

and mental development. 
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Figure 18.  The endocrine organs of the human body.  

Endocrine glands across the body produce regulatory metabolic humoral agents. The 

biochemical capacity of the gut microbiota surpasses all of these organs, justifying its 

consideration as an endocrine organ. Figure from (Clarke et al. 2014). 
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2.1.4.3. Neurotransmitters and the microbiome 

Neuropeptides, such as VIP, are important mediators in the microbiota-gut-brain axis. 

Several neuropeptides function as gut hormones as well as neuronal signal transducers. Our 

microbiota has the capacity to secrete a number of neurotransmitters, as displayed in table 3. 

Microbiota derived neuronal factors like dopamine have been suggested to play a role in the rate 

of nutrient absorption in the intestinal lumen (Asano et al. 2012). Research from Aarts et. al. 

demonstrates that the microbial composition of adults diagnosed with attention deficit 

hyperactivity disorder (ADHD) included an increase in the Bifidobacterium genus. Although the 

shift in bacterial structure was not drastic, predictive 16S metagenomic analysis using the 

bioinformatics software, Phylogenetic Investigation of Communities by Reconstruction of 

Unobserved States (PICRUSt), demonstrated that the bacterial gene responsible for the creation 

of arogenate dehydratase, was significantly enhanced in ADHD cases. Arogenate dehydratase is 

a precursor for dopamine and may decrease the neural response to reward expectation. This 

decrease in reward expectation is considered a hallmark of ADHD (Aarts et al. 2017). 

 The activation of the histamine receptor 2 (H2R) is also associated with the microbiota. 

Like VIP’s receptors, the activation of H2R (a GPCR), stimulates adenylate cyclase via Gαs and 

results in anti-inflammatory effects (Seifert et al. 2013). A number of bacterium, including L. 

saerimneri strain 30a and L. rhamnosus have been demonstrated to have the capacity to activate 

the H2R receptor. When the THP-1 human white blood cell line was cultured with L saerimneri, 

the response to LPS was significantly reduced when compared to LPS alone (with L saerimneri 

no present) (Ferstl et al. 2014). A study conducted by Frei et al. demonstrated that the anti-

inflammatory effects of these microorganisms were nullified in H2R deficient mice (Frei et al. 

2013).  
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Table 3. Neurotransmitter secretions by microorganisms. 

Neurotransmitters Bacterial Strain 

Serotonin Lactococcus lactis subsp. cremoris (MG 1363) 

 L. lactis subsp. lactis (IL1403) 

 Lactobacillus plantarum (FI8595) 

 Streptococcus thermophilus (NCFB2392) 

 Escherichia coli K-12 

 Morganella morganii (NCIMB, 10466) 

 Klebsiella pneumoniae (NCIMB, 673) 

 Hafnia alvei (NCIMB, 11999) 

Dopamine Bacillus cereus 

 B. mycoides 

 B. subtilis 

 Proteus vulgaris 

 Serratia marcescens 

 S. aureus 

 E.coli 

 E. coli K-12 

 M. morganii (NCIMB, 10466) 

 K. pneumoniae (NCIMB, 673) 

 H. alvei (NCIMB, 11999) 

Noradrenaline B. mycoides 

 B. subtilis 

 P. vulgaris 

 S. marcescens 
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Table 3. Neurotransmitter secretions by microorganisms (continued). 

Neurotransmitters Bacterial Strain 

 E. coli K-12 

GABA L. brevis  DPC6108 

 B. adolescentis DPC6044 

 B. dentium DPC6333 

 B. dentium NFBC2243 

 B. infantis UCC35624 

 L. rhamnosus YS9 

Acetylcholine L. plantarum 

Histamine L. lactis subsp. cremoris (MG 1363) 

 L. lactis subsp. lactis (IL1403) 

 L. plantarum (FI8595) 

 S. thermophiles (NCFB2392) 

 M. morganii (NCIMB, 10466) 

 K. pneumoniae (NCIMB, 673) 

 H. alvei (NCIMB, 11999) 

Examples of bacterial strains present in the human microbiota and the neurotransmitters they can 

produce. Table adapted from (Clarke et al. 2014) 

 Serotonin is another neurotransmitter secreted by the intestinal microbiota which also 

binds GPCRs. This tryptophan derived chemical regulates intestinal movement (Barboza, Okun, 

and Moshiree 2015), immune response and inflammation (Shajib and Khan 2015), regulates 

metabolism (El-Merahbi et al. 2015) and impacts mood and cognition (Jenkins et al. 2016). In 

germ-free mice the plasma concentrations of tryptophan and serotonin are greatly increased, 

perhaps due to compensatory mechanisms by the host and were restored to normal levels once 
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the mice were recolonized with normal gut flora (Clarke et al. 2012).  The absence of a gut 

microbiota, like that of germ-free mice, can profoundly disturb central nervous system pathways. 

This imbalance was found to be extremely difficult to restore if the normal gut flora is not 

restored in childhood.   

2.1.4.4. VIP and the microbiome 

VIP signaling pathways are prominent in the gastrointestinal tract (its original place of 

discovery) and is involved in similar pathways to the neurotransmitters previously discussed. 

Inside the intestines, vasoactive intestinal peptide functions to prevent epithelial barrier 

disruption during infection through reduction of intestinal inflammatory response (Morampudi et 

al. 2015). In inflammatory bowel diseases, such as Crohn’s and ulcerative colitis, VIP signaling 

cascades are disrupted (Wu, Conlin, et al. 2015). Mice deficient in VIP (same strain studied in 

this dissertation) were more susceptible to induced colitis models (Colwell et al. 2003). These 

mice also displayed disruption in intestinal epithelial morphology (Vu et al. 2014). After 

analyzing nearly 963 pathways Liu et al. confirmed that the VIP signaling axis is the most 

important in the development of obese phenotypes (Liu et al. 2010).  

First published in the American Journal of Physiology, Conlin et al. demonstrated that 

VIP was essential for the regulation of intestinal epithelial permeability. To test this, researchers 

administered Citrobacter rodentium, a murine pathogen known to infect colonic epithelium, 

cause increased permeability and induce ulcerative colitis in mice. The introduction of this 

pathogen resulted in a significant increase in epithelial VIP secretion and an overall reduction in 

body weight. Intraperitoneal injections of additional VIP prevented this weight loss. Mannitol 

was added to mouse diet and its measurements were taken in the intestinal lumen and serous 

membrane. While diseased mice showed a significant increase in unidirectional mannitol flow, 
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amazingly, mice given additional VIP returned to nearly control levels for intestinal 

permeability. Histological evaluations of the intestines also displayed an ablation of ulcerative 

colitis in mice given VIP (Conlin et al. 2009). Research published later from the same group 

demonstrated that the protective capacity of VIP was through the protein kinase C (PKC) 

pathway, which is activated by the VIP-cAMP signaling axis (Morampudi et al. 2015). 

VIP and the microbiome have also both been implicated in circadian synchronization. 

This hormonal internal clock is controlled by rhythms in gene expression and light detection. 

VIP has been shown to mediate the expression of clock genes mediated through its VPAC2 

receptor which is highly expressed in the suprachiasmatic nucleus in the brain (Miller et al. 2014; 

Shen et al. 2000). This region of the hypothalamus acts as the circadian pacemaker for the host 

and the lack of VIP (like in VIP knockout mice) shifts behavior (Lucassen et al. 2012), alters 

sleep patterns (Hu et al. 2011) and through altered clock gene expression can even affect 

cardiovascular function (Schroeder et al. 2011). The microbiome of mice whose circadian 

rhythm is dysregulated are altered when compared to control mice. Research by Voigt et al. 

demonstrated that mice with disrupted circadian cycling by mutated Clock(Δ19) gene had altered 

microbial composition as well as decreased diversity in comparison to their wild type 

counterparts (Voigt et al. 2016). This was confirmed by Liang et al. who analyzed the impact of 

Bmal1, another circadian regulation gene, causing microbiota compositional changes. Their 

study demonstrated that the lack of circadian synchronization affects feeding times, fecal 

composition and changes based on gender of the mouse (Liang, Bushman, and FitzGerald 2015). 

The importance of this rhythm is also essential for immune homeostasis. A publication by Lange 

et al. demonstrated the increased presence of immune cells in blood during sleep. These cells 
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seem to work in contrast to epinephrine and noradrenaline which interestingly can be secreted by 

the microbiota (Lange, Dimitrov, and Born 2010). 

Disruptions in vasoactive intestinal peptide signaling and the intestinal microbiota are 

associated with similar diseases including inflammatory bowel disease, circadian dysregulation, 

obesity and immune regulation. Despite this overlap, the potential relationship between VIP 

signaling and the intestinal microbiota is currently unknown; therefore, in this study, VIP 

signaling disruption with the application of knockout mouse models was used to determine the 

impact on the intestinal microbiome. Below we demonstrate that the genetic removal of VIP 

results in compositional microbial changes in the intestines. Moreover, the overall diversity of 

the microbiota is reduced in VIP deficient mice. These changes also results in altered 

metabolomic predicts which suggest an increase in the glyoxylate cycle, gluconeogenesis, and 

the pentose phosphate pathway, perhaps caused by an increased presence of fats in the intestinal 

lumen. 

2.1.5. Nucleotide sequencing techniques 

2.1.5.1. Sanger Sequencing (Chain termination method) 

Although it has mostly been replaced by high-throughput sequencing methods, Sanger 

sequencing or chain termination sequencing was the gold standard for DNA sequencing for 

nearly 30 years (Sanger et al. 1977). It utilizes two forms of deoxynucleotide substrates. The first 

is the naturally occurring deoxyculeotides (dNTPs) and the second is the chain terminating 

dideoxynucleoties (ddNTPs). Four reactions are utilized containing all four deoxynucleotides 

(dATP, dTTP, dCTP and dGTP) at 100x and a different modified chain-terminating  

dideoxynucleotides (ddATP, ddTTP, ddCTP and ddGTP) per reaction at 1x, along with template 

DNA, a primer and DNA polymerase. The modified ddNTPs are chain-elongating terminators 
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with no 3’-hydroxy group, but rather an electrophile, incapable of forming a phosphodiester 

bond, thereby terminating the elongation of the DNA strand (Sanger, Nicklen, and Coulson 

1977). These DNA strands are then heat denatured to remove template DNA and separated by 

size using polyacrylamide gel electrophoresis (Sanger and Coulson 1978). The visualization of 

these reactions from the gel allows for sequencing as demonstrated in figure 19. An advancement 

to this technique was employing fluorescently labeled ddNTPs, each with a different 

fluorophore, allowing for a single reaction coupled with a more rapid gel reading by a laser, 

which drastically increased the sequencing time (Quesada et al. 1991). 

 

2.1.5.2. 454-Pyrosequencing 

The 454-pyrosequencing DNA order determination technique utilizes fragmented base 

DNA sequences. After fragmentation, the ends of the DNA sequences are ligated with adapters 

of known DNA sequences and then denatured to produce single stranded DNA molecules. Aided 

Figure 19.  Gel electrophoresis result from an example Sanger sequencing run. 

This figure contains an example Sanger DNA sequencing run gel. The arrow indicates the 

direction for reading DNA sequences in a 5’ to 3’ manner. Figure modified and adapted from 

(Lorenzo-Díaz et al. 2012)  

5’ 3’ 
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by the adapters, the sequences are then captured through hybridization onto beads, with a unique 

DNA fragment binding per bead. These beads are spread across a slide, where each bead is 

placed into an individual well. A single dNTP is then flooded onto the plate and if added to the 

complementary sequence by the DNA polymerase, an enzymatic reaction produces light that a 

highly sensitive camera detects the emission wavelength of each well. The wells are washed and 

the process repeated until the DNA fragments, acting as templates for the synthesis of 

complementary strand are completely sequenced. These individual pieces of fragmented DNA 

are then assembled into one large sequence. This technology is also no longer in use due to its 

replacement by newer sequencing platforms.  

2.1.5.3. Ion Torrent sequencing 

The Ion Torrent sequencing platform from Thermo Fisher Scientific (Waltham, 

Massachusetts) utilizes a digital semiconductor chip to determine nucleotide order. Similar to 

454-pyrosequencing, fragmented DNA strands are hybridized onto individual beads. The DNA 

strands on these beads are copied until the entire bead is covered with the same DNA strand. 

These beads are then placed into individual wells on a digital semiconductor. Wells are 

immersed with one of the four nucleotides, with the addition of each nucleotide releasing a 

hydrogen ion, which changes the pH of the solution in each individual well to identify DNA 

sequence of the growing complementary strand. Beneath the semiconductor is a pH sensitive 

layer, which can measure the change in pH caused by the binding of the added nucleotide. Each 

dNTP produces the same change in pH, but since only one dNTP is added to the wells at a time 

and then removed, it can be determined which dNTP was added to which well. In the event of a 

repeated sequence with more than one of the same nucleotide in a row, the pH change is greater 

and is recorded. The wells are repeatedly washed and the next nucleotide is added. The 
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sequences of each individual well are then overlapped and assembled into a large sequence 

(Rothberg et al. 2011). 

2.1.5.4. Single-molecule real time sequencing (SMRT sequencing) 

The SMRT DNA sequencing technique was created by Pacific Biosciences (Menlo Park, 

CA) and contains a chip with tens of thousands of wells, each containing a single DNA 

polymerase. The unique feature of this technique is its ability to sequence long strands of DNA, 

where all other techniques require the fragmentation of DNA into short strands. These DNA 

strands are added to this chip resulting in an estimated one strand per well (containing the DNA 

polymerase). The presence of one polymerase per well eliminates the possibility of sequencing 

multiple strands at the same time. The four nucleotides are simultaneously added across this 

chip, each labeled with a different fluorophore molecule. The utilization of these nucleotides by 

the DNA polymerase enzyme, results in their release and the emission of a specific wavelength 

of light. This light is detected by a photo-multiplying plate and turned into electrical conductivity 

that corresponds to a specific nucleotide. These sequences are overlapped and converted into one 

large DNA sequence. SMRT sequencing and the Illumina sequencing platforms are the two 

primary strategies for DNA sequencing used today. The Illumina platform is well ahead in 

utilization and is currently considered the gold standard for DNA sequencing. It will be covered 

in the materials and methods section of this chapter. 

2.1.5.5. Illumina sequencing 

The most widely used sequencing technology is called Illumina and is a product of 

Illumina Inc. (San Diego, CA). This technology in able to read the nucleotide arrangement using 

cluster generation followed by DNA sequencing. Although there are various methods for sample 

preparation, typically DNA samples are first hydrolyzed into smaller sequences between 200 and 
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600 base pairs. To these fragment adapters, or short known DNA sequences, are added on both 

the 5’ and 3’ ends. These adapters also contain sequences complementary to oligos bound to the 

flow cell. The flow cell is a glass slide where amplification and DNA sequence reads occur. 

Once the adapters are added the samples are washed across the flow cell. Here, the adapter 

sequences bind to the DNA previously attached to the flow cell and form a lawn of small clusters 

of similar sequences.  

Once bound, a polymerase enzyme catalyzes a complementary DNA strand of the DNA 

fragment hybridized to the surface. The original sample of DNA is now washed away and the 

complementary strand folds over, and the adapter on the other side binds a nearby previously 

attached DNA stand on the surface. This process, called bridge amplification, repeats these steps 

over and over again, resulting in expansion of all of the fragments and creating numerous clonal 

DNA clusters. Reverse DNA strands are now washed away and the sequencing of the DNA 

begins. Fluorescently labeled nucleotides are added to the flow cell similar to current DNA 

sequencing catalyzed by DNA polymerase. As each complementary nucleotide binds and is 

added to the 3’ end of the growing complementary strand, a particular wavelength of light is 

emitted and recorded by the instrument. Each wavelength produced by each cluster is analyzed 

by a photodetector to determine sequence. This process is known as bridge-amplification and 

sequencing by synthesis. 

2.2. Materials and methods 

2.2.1. Mouse husbandry 

The C57 Black 6 mice (C57BL/6) were purchased from Jackson Laboratories (Bar 

Harbor, ME). Mice deficient in VIP were obtained from James Waschek at the University of 

California, Los Angeles (Colwell et al. 2003). Mice missing the VPAC1 gene (VPAC1KO) were 
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given to our laboratory by Mary Sue O’Dorisio, Univeristy of Iowa, Iowa City (Fabricius et al. 

2011). VPAC2 knockout (VPAC2KO) mice originally created by John Harmar were a kind gift 

from Jane Schuh at North Dakota State University (Harmar et al. 2002). All of these mouse 

strains were bred and housed in the Dorsam lab mouse vivarium at the Animal Nutrition and 

Physiology Center (ANPC) at North Dakota State University and met compliance rules approved 

by the IACUC committee at NDSU and satisfied all state and federal regulations. Mice were fed 

Laboratory Rodent Diet 5001 from LabDiet (St. Louis, MO), which was purchased through the 

Animal Supply Company (Irving, TX). Animals were fed food and water ad libitum and 

maintained on a 12-hour day/night cycle.  

Animals were housed in material vented cages (13.5” L x 11.5” W x 6.1” H; 75 square 

inches) from Animal Care Systems (Centennial, CO). The Optimice caging system from Animal 

Care System includes a 100-cage carrying capacity each equipped with air filters and utilized 

Alpha-Dri paper bedding (Shepherd Specialty Papers, Milford NJ). Most breeding of these 

knockout strains used a harem breeding method of two females (+/-) and one male (+/-); at times 

a single female was used based on supply. In order to increase the frequency of WT or KO 

VPAC1 or VPAC2, some breeding cages used WT or KO males, but the females were always 

heterozygous as gut microbiota are vertically transferred down to offspring. Only brother-sister 

breeding was employed in order to reduce genetic drift. (Schei et al. 2017). All pups were 

cohoused until maturity (4 weeks), at which time they were weaned into new cages based upon 

gender. During the weaning process, mice were identified with ear punches and tail biopsies 

collected to determine genotype by PCR. Mice were limited to 4 males or 5 females per cage 

irrespective of genotype. All studies were conducted with protocols approved by the NDSU 

Institutional Animal Care and Use Committee (IACUC) and met all state and federal regulations.  
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2.2.2. Genomic DNA extraction from tail biopsies 

From each weaned pup, a 2 to 4 mm tail biopsy was collected using alcohol sterilized 

forceps and scissors and placed into a 1.5 mL centrifuge tube on ice. These tail clips were either 

exacted immediately or stored in a -20oC freezer until assayed. To extract DNA, extraction 

solution (Sigma Aldrich, Catalog # E7526-24ML) and tissue preparation (Sigma Aldrich, 

Catalog # T3073-30ML) were mixed in a 4 (40 µL) to 1 (10 µL) ratio, respectively, and 50 µL 

total was added to tail tissue. After a brief ten second microcentrifuge, to ensure tail submersion, 

the tubes were incubated at room temperature for 20-120 minutes to ensure cell lysis. Samples 

were then placed in a 95oC sand bath for 4 minutes. Neutralization buffer (40 µL) (Sigma 

Aldrich, Catalog # N3910-24ML) was added, and samples were vortexed for 30 seconds. Tail 

samples were diluted 1/20 in nuclease free water or TE buffer, and then added to the PCR 

reaction. Polymerase chain reaction (PCR) was conducted to determine the genotype of each tail. 

2.2.3. Genotyping 

PCR was performed to interrogate the presence of wild type and/or mutant alleles after 

DNA extraction. The green GoTaq® G2 master mix system (Promega, Catalog # M7823) was 

used to perform the PCR reaction. A mixture of four total primers (each pair of primers specific 

for the WT or KO allele) was used for the VPAC1KO and three primers for VIP and VPAC2KO 

mouse strains. Here, the VIP + VPAC2KO reactions, utilized unique 5’ primers specific for the 

WT or KO allele sequence and a common 3’ primer. Primer sets are listed in table 4 below with 

figures 20, 21, and 22 demonstrating the strategy behind the creation of the knockout mice and 

the primer hybridization location on the allele. 
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Table 4.  PCR primers used to interrogate WT and KO alleles for VIP, VPAC1, and VPAC2. 

Strain Primer Name Primer Sequence 

VIP   

Both V1 5’ - TTTCAAGGTGTGGGGCTAGAGACATACA - 3’ 

WT allele V2 5’ - TTACCTGATTCGTTTGCCAATGAGTGAC - 3’ 

KO allele N1 5’ - GCCCGGAGATGAGGAAGAGGAGAACAG- 3’ 

VPAC1   

WT allele VPAC1WT 5' 5’ - GGTTGCCATGGCTATCTTGA - 3’ 

WT allele VPAC1WT 3' 5’ - AGTGGTCTGTCTCCCCGTTGTT - 3’ 

KO allele VPAC1KO 5' 5’ - TTCAACTGTTTTCCCCCATTCAC - 3’ 

KO allele VPAC1KO 3' 5’ - CCAGCTCATTCCTCCCACTCA - 3’ 

VPAC2   

WT allele P2 5’ - TAGGGGTGTTCCCAACTCCA - 3’ 

KO allele P4 5’ - GGAAGCATTCTGCTCTGGAT - 3’ 

Both 596 5’ – ACTTCAACCCCACTTCTGGC – 3’ 

A list of the primers used to interrogate WT and KO alleles in the mouse genome. 
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Figure 20.  VIPKO generation and primer target location.  

Above is the schematic used by Colwell et al. in the creation of the VIPKO strain. The 

complementary binding sites for the VIP primers used in our genotyping protocol are 

displayed with the V2 primer binding for both WT and KO, while the V1 and N1 only 

binding for WT and KO respectively.  Figure recreated and adapted from (Colwell et al. 

2003)  
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Figure 21. Replacement of VPAC1 exons 4 to 6 with PGK-1-Neomycin cassette.  

To determine mouse genotype the PCR primers used examine the exon 4 to 6 region. The WT 

primers will engage a region present between exons 4 and 6, while the KO primers will 

engage a region on the cassette itself. Figure recreated and adapted from (Fabricius et al. 

2011)  
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Table 5. Master mix recipe.  

Reagents μl/rxn # of reactions Volume (μl) 

H2O 7.75 10 77.5 

Primer sets at 25 uM each 0.25 10 2.5 

2X G2 GoTaq 10 10 100 

PCR reaction master mix composition and reaction example. 

PCR reactions were performed under the following parameters: 94oC for 3’  94oC for 

15’’ 62oC for 45’’ 72oC for 1’ Repeat a total 40 cycles  72oC for 1’’  4oC 

Figure 22. Generation of VPAC2 knockout mice.  

A neomycin-resistance gene was inserted into the VPAC2 gene. P1 and P2 primers were used 

to interrogate the WT gene and the P3 and P4 primers to interrogate the ends of the neomycin 

gene.  Figure recreated and adapted from (Harmar et al. 2002)  



 

76 

indefinitely. EZ-Vision dye (Amresco, Catalog # N391-15MLDRP) was added 3 µL (diluted 1/6 

with H2O) to the PCR samples to visualize DNA amplicons by UV light exposure (302 nm trans 

illumination) and the mixture (~16 µL) was added to wells in 1.5% agarose gels. After separation 

of amplicons by gel electrophoreses (~100 V/hr), gels were imaged by the Syngene Chemi 

Genius 2 platform (Syngene Frederick, MD) or similar UV detection systems. Genotypes for all 

mice were confirmed by two individuals, performing separate PCR reactions from the same 

extracted DNA samples. 

2.2.4. Fecal sample collection 

At 8 weeks of age (53 – 59 days old), fecal samples were collected between 10 and 11 am 

on Thursday or Friday of each calendar week. Mice were placed inside a sterile autoclaved 

filtered cage and two fecal pellets were collected from each mouse using sterile toothpicks and 

placed into sterilized 2 mL microcentrifuge tubes. These tubes were instantly placed on ice and 

transferred to the a -80oC freezer. The samples were then shipped drozen to the University of 

Missouri Metagenomics Center (MUMC) by overnight shipping.  

Eight fecal samples were collected from both male and female wild type (WT), 

heterozygous (HET) and homozygous mutant (KO) littermates from VIP, VPAC1 and VPAC2 

strains. All three strains are on C57BL/6 genetic background and therefore to increase 

thoroughness and rigor an additional eight fecal samples for male and females were also 

collected from wild type C57BL/6 mice from Jackson Labs (Bar Harbor, ME). Table 6 below 

summaries the fecal samples collected for this study. Figure 23 is a visual representation of how 

the mice were housed and a timeline of when fecal samples were obtained. 
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Table 6. Fecal sample collection summary for this study.  

  Male   Female  Total 

  ♂   ♀   

C57BL/6 Wild Type 8   8   16 

 WT HET KO WT HET KO  

VIP 8 8 8 8 8 8 48 

        

VPAC1 8 8 8 8 8 8 48 

        

VPAC2 8 8 8 8 8 8 48 

 

Subtotal  

[Entire Study] 

32 24 24 32 24 24 
 

160 
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Figure 23. Fecal sample collection strategy.  

Collected in accordance with table 5, this breeding and collection strategy was applied for all 

strains. After 4 weeks of co-housing with breeding pairs, pups were weaned, separated by 

gender, ear clipped, and genotyped by PCR. At 8 weeks of age, fecal samples were collected 

and sequenced. 

PCR genotyping 
Mendelian ratio 

~ 1/2/1 for WT/HET/KO 
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2.2.5. DNA extraction (performed at MUMC) 

DNA from fecal samples were extracted using the Qiagen DNeasy Blood and Tissue kit 

extraction method. In a recent comparative study, this method was found to be the best at DNA 

extraction (Hart et al. 2015). Eight hundred μL of lysis buffer (500 mM NaCl, 50 mM Tris-HCl 

pH 8.0, 50 mM EDTA, and 4% sodium dodecyl sulfate) and a stainless-steel bead were added 

the fecal samples. The Qiagen TissueLyser II was used for mechanical disruption of the samples 

at 30 Hz for 3 minutes. The samples were centrifuged after a 70°C incubation for twenty 

minutes. The supernatants were transferred to a new tube containing 200 μL of 10 mM 

ammonium acetate. After a 5-minute centrifuge at 5,000 x g, the supernatant was transferred to a 

tube on ice containing chilled isopropanol for 30 minutes. Samples were then centrifuged at 4°C 

for 15 minutes at 16,000 x g. The supernatant was discarded and DNA pellets were washed 

several times with 70% ethanol. Pellets were then resuspended in 150 μL of Tris-EDTA, 15 μL 

of proteinase K and 200 μL of AL buffer (provided by Qiagen). After a 10-minute incubation at 

70°C, 200 μL of 100% ethanol was added. Samples were applied to the DNeasy spin column and 

eluted into EB buffer (Qiagen, DNeasy Blood and Tissue Kit Catalog # 69506) 

2.2.6. Next generation rRNA sequencing (performed at MUMC) 

The Illumina MiSeq platform was used for 16S rRNA sequencing at the University of 

Missouri Core facility. The V4 hypervariable region of the 16S gene was targeted by universal 

primers created William Walters et al. U515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and R806 

(5′-GGACTACHVGGGTWTCTAAT-3′) (Walters et al. 2011). The PCR parameters were: 98oC 

for 3’  98oC for 15’’ 50oC for 30’’ 72oC for 30’’ Repeat a total 25 cycles]  72oC 

for 7’  4oC indefinitely. The product was washed with 80% ethanol and resuspended in Qiagen 

EB buffer. The amplicons were then pooled for sequencing using the Illumina MiSeq platform. 
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The MiSeq platform utilizes adaptors which are added to the ends of the amplified DNA 

fragments. Here, regions complementary to the adaptors are bound to the bottom of the Illumina 

MiSeq flow cell. The fragments of each sample are then added to a lane on the Illumina flow cell 

and bind to their complementary oligos. The double stranded strands are denatured with one 

strand binding to the complementary oligo and the other being washed away. Bound to the flow 

cell, the fragment folds over and binds to the other oligo on the cell. DNA polymerases are then 

used to form the complementary strands and create double stranded bridges all over the cell. 

Denaturing of this bridge results in two copies of the strand. These steps are repeated 

continuously for clonal amplification of the DNA strand. The reverse strands are then cleaved 

and washed off. As with other sequencing techniques, fluorescently labeled nucleotides are then 

added and upon binding emit a fluorescent signal. This signal is then picked up by a detector and 

all of the signals are read simultaneously. The millions of reads are then overlapped and 

contiguous sequences are formed. 

2.2.7. Bioinformatics analysis 

2.2.7.1. Paired-end FASTQ processing 

The Qiime 1.9.1 software, created by the Knight Laboratory at the University of 

California San Diego, was utilized for analysis of the 16S DNA reads (Kuczynski et al. 2012). 

To ensure quality reads, a Phred quality score of 20 were utilized. This ensured the probability of 

an incorrect base call at 1 in 100 or 99% accurate. The join_paired_ends.py script took forward 

and reverse reads and joined them together, with a minimum overlap length of 10 base-pairs and 

a maximum percent difference within overlap set at 25%. The maximum bad run length, or 

number of consecutive low-quality reads before truncation was set to 3. The 

make_mapping_files.py and validate_mapping_files.py commands were used to remove barcode 
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sequences (mapping file displayed in table 7 below). The split_libraries_fastq.py script was used 

for quality trimming and placement into a sequence file. 

Table 7. Qiime mapping file. 

SampleID BarcodeSequence ForwardFastqFile ReverseFastqFile TreatmentGroup Description 

1MWT CTTGAGCTTTGA MB001-B2_S14_L001_R1_001.fastq MB001-B2_S14_L001_R2_001.fastq 1_MWT MWT1 

2MWT CACCGATTGGTA MB002-B3_S15_L001_R1_001.fastq MB002-B3_S15_L001_R2_001.fastq 1_MWT MWT2 

3MWT TGGTTCGAGTAC MB003-B4_S16_L001_R1_001.fastq MB003-B4_S16_L001_R2_001.fastq 1_MWT MWT3 

4MWT CAATCGCCGGAA MB004-B5_S17_L001_R1_001.fastq MB004-B5_S17_L001_R2_001.fastq 1_MWT MWT4 

5MWT TCTCCGCATGTC MB005-B6_S18_L001_R1_001.fastq MB005-B6_S18_L001_R2_001.fastq 1_MWT MWT5 

6MWT TGTATGGGTGCG MB006-B7_S19_L001_R1_001.fastq MB006-B7_S19_L001_R2_001.fastq 1_MWT MWT6 

7MWT ACGCTTCAATGT MB007-B8_S20_L001_R1_001.fastq MB007-B8_S20_L001_R2_001.fastq 1_MWT MWT7 

8MWT CTAAATGTCGTC MB008-B9_S21_L001_R1_001.fastq MB008-B9_S21_L001_R2_001.fastq 1_MWT MWT8 

9MHET CCGAGTAGTTGG MB009-B10_S22_L001_R1_001.fastq MB009-B10_S22_L001_R2_001.fastq 2_MHET MHET1 

10MHET CGCTGATAACGG MB010-B11_S23_L001_R1_001.fastq MB010-B11_S23_L001_R2_001.fastq 2_MHET MHET2 

11MHET GGTTTGGCCATA MB011-B12_S24_L001_R1_001.fastq MB011-B12_S24_L001_R2_001.fastq 2_MHET MHET3 

12MHET CTCTCCCGTGAT MB012-C1_S25_L001_R1_001.fastq MB012-C1_S25_L001_R2_001.fastq 2_MHET MHET4 

13MHET TCCTAGCAGTGA MB013-C2_S26_L001_R1_001.fastq MB013-C2_S26_L001_R2_001.fastq 2_MHET MHET5 

14MHET CACTCTGATTAG MB014-C3_S27_L001_R1_001.fastq MB014-C3_S27_L001_R2_001.fastq 2_MHET MHET6 

15MHET TGCCAATGCCAA MB015-C4_S28_L001_R1_001.fastq MB015-C4_S28_L001_R2_001.fastq 2_MHET MHET7 

16MHET CCTCGGATTATA MB016-C5_S29_L001_R1_001.fastq MB016-C5_S29_L001_R2_001.fastq 2_MHET MHET8 

17MKO ACGCTATCTGGA MB017-C6_S30_L001_R1_001.fastq MB017-C6_S30_L001_R2_001.fastq 3_MKO MKO1 

18MKO GGTGACCGGATT MB018-C7_S31_L001_R1_001.fastq MB018-C7_S31_L001_R2_001.fastq 3_MKO MKO2 

19MKO TACCAAGCACTT MB019-C8_S32_L001_R1_001.fastq MB019-C8_S32_L001_R2_001.fastq 3_MKO MKO3 

20MKO CGACCCTTTACC MB020-C9_S33_L001_R1_001.fastq MB020-C9_S33_L001_R2_001.fastq 3_MKO MKO4 

21MKO GATTGAGAAAGC MB021-C10_S34_L001_R1_001.fastq MB021-C10_S34_L001_R2_001.fastq 3_MKO MKO5 

22MKO AGGACGCACTGT MB022-C11_S35_L001_R1_001.fastq MB022-C11_S35_L001_R2_001.fastq 3_MKO MKO6 

23MKO GGTACATCGGTT MB024-D1_S37_L001_R1_001.fastq MB024-D1_S37_L001_R2_001.fastq 3_MKO MKO8 

24FWT ACGGCCAATCGA MB025-D2_S38_L001_R1_001.fastq MB025-D2_S38_L001_R2_001.fastq 4_FWT FWT1 

25FWT GTCCAGTAATGC MB026-D3_S39_L001_R1_001.fastq MB026-D3_S39_L001_R2_001.fastq 4_FWT FWT2 

26FWT TATGTGGCCCAA MB027-D4_S40_L001_R1_001.fastq MB027-D4_S40_L001_R2_001.fastq 4_FWT FWT3 

27FWT TGACTTTGTGTG MB028-D5_S41_L001_R1_001.fastq MB028-D5_S41_L001_R2_001.fastq 4_FWT FWT4 

28FWT CCTATCCTTGGC MB029-D6_S42_L001_R1_001.fastq MB029-D6_S42_L001_R2_001.fastq 4_FWT FWT5 

29FWT ATACACGTGGCG MB030-D7_S43_L001_R1_001.fastq MB030-D7_S43_L001_R2_001.fastq 4_FWT FWT6 

30FWT ACAATCGGTTGC MB031-D8_S44_L001_R1_001.fastq MB031-D8_S44_L001_R2_001.fastq 4_FWT FWT7 

31FWT CCTAAGCACATG MB032-D9_S45_L001_R1_001.fastq MB032-D9_S45_L001_R2_001.fastq 4_FWT FWT8 

32FHET1 TAATGGAGGAAC MB033-D10_S46_L001_R1_001.fastq MB033-D10_S46_L001_R2_001.fastq 5_FHET FHET1 

33FHET2 GAAAGGACAGGT MB034-D11_S47_L001_R1_001.fastq MB034-D11_S47_L001_R2_001.fastq 5_FHET FHET2 

34FHET3 TTGGGCGTGAAC MB035-D12_S48_L001_R1_001.fastq MB035-D12_S48_L001_R2_001.fastq 5_FHET FHET3 

35FHET4 CGTTGCCTCGTT MB036-E1_S49_L001_R1_001.fastq MB036-E1_S49_L001_R2_001.fastq 5_FHET FHET4 

36FHET5 GTCGCTGTCTTC MB037-E2_S50_L001_R1_001.fastq MB037-E2_S50_L001_R2_001.fastq 5_FHET FHET5 

37FHET6 GATCGCAGGTGT MB038-E3_S51_L001_R1_001.fastq MB038-E3_S51_L001_R2_001.fastq 5_FHET FHET6 

38FHET7 GAATGCAACGCC MB039-E4_S52_L001_R1_001.fastq MB039-E4_S52_L001_R2_001.fastq 5_FHET FHET7 

39FHET8 CTGAACGCTAGT MB040-E5_S53_L001_R1_001.fastq MB040-E5_S53_L001_R2_001.fastq 5_FHET FHET8 

40FKO1 ACTTTGTCGCAA MB041-E6_S54_L001_R1_001.fastq MB041-E6_S54_L001_R2_001.fastq 6_FKO FKO1 

41FKO2 CATATACTCGCA MB042-E7_S55_L001_R1_001.fastq MB042-E7_S55_L001_R2_001.fastq 6_FKO FKO2 

42FKO3 TTCGTTGTGGTA MB043-E8_S56_L001_R1_001.fastq MB043-E8_S56_L001_R2_001.fastq 6_FKO FKO3 

43FKO4 AACCGTTCCAGA MB044-E9_S57_L001_R1_001.fastq MB044-E9_S57_L001_R2_001.fastq 6_FKO FKO4 

44FKO5 CCGAGGTAGTAC MB045-E10_S58_L001_R1_001.fastq MB045-E10_S58_L001_R2_001.fastq 6_FKO FKO5 

45FKO6 GGTTAACAGGAA MB046-E11_S59_L001_R1_001.fastq MB046-E11_S59_L001_R2_001.fastq 6_FKO FKO6 

46FKO7 CCACTTGGATAG MB047-E12_S60_L001_R1_001.fastq MB047-E12_S60_L001_R2_001.fastq 6_FKO FKO7 

47FKO8 ATCCGTCATAAC MB048-F1_S61_L001_R1_001.fastq MB048-F1_S61_L001_R2_001.fastq 6_FKO FKO8 

Table including all sample IDs, barcode sequences, groups and forward and reverse files for the 

VIP group of samples. 
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2.2.7.2. OTU assignment 

The output file from the split_libraries_fastq.py script was used to pick closed reference 

operational taxonomic units (OTUs) using pick_closed_reference_otus.py command. This OTU 

picking process clusters the reads against a reference sequence database. Any sequences not 

found in this collection are excluded and removed from any downstream analysis. For our 

analysis the SILVA database, release 128, was used for sequence comparison (Quast et al. 2013). 

The threshold for sequence clustering similarity within individual OTUs was set to 99%. For 

PICURSt analysis, the Greengenes database was used for sequence assessment (DeSantis et al. 

2006). A phylogenetic tree was constructed using the make_phylogeny.py command and an 

otu_table.biom file was made through make_otu_table.py. The resulting otu_table.biom file was 

utilized for core diversity analysis.  

2.2.7.3. Alpha and beta diversity 

Qiime was utilized to calculate alpha and beta diversity from our dataset. The terms 

alpha, beta and gamma diversity were introduced by Robert Wittaker (Whittaker 1972, 1960). 

Alpha diversity refers to changes within each group and beta diversity represents differences 

amongst various groups. Gamma diversity is the measurement of variety within an entire 

landscape, such as a rainforest and not relevant to this analysis. For alpha diversity analysis 

observed species (Mittelbach Gary et al. 2001), PD whole tree (Faith 1992), chao1 (Chao 1984) 

and Shannon indexes (Shannon 1948) were utilized for comparison. The number of different 

species present in a community is a measure of richness, which is the only variable in the 

observed species analysis. Chao1 and the Shannon indexes measure both richness and evenness. 

Evenness is the measurement of the relative abundance of all of the species present in a sample. 

The PD whole tree analysis includes richness, evenness and it measures the length of branches 
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on the phylogenetic tree. The core_diversity_analysis.py command utilized the OTU dataset to 

calculate these different diversities. 

Beta diversity measurements, represented as weighted or unweighted unique fraction, 

were for sample to sample comparisons. The weighted analysis compares the abundance of 

individual microorganisms while the unweighted analysis compares just the presence and 

absence of these individuals introspective of their abundance. These results were visualized 

using a Principal Coordinates Analysis (PCoA) matrix. This three-dimensional plot visually 

displays the phylogenetic distances between samples in three axes, PC1, PC2 and PC3, with the 

distance between the plots representing the variation in the dataset. Beta diversity was also 

measured using the jackknifed_beta_diversity.py and make_boostrapped_tree.py commands. 

This allowed for the formation of newick trees which visualized the similarities between 

samples. 

2.2.7.4. PICRUSt 

The bioinformatics software PICRUSt (Phylogenetic Investigation of Communities by 

Reconstruction of Unobserved States) was used to predict metagenomic function. As discussed 

in the OTU assignment section, to utilize this software the Greengenes database was utilized. 

The reason for database change was because the PICRUSt predictive tool currently only supports 

the Greengenes database at 99% similarity (Langille et al. 2013). A closed reference OTU table 

was picked against the database and the resulting .biom file was utilized for PICRUSt analysis. 

The normalize_by_copy_number.py script was used to normalize the OTU table against a known 

abundance number. This was followed by the predict_metagenomics.py command which 

compares results against the Kyoto encyclopedia of genes and genomes (KEGG) database 

(Kanehisa et al. 2017; Kanehisa et al. 2016; Kanehisa and Goto 2000; Kanehisa et al. 2012). The 
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output file was then mapped and analyzed using the Lda Effective Size (LEfSe) module 

visualized in figure 25.  

2.2.7.5. Statistics 

Statistical analysis and graph creation was done using GraphPad Prism Software v.7.00 

(GraphPad La Jolla, CA), Microsoft Excel 2016 (Microsoft Seattle, WA) and Qiime v1.9.1. 

Two-Way ANOVA analysis was performed on the taxonomic data with the mean of each 

organism within each treatment group at every taxonomic rank compared against the means of 

that organism in every other treatment group (figure 24). The Bonferroni multiple comparisons 

test was utilized with a 95% confidence interval (0.05 represented by *, 0.005 **, 0.0005 *** 

and 0.00005 ****). 

 

 

 

 

 

 

 

 

Figure 24. Group mean multiple comparison.  

A snapshot of the analysis performed comparing the mean of each bacterium of each strain to 

every other strain at every taxonomic level. Picture taken from GraphPad Prism Software (La 

Jolla, CA). 
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2.3. Results 

2.3.1. Genotyping 

In order to properly classify mouse genotypes, PCR reactions of tail genomic DNA 

extracts were performed to interrogate the presence of the WT and/or mutant alleles by use of 

specific primers. At four weeks, pups were weaned, and tail biopsies collected for genotyping. 

Males and females were separately cohoused irrespective of genotype until eight weeks of age at 

which time fecal samples were collected (see figure 23). In theory, the utilization of male HET 

and female HET breeding pairs should result in a 1:2:1 Mendelian inheritance as demonstrated in 

figure 26. Genotyping data of over 355 mice over 10 experiments were compiled to determine an 

Figure 25. PICRUSt metagenomic analysis using the LEfSe tool.  

After the PICRUSt analysis is completed using the predict_metagenomics.py command, the 

data is input into the LEfSe tool for biomarker discovery. In step one this took uses the 

Kruskall-Wallis text to determine whether the values are statistically different. Any values 

over 0.05 p-value do not move on. In step two, a Wilcoxon test checks pairwise comparisons 

between groups and any that significantly differ from one another are scored and ranked. This 

method was first devised by Segata et. all in 2011 and has been extensively validated on 

several microbiomes. Figure from (Segata et al. 2011). 
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estimated ratio obtained by our laboratory. Although it did not perfectly match predicted values, 

this ratio was closely maintained for all stains expect VPAC1 which resulted in greater HET +/- 

and WT +/+ and far fewer KO -/- pups, as demonstrated in figure 26. All PCR reactions were 

performed with positive and negative controls and repeated by another individual. The positive 

controls were a previously extracted, stored genomic DNA extract, with confirmed genotype. For 

example, genotype analysis of VIP mice was conducted with three known WT, HET and KO 

samples as positive controls. The negative control was nuclease free water, which ensured no 

primer, water and/or Taq contamination. Figure 27 is a representative agarose gel of these PCR 

reactions and demonstrates the bands created by each genotype. The analyzed results of this gel 

are depicted in table 8. 
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Figure 26. Punnett square demonstrating mouse breeding strategy, predicted and actual 

outcomes.  

Pups created by the harem breeding approach for VIP and VPAC2 strains resulted in a nearly 

1:2:1, WT, HET and KO, ratio. This allowed for utilization of littermate pups 16S studies, 

eliminating concerns regarding environment on microbiota. VPAC1 breeders resulted in lower 

KO pup production, confirming previously documented work by O’Dorisio lab (Fabricius et al. 

2011) 

+/+ 3:10 30%

+/- ~1:2 46%

-/- ~1:4 24%

VIP offspring genotypes:

+/+ ~1:3 34%

+/- 3:5 60%

-/- ~1:4 6%

VPAC1 offspring genotypes:

+/+ ~1:4 23%

+/- ~1:2 54%

-/- ~1:4 23%

VPAC2 offspring genotypes:
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Figure 27. Characteristic example results from the genotyping PCR reaction.  

Representative gel electrophoresis data of genotyping conducted on VIP, VPAC1 and VPAC2 

strains. This gel includes unknown samples as well as controls for each strain with the 

analysis characterized in table 8. 

 

  1        2         3          4          5          6         A         B         C         D          7          8         9      

  E         F         G         H        10       11         12        13        14       15         I           J         K      
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Table 8. Legend for figure 27 genotyping  

Lane number Tail number Strain Result 

1 Unknown 1 VIP WT 

2 Unknown 2 VIP WT 

3 Unknown 3 VIP HET 

4 Unknown 4 VIP HET 

5 Unknown 5 VIP KO 

6 Unknown 6 VIP KO 

A VIP WT Control VIP WT 

B VIP HET Control VIP HET 

C VIP KO Control VIP KO 

D VIP H2O Control VIP N/D 

7 Unknown 7 VPAC1 WT 

8 Unknown 8 VPAC1 WT 

9 Unknown 9 VPAC1 HET 

E VPAC1 WT Control VPAC1 WT 

F VPAC1 HET Control VPAC1 HET 

G VPAC1 KO Control VPAC1 KO 

H VPAC1 H2O Control VPAC1 N/D 

10 Unknown 10 VPAC2 HET 

11 Unknown 11 VPAC2 KO 

12 Unknown 12 VPAC2 HET 

13 Unknown 13 VPAC2 HET 

14 Unknown 14 VPAC2 HET 

15 Unknown 15 VPAC2 HET 

I VPAC2 WT Control VPAC2 WT 

J VPAC2 HET Control VPAC2 HET 

K VPAC2 KO Control VPAC2 KO 

I (not shown) VPAC2 H2O Control VPAC2 N/D 
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2.3.2. Genotype affects taxonomic structure 

The vasoactive intestinal peptide and intestinal microbiota signaling pathways have both 

been implicated in similar settings such as obesity, immune dysregulation and inflammatory 

bowel diseases. Although their roles in the body intersect, a critical gap in knowledge remains as 

no research has yet analyzed their potential relationship. We hypothesize that disruption of the 

VIP signaling pathway will alter the taxonomic make up, as well as the endocrine functionality 

of the microbiome. The microbial communities from fecal samples of mice lacking the VIP 

peptide were sequenced to test this hypothesis.  

Figure 28 depicts a stacked bar graph representing the 16S sequencing results at the 

phylum level. Separated into male and female with all three genotypes, we can see a reduction in 

Firmicutes in both male and female KO mice when compared to WT. This reduction is 

compensated by an increase in Bacteroidetes and Proteobacteria. The smaller Deferribacteres 

population is similar in abundance from WT to HET and drops in the KO strain. The removal of 

VIP regardless of sex reduces Deferribacteres and Firmicutes populations, while increasing the 

levels of Bacteroidetes. The changes between WT, HET and KO are similar between male and 

female mouse groups. The main differences are seen in the male and female WT groups. The 

male WT mice seem to act as an intermediary between the HET and KO mice, and differ from 

the female WT mice. This is interesting as the male HET and KO strains are similar in microbial 

abundance when compared to females. This suggests that gender and sex hormones may play a 

role in bacterial abundance through VIP. 

The ratio of the Firmicutes to the Bacteroidetes phyla has been linked to obesity 

phenotypes in mice and in humans. Discussed to greater detail in 2.1.3.1, increases in Firmicutes 

and decreases in Bacteroidetes have been linked to obesity in patients. First the average of these 
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two groups were individually plotted in figure 30. Here we can see that as the gene is 

extinguished (KO), the levels of Bacteroidetes greatly increase and the levels of Firmicutes 

decrease. The HET mice for both genders seem to host similar levels of these two phyla. 

Interestingly, the WT mice have a greater amount of Bacteroidetes, with the male WT levels 

residing between HET and KO. Our data suggests that the partial removal of VIP results in a 

shift towards the obese phenotype and an increase in Firmicutes, whereas the complete removal 

of VIP shifts towards a lean phenotype observed in both sexes. 

 To determine changes in this relationship, the ratio data was plotted in a box and whisker 

plot in figure 31. This graph shows a range of ratios for both WT and HET for both sexes with a 

small F to B ratio in the KO strains. This was important to demonstrate the clear spread between 

these ratios as well as provide an insight into the differences between genotypes. The WT and 

HET mouse group data is scattered with ratios ranging from nearly zero all the way to 3.5. The 

KO mice on the other hand present just the opposite, with a compact ratio between 0 and 1. The 

data indicates that the lack of VIP reduces the F to B ratio. We conclude that based on the F to B 

ratio, the KO mice must be leaner in comparison to HET and WT. 

The genus level stacked bar graph in figure 29, demonstrates that changes in bacterial 

abundance can be found all the way to the genus taxonomic level. Both knockout strains show a 

decrease in uncultured S24-7 Bacteroidales (black) and an increase in Bacteroides (dark green) 

and Helicobacter (purple). The number of genera present makes for difficult interpretation of the 

stacked bar data and will be separated out into individual genus later in this section. Although 

similar compositional changes are seen at every level of the taxonomic tree, for simplicity, only 

phylum and genus level changes are shown below. The remaining taxonomic graphs and 

breakdowns can be found in appendix A. 
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Figure 28. Phylum level taxonomic differences between VIP male and female +/+, +/- 

and -/-. 

Sequenced fecal sample data is represented as a stacked bar graph. This graph represents 

changes at the phyla taxonomic level, with the males on the left and the females on the right. 

The key below the graph represents the different phyla indicated by color. 
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Figure 29. Microbial community changes at the genus level for VIP mouse strains. 

This stacked bar graph represents the percent abundance of various bacterial genera for each 

genotype for both sexes. The figure legend depicts an n=8 (7 for male KO) for all strains. The 

figure legend below the depicts the various color-coded genera. Percent values are available 

in appendix A. 
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Figure 30. Levels of Bacteroidetes and Firmicutes among the mice strains. 

A comparative bar graph of the percent abundance of the Bacteroidetes (black) and 

Firmicutes (gray) phyla found in each mouse strain. The male mice are on the left and the 

females on the right. The percent abundance of these phyla was averaged across an n = 8 (7 

for male VIP KO), across all strains and the error bars indicate SEM values.  

 

Figure 31. Ratio of Firmicutes to Bacteroidetes between tested mouse strains.Figure 30. 

Levels of Bacteroidetes and Firmicutes among the mice strains. 

A comparative bar graph of the percent abundance of the Bacteroidetes (black) and 

Firmicutes (gray) phyla found in each mouse strain. The male mice are on the left and the 

females on the right. The percent abundance of these phyla was averaged across an n = 8 (7 

for male VIP KO), across all strains and the error bars indicate SEM values.  
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Figure 31. Ratio of Firmicutes to Bacteroidetes between tested mouse strains. 

The ratio of Firmicutes to Bacteroidetes in each individual mouse tested in represented above 

each strain category. The male mice are on the left and the females are on the right. The ratios 

are then plotted in a box-and-whisker plot representing the maximum, 3rd quartile, median, 1st 

quartile and minimum values from the top down respectively.  

 

Figure 32. Phylum level statistical differences between VIP strains and sexes.Figure 31. Ratio 

of Firmicutes to Bacteroidetes between tested mouse strains. 

The ratio of Firmicutes to Bacteroidetes in each individual mouse tested in represented above 

each strain category. The male mice are on the left and the females are on the right. The ratios 

are then plotted in a box-and-whisker plot representing the maximum, 3rd quartile, median, 1st 

quartile and minimum values from the top down respectively.  
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The intersection of VIP and the microbiota signaling pathways suggests a possible 

relationship between them. Although the stacked bar graphs allow for visualization of 

fluctuations within the entire microbial community, the analysis of changes in individual phyla is 

better demonstrated by individual bar graphs. This allows for the addition of standard error of 

mean (SEM) which is not presentable in the stacked bar graph. Figure 32 shows phyla that 

exhibited significant changes between VIP strains, using the Bonferroni multiple comparisons 

test (2.2.7.5). In the Bacteroidetes phyla, the KO strain was statistically higher than both the WT 

and HET strains. This was not seen in the male mice though, where the KOs were statistically 

higher than the HET but not the WT. Interestingly, the WT and HET strains seem to have a 

lower Bacteroidetes percent than the KOs, suggesting that the absence of VIP may be hindering 

this phylum. The Firmicutes phylum seems to the opposite of the Bacteroidetes phylum, 

decreasing and increasing in response to the Bacteroidetes change. Similar to the Bacteroidetes, 

no statistical change is observed between the male WT and KO strains, but is seen in the female 

mice. In both sexes we observe an increase from WT to HET and a decrease from HET to KO. 

Proteobacteria, was only present around 3 to 7 percent in the WT and HET strains for both sexes. 

Although not statistically different in the males, the KO strains both observed a drastic overall 

increase of nearly 10 percent. Seen in the KOs this increase may suggest that the lack of VIP 

results in a drastic increase in Proteobacteria. The Actinobacteria phylum was very unique and 

only observed in the KO mice. The large error bars are the result as not every KO mouse tested 

contained the phylum. In conclusion, the removal of the VIP signaling pathway greatly changes 

the percent abundance of the phyla present within the feces. The partial presence of the VIP gene 

(HET) does not impact the microbiota as much as its complete ablation. The male WT mice also 

seem to differ from their female counterparts and seem to reside between HET and KO strains. 
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Figure 32. Phylum level statistical differences between VIP strains and sexes. 

Each bar graph represents an individual phylum and its changes between the mouse strains. 

The male mice are on the left and the female mice are on the right. The error bars depict 

calculated SEM values with horizontal lines depicting statistical significance. Stats were run 

using the Bonferroni test discussed further in 2.2.7.5.  

 

Figure 33. Changes in group 1, Bacteroides, uncultured Porphyromonadaceae and 

Helicobacter.Figure 32. Phylum level statistical differences between VIP strains and sexes. 

Each bar graph represents an individual phylum and its changes between the mouse strains. 

The male mice are on the left and the female mice are on the right. The error bars depict 

calculated SEM values with horizontal lines depicting statistical significance. Stats were run 

using the Bonferroni test discussed further in 2.2.7.5.  
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Although phylum level analysis can reveal changes between the tested strains, it is only 

the second taxonomic level and just skims the surface of bacterial changes. To better understand 

the impact of VIP deficiency on the microbiota, genus level changes were analyzed. The 16S 

genera taxonomic data was split into three groups, based on trends of change between the mouse 

genotypes. Figure 33 for instance, demonstrates the first group containing the Bacteroides, 

uncultured Porphyromonadaceae and Helicobacter genera. These three bacterium all increased in 

number when VIP was absent. Interestingly, the partial removal of VIP, determined by analysis 

of HET mice, did not statistically change their percentage compared to wild type. These 

observations were true in both male and female mice. Both uncultured Porphyromonadaceae and 

Helicobacter increased in the KO strains by nearly 10 percent. A discrepancy was observed with 

the male WT mice, whom showed an increase in the Bacteroides genus, when compared to HET, 

but were still statistically lower than the KO. 

The second group, visualized in figure 34, is composed of Mucispirillum, Alistipes and 

uncultured Bacteroidales S24-7. These genera acted opposite to the first group and demonstrated 

lower levels in the KO strains and higher/similar levels in the WT and HET strains. These 3 

genera all demonstrated significant differences between the WT and KO strains, suggesting that 

the removal of VIP really impacts their abundance. The HET strain did not differ much from the 

WT group. For these three genera it seems that the partial removal of VIP does not significantly 

impact their presence. Group 3 (figure 35) is composed of uncultured Peptococcaceae and 

Lachnospiraceae NK4A136. In males, these two genera showed an increase from WT to HET 

and a decrease from HET to KO. Male WT in both were much lower than the female WT and 

similar to the KOs. In females, we see a decrease from WT to HET to KO, with a greater change 

from HET to KO. We conclude that VIP deficiency impacts the total abundance of these genera. 
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Figure 33. Changes in group 1, Bacteroides, uncultured Porphyromonadaceae and 

Helicobacter. 

These three bar graphs depict the levels of Bacteroides, uncultured Porphyromonadaceae and 

Helicobacter genera. These were grouped together due to the similarity of their change 

between genotypes. Both the male and female groups demonstrate a high abundance in the 

KO and a low abundance in the WT and HET strains. Error bars depict SEM values. 

 

Figure 34. Genus level analysis of group 2, Mucispirillum, Alistipes and uncultured 

Bacteroidales S24-7.Figure 33. Changes in group 1, Bacteroides, uncultured 

Porphyromonadaceae and Helicobacter. 

These three bar graphs depict the levels of Bacteroides, uncultured Porphyromonadaceae and 

Helicobacter genera. These were grouped together due to the similarity of their change 

between genotypes. Both the male and female groups demonstrate a high abundance in the 

KO and a low abundance in the WT and HET strains. Error bars depict SEM values. 
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Figure 34. Genus level analysis of group 2, Mucispirillum, Alistipes and uncultured 

Bacteroidales S24-7.  

The average abundance is plotted on individual bar graphs with error bars indicating SEM 

values. These genera are categorized as group 2 due to similarities in overall change. Male 

mice are presented on the left and the females are presented on the right. 

 

Figure 35. Changes in the Peptococcaceae family and the Lachnospiraceae NK4A136 group 

(group 3).Figure 34. Genus level analysis of group 2, Mucispirillum, Alistipes and uncultured 

Bacteroidales S24-7.  

The average abundance is plotted on individual bar graphs with error bars indicating SEM 

values. These genera are categorized as group 2 due to similarities in overall change. Male 

mice are presented on the left and the females are presented on the right. 
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2.3.3. Alpha diversity, within each group, comparisons  

To determine changes in species diversity between the different mouse habitats (each 

mouse genotype), alpha diversity analysis was performed on generated 16S taxonomic data. The 

alpha diversity analysis of species richness was assessed using the chao1 (Chao 1984), Shannon 

(Shannon 1948), observed species and PD whole tree (Faith 1992) indexes. Due to the similarity 

in alpha diversity results between these databases, only the PD whole tree analysis is shown in 

figure 36. As discussed in the materials and methods section of this chapter, the PD whole tree 

analysis includes richness, evenness and measures phylogenetic tree branch length. Comparisons 

between WT and KO shows that in males and females the median species richness is much 

higher in the WT mice (depicted as a red line). While the minimum measurement in the male 

Figure 35. Changes in the Peptococcaceae family and the Lachnospiraceae NK4A136 

group (group 3). 

These individual bar graphs are at the genus level and demonstrate the changes between 

mouse strains for the uncultured Peptococcaceae and Lachnospiraceae NK4A136 group. Error 

bars depict SEM values.  

 

Figure 36. PD whole tree analysis of alpha diversity.Figure 35. Changes in the 

Peptococcaceae family and the Lachnospiraceae NK4A136 group (group 3). 

These individual bar graphs are at the genus level and demonstrate the changes between 

mouse strains for the uncultured Peptococcaceae and Lachnospiraceae NK4A136 group. Error 

bars depict SEM values.  
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WT is similar to the minimum value in male KOs, the 3rd quartile (around 560) and median 

(around 525) suggests that overall the male WT measurements are higher than their male KO 

counterparts.  

Comparisons between genders do not show significant differences between male and 

female HET strains. In the WT groups, we see a lower median and a much greater spread in the 

males than in the females. The female WT samples are compact with a small box and whisker 

plot while the males are diffused out. The size of the knockout group plot suggests similar 

variations in richness for both genders. The median for the females suggests higher overall 

richness than the males, but in comparison to WT and HET we see a drop in richness for both 

KO genders. In conclusion, both male and female mice see a trend of higher richness in WT and 

HET mice and a lower richness for the KOs.  
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2.3.4. Beta diversity, between the groups, comparison  

Beta diversity measurements assist in understanding the differences in species 

composition between different environments, while alpha diversity analyzes variety at each 

individual environment. Figure 37 depicts a three-dimensional principle coordinates analysis plot 

(PCoA) which displays the relative distance relating the different mouse intestinal biological 

communities. The weighted PCoA plot was chosen because weighted samples take relative 

abundance of taxa into account while unweighted only considers presence. Each collected 

Figure 36. PD whole tree analysis of alpha diversity. 

Examination of species richness by PD whole tree looks at branch length as well as 

differences in species. This box and whisker plot visualizes the drop-in richness in both of the 

knockout strains, when compared to both WT and HET mice. A drop in microbial diversity is 

associated with a number of disease phenotype models.  
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sample is represented as a dot upon the graph with its color representing its genotype and gender. 

The z-axis (PC3) images are not shown due to lack of separation between the samples in that 

plane. Two major ovals were added to the PCoA plot to depict clustered samples. 

As the blue oval demonstrates, the WT and HET samples from both sexes clustered 

together. This implies the most similarity between WT and HET groups. As previously seen with 

taxonomic analysis and with alpha diversity analysis, we see a similarity between WT and HET 

mice regardless of sex. This infers that the partial removal of the VIP gene does not significantly 

impact the microbial community. Remarkably, the knockout samples from both sexes grouped 

together (depicted by the yellow oval) apart from the WT and HET group, with a clear divide 

between the two ovals. The clustering of KO suggests similarity between the KO samples and a 

separation from the KO mice to the WT and HET. This data suggests a change in diversity is 

caused by the environments present between WT and HET, and KO strains. We do see a group 

of three male WT samples off on their own (once again the odd-ball) which may be leading to 

alpha diversity and taxonomic differences observed previously. This demonstrates the 

importance of including both sexes in studies, as we demonstrate that gender may impact the 

microbiome.   
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2.3.5. Predictive metagenome functional content with PICRUSt and the KEGG database 

The communicational pathways between the microbiota and the host are changed 

between the knockout, heterozygous and wild type mouse strains. Changes in the microbial 

community composition can impact the endocrine functions of the microbiome. To determine 

changes in the metagenome upon removal of VIP, analysis of metabolic pathways was conducted 

Figure 37. Weighted unifrac beta diversity PCoA analysis. 

This three-dimensional principle coordinates analysis plot displays the relative distance 

comparing the mouse intestinal biological communities from each genotype and gender. Post-

analysis ovals are added to demonstrate clustering of similar microbial communities. Each dot 

on the graph is representative of an individual sample with the legend identifying its genotype 

and gender. This PCoA plot is 3-dimensional but a focus is placed on the X and Y axis 

changes as no significant changes were observed in the Z (PC3) plane.   
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using the PICRUSt bioinformatics software against the KEGG database. This analysis was 

performed for all genotypes and genders. The changes in taxonomy between these strains results 

in changes in predictive metagenomics between them. Figure 38 visualizes our findings, where 

an increase in a number of nucleotide and ATP biosynthesis pathways was found. These were 

found to be increased in the KO mouse strains for both genders. The knockout mice also 

demonstrated an increase in glyoxylate cycle function, suggesting the utilization of fats for 

energy. This may be feeding into the gluconeogenesis cycle as we see an increase in that as well. 

This could suggest the presence of excess energy and that the breakdown of glucose is not 

necessary for energy generation. An increase in the pentose phosphate pathway indicates the 

creation of NADPH which may be used in nucleotide and cholesterol biosynthesis and anabolic 

pathways.  
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Figure 38. Predicted functional metagenomics using PICRUSt. 

This horizontal bar graph depicts changes in metagenomic pathways as analyzed by the 

PICRUSt predictive software. PICRUSt investigates changes in bacterial communities and 

predictions functional change in pathways based on previously established databases. 
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2.4. Discussion 

This study provided novel and interesting findings regarding the connections between 

neuropeptides and the gut microbiota. We conclude that the partial or complete genetic removal 

of VIP results in changes in the taxonomic structure of intestinal bacteria. For example, in the 

Bacteroidetes phyla, we see an increase of nearly 20% in knockout female mice vs HET and WT. 

The depletion of VIP also reduces the alpha-diversity within the intestines and is much lower in 

the VIP -/- strains than the VIP +/+ and +/- littermates. Additionally, we discovered changes in 

the predicted metagenomic functionality among the strains. In the KO mice for instance, we see 

an increase in the pentose phosphate and sugar transport pathways. The lack of VIP altered a 

number of biosynthetic pathways within the microbiota. This research also makes us question 

whether previous changes observed in VIP KO mice were caused by the altered microbiota or by 

the lack of VIP alone? 

Understanding the importance of VIP in the gastrointestinal tract, we hypothesized that 

VIP signaling through VPAC1/VPAC2 would change the makeup of the intestinal microbiota. 

After utilizing PCR to genotype mouse subjects, fecal samples were used to determine microbial 

composition. The resulting taxonomy graphed in figures 28 through 29 shows these overall 

changes. These observations demonstrate that the disruption of VIP signaling, whether partial 

(HET) or complete (KO), results in changes at the taxonomic level. The utilization of HET mice 

here is important. We hypothesized that these partial knockouts would result in changes 

intermediary to WT and KO. Even at the top of the taxonomic rankings this hypothesis was 

disproved.  

Our WT compared to C57BL/6 mice from other colonies are similar to some colonies and 

different from others (Fransen et al. ; Johnson et al. 2016). As discussed previously, the 
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microbiota can be impacted by a number of things. Differences can be caused by different 

sources of food and water used in each mouse colony. Things like humidity (Davenport et al. 

2014), bedding (Bai et al. 2016), feeding patterns (Zarrinpar et al. 2014), temperature (Chevalier 

et al. 2015) and type of housing (Ericsson et al. 2015) can also impact the microbiota. A 

difference in mother’s genotypes could also change what bacteria are present. In our studies all 

of these variables were kept consistent for all test mice used. Only heterozygous mothers were 

used to produce progeny in order to eliminate impact of breast milk on microbial growth. 

Between the wild type and heterozygous mice, we observed a reduction in Bacteroidetes 

levels and an increase in the Firmicutes phylum. This trend was more apparent in the male 

gender but still present in the females. The change between WT and HET to KO was consistent 

between the two sexes. For both males and females, we observed an increase in Bacteroidetes 

and a greater decrease in Firmicutes. This decrease was compensated by an increase in 

Proteobacteria in the KO strains. The ratios of Bacteroidetes and Firmicutes have been linked to 

obesity in a number of publications. It has been published that mice with an obese phenotype 

will exhibit a reduction in the total percentage of Bacteroidetes and an increase in the Firmicutes 

phyla. 

The ratio of these two phyla is visualized in figures 30 and 31. Figure 30 displays the 

level of both phylum while 31 displays the ratio between the two. Analysis of this ratio also 

demonstrates the importance of using both genders in mouse research. In figure 30 the change of 

Bacteroidetes and Firmicutes in male mice from WT to KO is not statistically different, but in 

female mice it is. But when the ratio of the two is calculated (𝐹𝑖𝑟𝑚𝑖𝑐𝑢𝑡𝑒𝑠/𝐵𝑎𝑐𝑡𝑒𝑟𝑜𝑖𝑑𝑒𝑡𝑒𝑠) with 

standard error of the mean (SEM), we see the changes becomes more apparent. The trend of 
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weight for our knockout mice is similar to previous findings, where our knockout mice weight 

less than WT and HET. 

The KO strains were also the only strain to contain the Actinobacteria phylum. Although 

this phylum was present in very low amounts (0.20% MKO and 0.10% FKO), no other strains 

contained any Actinobacteria. This interesting phylum is found more often distributed in 

terrestrial and aquatic ecosystems (Barka et al. 2016). Downstream at the genus taxonomic rank, 

following their phylum, Bifidobacterium are the only Actinobacteria subset with presentation 

only in the knockout strains. This interesting genus is very sensitive to O2, suggesting that 

perhaps the KO strains have lower oxygen levels in their intestines (Kawasaki et al. 2006). 

Recent research has also demonstrated that the utilization of Bifidobacterium as probiotics, 

reduces the impacts of Crohn’s disease and other inflammatory bowel diseases (Ghouri et al. 

2014). A recent study comparing the changes in microbiota between high-fat, low-fat and high 

and low fat with exercise, demonstrated that the Bifidobacteriaceae family (the family of 

Bifidobacterium) was present only in low fat diet mice and undetected in their high-fat diet 

counterparts. Curiously, the low-fat diet mice that exercised lowered their total percent of 

Bifidobacteriaceae in comparison to the sedentary group (Evans et al. 2014). This could suggest 

that fat is being rapidly used in VIP deficient mice (perhaps by the microbiota), when compared 

to HET or WT, leaving a low-fat environment in the external gastro-intestinal tract allowing for 

their survival.  

As we continue the analysis down to the genus level, the number of differences increases. 

The genus Bacteroides, under the Bacteroidetes phylum, seem to change similarly to their 

phylum. Bacteroides levels were statistically higher in the knockout strains when compared to 

their WT and HET counterparts. This member of the gut microbiota has been shown to 
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exacerbate Escherichia coli (EHEC) infections in mice. Increasing this microbe during infection 

resulted in increased gut permeability and an increase in mortality when compared to mice free 

of this genus (Curtis et al. 2014). Bacteroides also produce metallo-β-lactamase which can shield 

other microorganisms in the gut from antibiotic attack and even defend pathogens like EHEC 

(Stiefel, Tima, and Nerandzic 2015). A rise in this genus in the knockout mice, may lead to a 

decrease in antibiotic functionality. The increased gut permeability caused by the lack of VIP 

(Wu, Conlin, et al. 2015) may also not be a direct result of the missing VIP, but rather due to the 

rise in the Bacteroides genus. The utilization of germ-free VIP -/- mice would be important to 

answer this question. 

The Bacteroidales S24-7 family is an example of how far we still have to go to 

completely understand host microbiota relationships. Out of the total taxonomies identified over 

all the strains, this family makes up 22.8% of those reads (figure 29). None of these have been 

identified down to the genus level. On top of that only 47 publications are found when searching 

“S24-7” on PubMed.gov. Although it has been as widely researched as other microorganisms, 

the Bacteroidales S24-7 family plays an important role in the intestines. Research by Evans et al. 

and Tomas et al. demonstrates that mice fed a high-fat diet significantly lowered their S24-7 

percentage, but the addition of exercise increased it equally between low fat and high fat diet 

mice (low-fat diet was still statistically higher than high-fat) (Evans et al. 2014; Tomas et al. 

2016). The levels of this family have also been linked to hepatic metabolism and function. Post 

partial hepatectomy (removal of 2/3rds of the liver), a rapid increase of S24-7 from 11.1% to 

47.7% was observed. Analyzing predicted metabolic pathways from PICRUSt, these researchers 

found the S24-7 family in these mice was responsible for an increase in bile acid production 

pathways (Liu et al. 2016). In comparison to the WT and HET strains, the KO strains for both 
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males and females had a reduction in the S24-7 bacterium. From the WT to HET to KO the S24-

7 family gradually reduced in percentage (figure 31). This reduction which is opposite of the 

change in the Bacteroides may suggest a change in the fat content of the chime. Mass 

spectrometry could be utilized in future studies to determine the composition of intestinal chime 

in these mouse strains to test this hypothesis. 

The change in percentage of the Porphyromonadaceae family and the Helicobacter genus 

are similar to the Bacteroides genus. The knockout strains for both sexes increase significantly 

when compared to the HET and the WT strains (figure 32). In 2013, decreases in this family of 

bacteria was seen in tumor-bearing mice by Zackular et. al. Using antibiotics to manipulate the 

microbiota resulted in a decrease in the number and size of tumors in these mice. This suggests a 

link between this family and tumorigenesis (Zackular et al. 2013). The increase of this family in 

both knockout strains may suggest the elimination of VIP results in resistance to the 

development of colon cancers and tumor growth.  

The discovery of the Helicobacter genus revolutionized microbiota research, by changing 

previously held beliefs that the stomach was a sterile organ (Marshall and Warren 1984). Since 

its discovery it has been implicated in a number of gastric cancers, vitamin B12 deficiency, 

anemia and ulcer formation (Sheh and Fox 2013). In human patients colonization by 

Helicobacter has been characterized mainly with severe bacteremia (De Witte et al. 2016). The 

lack of this genera has also recently been associated with disease, with evidence suggesting 

balance in its levels may be the key to disease prevention (Otero, Ruiz, and Perez Perez 2014). In 

the six strains tested, the Helicobacter genus made up nearly 9% more of the total taxonomic 

reads in the male and female knockout strains than in the wild type. Heterozygous mice from 

both sexes were only slightly higher than the WT and significantly lower than the knockouts 
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(figure 32). This increase in the KO strains may indicate increased susceptibility towards cancers 

and ulcer formation. Previous research suggests VIP KO mice are more vulnerable to colitis 

models (Jonsson, Norrgard, and Forsgren 2012), and the presence of this pathogenic strain may 

be the reason why. 

The Mucispirillum and Alistipes genera both share extremely similar trends in change 

between wild type, heterozygous and knockout between males and females. These two strains 

impress the importance of utilizing both genders for studies. In the females we see a greater 

overall reduction in total percentage in comparison to males by nearly 3% (figure 32). The 

Mucispirillum genus was first discovered in murine intestines. Scientists investigating the mucus 

layer of the gastrointestinal tract discovered a distinct subgroup that had not previously been 

characterized (Robertson et al. 2005). Since its discovery, increase in Mucispirillum levels have 

been pinned as an indicator for oncoming colitis as Mucispirillum acts as a mucin degrader and 

can provide other microorganisms easier access to the intestinal epithelia (Berry et al. 2012). A 

reduction in Mucispirillum levels in knockout mice may suggest higher mucus levels in these 

mice as opposed to their wild type littermates. Reduction of the Alistipes genus was found to be 

correlated with depression, while an increase has been associated with stress in mice 

(Naseribafrouei et al. 2014). In humans, a study conducted by David et al. analyzed the influence 

of animal vs plant-based diets. They found that the change to an animal-based diet increases the 

abundance of Alistipes and suggested this genus may increase due to its protein fermentative 

capacity (David et al. 2014).  

The Lachnospiraceae NK4A136 group is a prominent member of the intestinal 

microbiota. When compared to the WT and HET strains, the KO strains had statistically lower 

amounts of this group. In female knockouts, Lachnospiraceae was reduced by nearly 13%. In 
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males, the change from HET to KO was just as large as the females. From WT to KO though 

was only about a 5% decrease. In the gastrointestinal tract, higher levels of this genus have been 

shown in children with a reduction in adults (Hollister et al. 2015). Reeves et al. inoculated 

germfree mice with Lachnospiraceae and found that the presence of this genus prevented the 

colonization of Clostridium difficile. In the United States Clostridium difficile infections affect 

nearly half a million people annually (Reeves et al. 2012). This number may be reduced by the 

introduction of Lachnospiraceae as a probiotic. In our mouse strains this could suggest that the 

knockout mice are more susceptible to disease and infection as compared to the wild type and 

heterozygous mice. 

The overall changes in taxonomy in the VIP knockout mice are similar between the 

genders. The trends of change from WT to HET to KO seem mostly consistent regardless of sex. 

There are a few fluctuations at the genus level which indicate differences in total percentage 

between males and females. Conclusions drawn from the taxonomic data go along with 

previously published VIP research. Our data suggests that the VIP KO mice contain more 

bacteria connected with inflammatory bowel disease susceptibility. Previous research has 

demonstrated that the induction of colitis in the KO strain, results in a more severe response than 

the WT. These research studies did not consider the role played by the intestinal bacterial 

communities in inflammation. Therefore, it is entirely plausible that the increased vulnerability 

to IBD in the KO mice was an indirect effect of the loss of VIP rather than a direct one. In future 

studies, the utilization of germ-free VIP knockout mice could provide an answer to this question, 

by eliminating the bacterial component of the equation.  

As discussed previously in the introduction section of this chapter, the microbial 

community plays an essential role in obesity. Previous studies have demonstrated that in both 
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obese mice and humans, there is a reduction in the total percentage of Bacteroidetes and an 

increase in the Firmicutes phylum (Ley et al. 2005; Ley et al. 2006; Murphy, Velazquez, and 

Herbert 2015). These changes were also observed in the strains of mice used for this study. In 

males, Bacteroidetes levels decreased from WT to HET and increases slightly from WT to KO. 

The Firmicutes in the male mice increased from WT to HET and decreased from WT to KO. In 

female mice the trend was similar between HET and KO but different in the WT. The WT in the 

female mice showed higher Firmicutes than the HET and KO and higher Bacteroidetes than the 

KO (figure 34). Analysis of the ratio between Bacteroidetes and Firmicutes demonstrated a huge 

increase in both KO strains (figure 35). This data is similar to published VIPKO data where 

weights of the knockouts are lower than their wild type littermates. 

The influences of the microbiota on host metabolism and its involvement in the gut-brain 

axis are based on the diversity of bacteria are make it up. Previous research has linked a 

reduction in bacterial diversity to increased disease susceptibility. In the strains tested, we found 

that the diversity levels in the knockout strains were significantly lower than their HET and WT 

counterparts. This was true when alpha-diversity analysis was completed against the Shannon, 

chao1, observed species and the PD whole tree indices. The PD whole tree analysis used 

measures not only the species diversity, but also the degree to which they are related. This local 

measure of species richness demonstrates that there are a lower number of species within the 

knockout strains compared to both wildtype and heterozygous. Interestingly the diversity in the 

male wild type strains was widely spread (figure 36). Although the average is still higher than 

the KO, the high range of male wild types suggests variety between the wild samples collected, 

confirmed in the beta-diversity analysis. The levels of reduced diversity in the knockout strains is 

surprising and suggests that VIP plays a major role in modulating taxonomic diversity. 
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The weighted beta diversity in figure 37 demonstrates the differences between all of the 

samples analyzed. Three ovals have been placed in the figure to demonstrate a grouping 

phenomenon inside the plot. A quick look shows three male wild type samples grouped 

separately from the other wild type and heterozygous strains. We suspect these samples are 

responsible for the spread within the alpha diversity (figure 36) analysis of their category. This 

may be due to males being more susceptible to microbiota changes or an error in previous steps, 

like genotyping. A genotyping error may have classified these mice into the wild type category 

while they may in fact be knockouts. This could cause a ripple effect and alter all taxonomic, 

diversity and metagenome data, but is important to correct if true. These samples will be re-

genotyped to ensure proper categorization. The grouping of the knockout strains together 

demonstrates that these populations are very similar to each other and far apart from the wild 

type and heterozygous groups. We believe that this similarity suggests a change in the 

gastrointestinal environment and a change in the linage of the microorganisms present in the 

knockout strains versus the WT and HET, due to the lack of VIP. Interestingly, the close 

proximity of the HET and WT mice, indicates that the partial reduction of VIP does not 

significantly change the microbial population in comparison to their WT littermates. 

The consideration of the intestinal microbiota as an endocrine organ means that changes 

in its composition may alter the metabolites that are secreted from it. Changes in taxonomy, as 

found amongst our six strains, results in the change of secretions and metabolites. Comparison of 

known populations against the KEGG database, predicts a drastic change in the metabolic 

pathways. The biggest change is observed in the knockout strains, where we find the greatest 

increase in the biotin and riboflavin biosynthesis pathways. Previous studies have demonstrated 

that the consumption of a high-fat diet causes a biotin deficiency in mice (Yuasa et al. 2013). 
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Infants fed with formula also result in biotin deficiency (Fujimoto et al. 2005). As previously 

hypothesized, we predict this increase in biotin biosynthesis may be due to faster fat uptake by 

the host, resulting in a low-fat environment in the intestines, resulting in an increase in biotin 

synthesis in the knockout strains. Many riboflavin pathways are location in the nervous system. 

An increase in this vitamin has resulted in migraine-headaches in mouse subjects (Butun et al. 

2015). The depletion of riboflavin also leads to reduction in ATP levels in cells and an increase 

in reactive oxygen species (ROS) (Riboflavin depletion of intestinal cells in vitro leads to 

impaired energy generation and enhanced oxidative stress). We hypothesize that the increase in 

Figure 39. PICRUSt results interpretation. 

Data interpretation suggests an increase in the glyoxylate pathway perhaps due to higher fat 

content in the intestines resulting in conversion of fats to pyruvate, which may be funneled 

into gluconeogenesis. An increase in gluconeogenesis results in increased glucose 

production shunted into the pentose phosphate pathway for NADPH formation. This 

anabolic pathway could be used by the microbiota for fatty acid, nucleotide, and other 

cellular component synthesis. 
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riboflavin production in the knockout mice alongside the increase in ATP and GTP synthesis 

may lead to an abundance of energy for intestinal epithelial cells. 

An important observation made is that genotype does directly affect the microbial 

community. This research is novel in the testing of a neuropeptide deficiency and its link to the 

microbiota. It provides a clearer understanding of just how influential the gut-brain axis pathway 

is not just on the host, but also on the microorganisms that reside there. We hypothesize that the 

change in taxonomic structure, diversity, and predicted metagenome may be caused by an 

increase in fat absorption rates within the knockout strain. This hypothesis would be difficult to 

prove as mouse weight data demonstrates that knockout mice are smaller in size, but an increase 

in uptake does not directly imply an increase in storage. An important question brought forward 

by this research is the impact of the microbiota on VIP research. A number of papers using VIP 

knockout mice have published increases in intestinal inflammation and changes in neuronal 

patterns. These differences may not be directly related to the loss of VIP but may be due to the 

change in the microbial environment itself. This would call into question whether these changes 

are a direct or an indirect effect from VIP. We recommend the utilization of germ-free knockout 

mice as a method for future research to eliminate this question. 
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3. VIP SIGNALING IN T-LYMPHOCYTES AND EOSINOPHILS 

3.1. Introduction  

3.1.1. Immune system overview 

The mammalian immune system consists of biological proteins, cells, tissues and organs 

focused on host defense from foreign pathogenic invaders and “rogue” self-cells. This biological 

security mechanism called the immune system, is found throughout the animal kingdom from 

fruit flies to humans and immune-like systems even exist in plants and single-celled bacteria. 

Like an arms race between warring nations, the immune system and the pathogenic 

microorganisms it fights are perpetually evolving, always trying to gain a selective advantage 

over one another. The immune system works by first recognizing molecular patterns called 

antigens, presented on or secreted by pathogens, like parasites, bacteria and viruses, while 

ensuring the body’s own cells remain unscathed, disease and cancer free. Its importance is truly 

recognized in immunodeficient individuals, whom possess a reduced potential for clearing 

unwanted foreign/self-cells from the host. This condition, where the hosts body is unable to 

defend itself against infection for example, can be caused by genetic disorders, cancers and/or 

pathogens like the human immunodeficiency virus (HIV). These immunocompromised persons 

are susceptible to opportunistic infections, unnoticed in everyday people. Hormones, circadian 

rhythm, nutrition and the nervous system are all involved in the regulation of these guardians. 

The immune system is categorized into two parts, the innate and adaptive immune 

systems. This layered defense is divided by specificity. The innate immune system is the first 

responder and is activated upon the identified of microbes by pattern recognition receptors 

(PRRs). The cells of the innate immune system respond to stress cytokines and chemotax in 

response to infected areas. The innate immune system responds in a generic manner and its 
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defenses are non-specific in comparison to adaptive immunity. The adaptive immune system is 

activated by the innate immune system, creating a lag time between pathogen exposure and 

adaptive response. This antibody based, or humoral immune response is specific to the antigens 

presented to the adaptive immune cells. Adaptive immunity is also crucial for immunological 

memory, an essential component of vaccine function. 

The extensive distribution of VIP is indicative of its various effects throughout the body. 

It has been demonstrated that in the cardiovascular system VIP effects vasodilation and cardiac 

output. In the nervous system, VIP influences learning, behavior, and works as a master 

circadian regulator in the body. Through the gastrointestinal tract VIP works on motility and 

modulates the pancreatic release of insulin and glucagon. In the immune system VIP acts in an 

anti-inflammatory aspect, reducing inflammatory marker expression. These effects were made 

possible through VIP binding to its two receptors VPAC1 and VPAC2. VIP were first found to 

elicit cAMP production in immune cells by O’Dorisio et al. in 1981 (O'Dorisio et al. 1981). 

Since then, its receptors have also been found on numerous immune cells like macrophages, 

dendritic cells, mast cells, CD4 and CD8 T cells. It’s actions in the immune system have resulted 

in its categorization as an anti-inflammatory molecule, downregulating inflammatory cytokines 

and reducing Th1 immune responses, discussed later in this chapter. 

3.1.2. The innate immune system 

Innate immunity provides a polyclonal, immediate, non-specific response to pathogens, 

while the adaptive immune system recognizes and responds to a specific antigen. The innate 

immune system recognizes pathogen associated molecular patterns (PAMPs) with PRRs in a 

specific manner. The integumentary system, considered by many to be a part of the innate 

immune system, acts as a physical and chemical barrier between our body and the external 
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world. Its epithelial cells line the insides of our respiratory and gastrointestinal tracts and act as 

the first line of defense against foreign invaders. Goblet cells interspersed within the lining of the 

epithelial membrane, secrete proteins that make up the mucus layer which traps and removes 

harmful substances and opportunistic pathogens. This debris littered mucus is then pushed out by 

hair-like extensions, called cilia, on epithelial cells.  

The cells of the innate immune system recognize a group of molecular patterns that are 

evolutionarily conserved and essential for pathogen survival. These molecular patterns or 

pathogen-associated molecular patterns (PAMPs), are recognized by the innate immune system’s 

family of receptors called pattern recognition receptors (PRRs). Examples of PAMPs include the 

whip-like flagella, which allows for the propulsion of bacteria and the lipopolysaccharide (LPS) 

endotoxin, found in the membrane of gram negative bacteria. These receptors work alongside a 

group of soluble proteins that stimulate phagocytosis and assist in immune response, called 

complement proteins. Leukocytes from patients suffering from autoimmune diseases such as 

Sjögren's syndrome, have a reduced ability to phagocytose pathogens (Hauk et al. 2014). 

Although it remains to be discovered, it’s possible that VIP may play a role in complement 

activation. A subset of the innate immune system, the complement system is made up of more 

than 30 soluble proteins produced by hepatocytes in the liver. Circulating in the plasma, these 

proteins amplify antibody response and act directly with PRRs, aiding in the lysis and 

phagocytosis of pathogens.  

Macrophages are a type of resident innate immune cell that infiltrate tissues during 

inflammation and remain as immune sentinels protecting against invaders. This cell quickly 

phagocytes invading microorganisms detected by the PAMP’s, which have be coated with 

complement proteins. A second innate immune cell involved in phagocytosis is the neutrophil. 
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These cells reside in the blood, but are recruited to sites of infection or inflammation by cytokine 

and chemoattractant chemicals. Cytokines are small proteins important to cell signaling and can 

affect cellular behavior. Inflammation is depicted by redness, pain, swelling and heat and is 

promoted by cytokines like interleukin (IL) -1, IL-12, IL-18 and interferon (IFN)-gamma. 

Cytokines that work in an anti-inflammatory manner include: IL-4, IL-6, IL-10 and IL-13. Both 

macrophages and neutrophils express PRRs in order to detect, engulf pathogens and work 

alongside the complement system. They can also detect the Fc region of antibodies produced by 

the adaptive immune system, assisting the adaptive immune system in pathogen removal 

(discussed in greater detail later in this chapter).  

Defense against large multicellular parasites, that cannot be phagocytosed is the 

responsibility of neutrophils and eosinophils. These white blood cells aggregate, surrounding 

large invaders, where the eosinophils degranulate and rapidly release reactive oxygen (ROS) 

species in what’s called the oxidative burst. ROS can degrade cell membranes, damage DNA and 

RNA killing invaders. This release of reactive oxygen species from eosinophils can be harmful 

to both the pathogens and host tissues. While eosinophils make up nearly three percent of white 

blood cells, they are associated with a number of diseases, like asthma. During asthma the 

degranulating eosinophils cause unintended damage to the respiratory tract while attempting to 

eliminate inhaled pathogens like fungi. Eosinophils, along with other lymphocytes also circulate 

in a circadian manner. Their plasma numbers increase during the night and reduce during the 

daytime. This circadian synchronization is partially controlled by neurohormones, like VIP. 

3.1.3. The adaptive immune system 

This second layer of immune defense evolved during the Cambrian explosion over 500 

million years ago. This is around the time vertebrate life was dominated by fish and tetrapods 
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(fish out of water) were climbing out of the sea. (Cooper and Herrin 2010). While the innate 

immune system is essential for basic defense, the adaptive immune system is more precise and 

specifically target pathogens or antigens. The adaptive system is mediated by antibodies, targeted 

proteins secreted by B lymphocytes, which assist in cell mediated responses. Adaptive immunity 

also has a slower response time and can take days before a full response is mounted. This is 

because the adaptive immune system must be presented an antigen by circulating dendritic cells 

it recognizes as foreign, which takes time. An adaptive immune response also sometimes leads to 

the formation of immunological memory, which is what immunologists take advantage of when 

administering vaccines.  

The cellular basis of the adaptive immune response are lymphocytes. These immune cells 

are concentrated in lymphatic tissues around the body, like lymph nodes, tonsils and the spleen. 

These are activated in part by antigen-presenting cells (APCs) like dendritic cells, which 

circulate the body and present microbial antigens to inactivated T-lymphocytes. T-lymphocytes 

or T-cells derive their name from the thymus, where they develop and mature. Once activated, 

these T-cells can help activate B-cells to make antibodies against the invader. B-lymphocytes or 

B-cells are differentiated from hematopoietic stem cells in the bone marrow. All of these cells 

respond to threats by clonal selection/expansion. Mature B lymphocytes (B-cells), called plasma 

cells also introduce antibodies into mucosal secretions. Nearly five grams of one of these 

antibodies, Immunoglobulin A (IgA), in secreted into the intestinal tract daily. This antibody 

assists in pathogen clearance by blocking bacterial access to epithelial receptors, capturing these 

microorganisms in mucosal secretions. Present in breast milk, IgA acts as a prebiotic for specific 

commensal bacteria and reduces the virulence of others (PMC3774538). 
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In clonal selection, a diverse set of lymphocytes are created, each possessing a unique 

receptor. Through negative selection, any cell that binds with to host MHC peptides undergoes 

apoptosis, called clonal deletion. Progenitor T-cells then migrate to the thymus where they 

mature and depart as naïve T-cells. This process prevents the formation of T-cells that could 

induce autoimmune diseases. For the activation of the surviving mature lymphocytes, dendritic 

cells must present complementary antigen on MHC class II molecules. A secondary signal 

through the binding of CD28 by CD80 must also be present to initialize activation. Upon binding 

to the receptor, the lymphocyte starts to clonally expand. This results in numerous clones, all of 

which express matching antigen receptors. This focused approach targets the specific antigen 

presented to the T-cell by the dendritic cell. After the antigen has been cleared, these clones 

undergo apoptosis, leaving a few effector cells behind. These effector cells stay alive for years, 

ready for expansion in case the antigen is seen again. Although the process behind this memory 

cell formation is not well understood, recent research by Youngblood et al. has demonstrated that 

memory cells display particular DNA methylation profiles, not seen in cells that undergo 

apoptosis (Youngblood et al. 2017). 

Both innate and adaptive systems work together to protect the host from pathogens. The 

innate responses are activated directly by the PAMPs, while the stimulation of the adaptive 

immune arm is done by dendritic cells. Occasionally these safety mechanisms protecting the host 

can turn against their master, resulting in sometimes fatal autoimmune diseases. This includes 

diseases such as type 1 diabetes, where the immune system destroys insulin producing pancreatic 

cells, or rheumatoid arthritis, where antibodies attack the linings of joints. Current treatments for 

these conditions generally focus on immune system reducing, similar to how asthma and other 

inflammatory diseases are treated. The protein of focus in our laboratory, VIP, has been 
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implicated in a number of these immune disease. For instance, research by Martinez et al. has 

shown that lower levels of VIP may be an early indicator of arthritis (Martinez et al. 2014).  

3.1.4. VIP in the immune system 

A look into the expression profiles of VIP receptors in the immune system can give us 

insight into the functions of VIP as an immune modulator. In the immune system, the VIP 

protein plays a number of roles in both the innate and the adaptive immune systems. VIP is 

delivered to immune organs by VIPergic nerves, secreted by epithelial cells and by lymphocytes 

themselves. The production of cAMP through the addition of VIP to immune cells in 1981, by 

Guerrero et al. and O’Dorisio et al., was the first indication of the existence of VIP receptors on 

lymphocytes (O'Dorisio et al. 1981; Guerrero et al. 1981). qRT-PCR and ELISA analysis by 

Gomariz et al. demonstrates that human VIP mRNA and protein is produced and present in CD4 

and CD8 T-cells and B-cells (Gomariz et al. 1992; Gomariz et al. 1990).  

Throughout the immune system, VIP functions as a potent anti-inflammatory molecule, 

switching from a proinflammatory Th1 response to an anti-inflammatory Th2 response (Voice et 

al. 2003). Inflammation results in the secretion of chemokines and cytokines that induce the 

chemotaxis of several immune cells to the inflammatory site. VIP works to block these 

pathways, causing a reduction in inflammation. Activated macrophages secrete proinflammatory 

cytokines like IL-6 and IL-12, which are inhibited by the activation of the VPAC1 receptor. 

Research by Delgado et al. shows the reduction in cyclooxygenase (COX)-2 expression with the 

addition of VIP (Delgado et al. 2004). Daily intraperitoneal injections of VIP in mouse colitis 

models showed a reduction in TLR expression on macrophages and dendritic cells. The drop in 

these expression levels reduces the ability of these innate immune cells to respond to pathogens, 

reducing inflammation (Gomariz et al. 2005). VIP has also been coined a macrophage 
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deactivating factor, where primarily through VPAC1 and cAMP it inhibited proinflammatory 

cytokine production and reduce macrophage response in disease (Delgado, Munoz-Elias, et al. 

1999). 

The primary connection between the innate and adaptive immune systems are dendritic 

cells. The presentation of processed extracellular antigen by dendritic cells, activates CD4 T-

cells. This activation requires two signals: the binding of the major histocompatibility complex 

(MHC) class II to the T-cell receptor (TCR) and co-stimulation by the APC. This co-stimulation 

is done by the binding of CD28 to CD80/86. Together the CD80 and CD86 proteins make up the 

B7 protein on the APC. Studies conducted by Delgado et al. have demonstrated that VIP reduces 

the expression levels of CD80 and CD86, lessening the dendritic cells capacity to activate CD4 

T-cells and acting in an anti-inflammatory manner (Delgado, Sun, et al. 1999).  

Naïve T-cells or Th0 cells, transform into either Th1, Th2, Th17 or Treg, depending on the 

cytokines they are exposed to by the dendritic cell. This is to ensure a proper response to the 

diverse type of pathogens our bodies encounter. Th1 cells function to clear intracellular 

pathogens or cellular immunity. This pro-inflammatory response assists macrophages and 

cytotoxic (CD8+) T-cells, to eliminate host cells infected with intracellular pathogens like 

viruses and/or malignant cells (Yoshimoto et al. 1998). Th2 cells work to clear extracellular 

pathogens like parasites and work with humoral immunity. Th2 response is an anti-inflammatory 

response, the imbalance of which can cause tissue thickening and is linked with allergic diseases. 

The Th2 response activates mast cells and eosinophils and increases mucus production. Both Th1 

and Th2 responses, are self-promoting and their cytokines act in a positive feedback loop, 

promoting more of that response while continuing to inhibit the other. Th17 cells assist in 

autoimmunity and help in the clearance of certain extracellular pathogens. This pro-
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inflammatory subset inhibits the differentiation of T regulatory (Treg) cells (Bettelli et al. 2006). 

Treg cells suppress the immune response, preventing damage to the host, and build tolerance to 

communal microorganisms (Korn et al. 2009). This allows for a symbiotic relationship with the 

microbes that call reside on the human body. 

The Th2 skewing ability of VIP is well documented. Ganea et al. demonstrated both in 

vitro and in vivo that VIP acted to shift cells towards the Th2 lineage (Ganea, Rodriguez, and 

Delgado 2003). To determine the receptor responsible for this shift receptor knockout mice were 

used. Goetzel el al. demonstrated that in mice deficient in the VPAC2 receptor, the Th1 response 

was prominent (Goetzl et al. 2001). In contrast, in CD4 T-cell VPAC2 transgenic mice 

(overexpressing the VPAC2 receptor) by Voice et al., the Th1 response was reduced and the 

immune system of these mice skewed towards the Th2 response. These research studies 

demonstrate the importance of the role of the VPAC2 receptor and its abundance in T-cell 

differentiation. 

The chemotaxis of these Th1 and Th2 T-cells is also affected by VIP. This is not just due 

to the Th2 skewing ability of VIP, but by its effects on dendritic cells. Jiang et al. studied the 

immunoregulatory effects of VIP on chemokines and survivability markers, CXCL10 and 

CCL22. Both of these proteins are secreted by dendritic cells and interact with Th1 (CXCL10 

interacts with CXCR3) and Th2 (CCL22 acts on CCR4) cells. Dendritic cells isolated from the 

spleens of male BALB/c mice were cultured with the VIP protein. Another group of the same 

mice received intraperitoneal injections of VIP, 16 hours after which CXCL10 and CXCR3 

levels were measured by ELISA. VIP was found to down regulate the secretion of CXCL10 and 

increase the secretion of CCL22 both in vivo and ex vivo (Jiang, Jing, and Ganea 2002). The Th2 

skewing effect of VIP, can impact numerous other bodily functions. For instance, Wolf et al. 
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demonstrated that Th2 cells acted as protectors of central nervous system tissue from secondary 

injury (Wolf et al. 2002).  

Th17 cells are a T-cell subset which secretes proinflammatory cytokines. These cells are 

activated by extracellular pathogens. Th17 cells have been implicated in a number of autoimmune 

diseases such as multiple sclerosis, rheumatoid arthritis and type 1 diabetes. In a type 1 diabetes 

mouse model using non-obese diabetic mice (NOD), the intraperitoneal injection of VIP reduced 

the expression profile of Th17 cells and delayed the onset of type 1 diabetes (Jimeno et al. 2010). 

For the autoimmune disorder, rheumatoid arthritis, VIP acts in a therapeutic manner, reducing 

inflammation and decreasing abnormal immune response. Recent research by Jimeno et al. 

suggests this may be due the downregulation of cytokines that enhance the pathogenic 

phenotypes of Th17 cells (Jimeno et al. 2015).  

Understanding the roles that each of the two VIP receptors (VPAC1 and VPAC2) play in 

T cell biology is important for gaining a better understanding of how VIP acts. The role VIP 

plays in T cell morphology is well documented as described in the previous section. Previous 

studies conducted by Dorsam et al. have demonstrated the differential regulation of nearly 350 

gene targets in both resting and activated murine CD4 T-cells by VIP (Dorsam et al. 2010). 

Further analysis of these gene pathways by Steve Wanjara using qRT-PCR demonstrated 

increases in EGFR, APP, ADAM15, Grb7, PAK1 and Snail1 over 24 hours after VIP 

introduction (unpublished data). 

This revelation opens the door to determining which of the two receptors is responsible 

for these changes. To fill this gap in knowledge, this author worked on a research project with 

Travis Van Der Steen (V. D. Steen et al. 2016). Contributions included cAMP analysis of human 

T-cells lines to determine cAMP response from agonists for each receptor. The T-cell lines used 
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included Hut-78 and Molt-4 cells. An epithelial cell line, MCF-7, was also used as a positive 

control. The Hut-78 cell line exclusively expresses VPAC1 mRNA, while Molt-4 cells primarily 

express VPAC2 mRNA as confirmed by qPCR (Xia et al. 1996).  

3.1.5. VIP in asthma 

Asthma is pulmonary disease that affects an estimated 39.5 million Americans, including 

10.5 million children. The innate and the adaptive immune systems work together to protect us 

against a number of respiratory diseases. Some of these diseases, like allergic asthma, are the 

result immune triggers to non-pathogenic antigens like pollen or pet dander. VIP protein is 

plentiful in the respiratory system and is secreted by nerve fibers that innervate both the lungs 

and the arteries around them (Dey, Shannon, and Said 1981). In the respiratory tract, VIP acts as 

a potent airway and pulmonary artery dilator, emerging as a potential treatment for 

cardiopulmonary disorders.  

Szema et al. used VIP knockout mice to gain a better understanding of the role of VIP in 

asthma. They discovered that mice lacking VIP were more susceptible to asthma in comparison 

to their wild type counterparts (Szema et al. 2011). The addition of VIP into tracheobronchial 

smooth muscle resulted in its relaxation and bronchial dilation (Lundberg et al. 1984). It was 

shown to counteract the effects of histamines and assist in allergy relief (Groneberg, Springer, 

and Fischer 2001). VIP knockout mice were shown to have easily triggered bronchospasms with 

high inflammatory cytokine levels in the bronchoalveolar lavage (BAL). Interestingly, the 

intraperitoneal reintroduction of VIP eliminated these phenotypes over a two-week period 

(Szema et al. 2006).  

To better understand the VIP pathway responsible for its effects on the respiratory tract 

receptor knockout mice have been used. Research by Samarasinghe et al. has demonstrated that 
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three days post-allergen challenge, mice lacking the VPAC2 gene have significantly reduced 

eosinophilic response in the BAL. Interestingly, the eosinophils in the tissues, as well as other 

immune cells, were not nearly as effected by the lack of VPAC2 signaling (Samarasinghe, 

Hoselton, and Schuh 2010a). Another research article by Samarasinghe et al. demonstrated the 

importance of VIP in asthmatic response. Here Amali Samarasinghe demonstrated in wild type 

mice via immunohistochemistry (IHC), that within three days following antigen challenge, the 

amount of VIP present in the lungs decreases radically. During this time the eosinophils invade 

the lung and attempt to clear out the antigen (Samarasinghe, Hoselton, and Schuh 2010b). This 

suggests that the presence of VIP acts as a shield, preventing the infiltration of eosinophils into 

the BAL, while its ablation allows for eosinophilic invasion. Figure 39 shows the reduction in 

VIP protein after allergen challenge and an increase in eosinophil numbers in the BAL during 

that time. 
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Figure 40.  The localization of VIP throughout the alveolar epithelium during allergen 

challenge. 

This IHC VIP stain (brown) demonstrates the change in VIP levels after allergic response. 

The three columns represent epithelial tissue, smooth muscle and blood vessels. Reduction in 

VIP levels is seen in all tissue samples on day 3 and returns by day 14. Line graphs of 

eosinophil numbers in BAL follow the opposite pattern with an increase in number at day 3 

and reduction by day 14. Figure from (Samarasinghe, Hoselton, and Schuh 2010b)  
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The reduction in eosinophil numbers in VPAC2 KO mice opens a gap in knowledge. 

Why are there fewer eosinophils present in the BAL of the VPAC2 deficient mice when 

compared to wild type? A hypothesis put forward from this observation suggested this reduction 

may be due to the hinderance of eosinophil production within the bone marrow of VPAC2 KO 

mice. To test this, bone marrow cells from VPAC2 KO and WT mice were obtained and 

differentiated into eosinophils. First published in 2009, Dyer et al. demonstrated different rates of 

eosinophil differentiation in toll like receptor (TLR) 3 knockout mice (Dyer, Percopo, and 

Rosenberg 2009). These experiments were used as guidelines to determine the impact of lack of 

VPAC2 on eosinophil generation. 

3.1.6. Eosinophils and T-cells in IBD and immune cell trafficking 

Eosinophils are distinguishable by large granules held within their cytoplasm and their 

bilobed nucleus (figure 49). These innate immune cells mature in the bone marrow where they 

are differentiated from hematopoietic stem cells (HSCs). HSCs, which give rise to all blood 

cells, differentiate into eosinophils when exposed to certain cytokines, such as IL-5, a system 

which our research group manipulated to create in vitro eosinophils from mouse bone marrow 

cells (3.2.3) (Lampinen et al. 2004). Recent research has pointed to a connection between 

inflammatory bowel diseases (IBD) and eosinophil migration to the gastrointestinal tract. The 

inflammatory process of these diseases involves a number of inflammatory immune cells such as 

eosinophils and T-cells. Patients suffering from IBD present more active eosinophils than 

controls. During IBD remission, these numbers remain high, but the eosinophils present a resting 

phenotype (Lampinen et al. 2005).  

In the bone marrow, eosinophils are derived from CD34+ pluripotent HSCs. Eosinophils 

develop in response to IL-5 and IL-3, after which they are released into the blood stream 
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(Sitkauskiene et al. 2004). A number of chemo attractants induce chemotaxis in eosinophils, such 

as the eotaxin group. Serum analysis of patients suffering from IBD have demonstrated elevated 

levels of eotaxin (Chen et al. 2001; Mir et al. 2002). The expression of these chemo attractants 

and the secretion of IL-5 (some by T-cells and mast cells), which increases during inflammation, 

in the GI tract result in the recruitment of eosinophils to the alimentary canal (Mishra et al. 

1999). Biopsies taken from patients with active IBD found larger numbers of eosinophils 

present, with a larger number degranulated when compared to controls (Garcia-Zepeda et al. 

1996). The explosive degranulation of eosinophils expels cytotoxic granule cationic proteins (for 

example: eosinophil cationic protein, eosinophil peroxidase, and eosinophil-derived neurotoxin) 

which can damage local tissues (Gleich and Adolphson 1986). Attempts at reducing eosinophilic 

response in IBD by using antibodies to IL-5 showed a reduction in intestinal inflammation and 

suggest a possible therapy to counter IBD (Lampinen et al. 2001).  

T-cells which assist in eosinophil recruiting are also actively involved in IBD (Carvalho 

et al. 2003). Recent research has pointed to an increase in the number of CD4+ T-lymphocytes in 

the intestinal walls of patients suffering from IBD. T-cell generation starts with the migration of 

HSCs from the bone marrow to the thymus. Here, T-cells develop specific T-cell markers, such 

as CD3, CD4, or CD8. Through positive selection, which occurs in the thymus cortex, CD4 and 

CD8 cells are allowed to survive. In the medulla of the thymus, negative selection allows for the 

removal of self-reactive T-cells which bind with high affinity to self-antigens (Sprent et al. 

1988). Recent studies have demonstrated the importance of these cells in IBD pathology 

(Zenewicz, Antov, and Flavell 2009). 

The influx of T-cells to inflamed GI tissues suggests a key role in IBD pathogenesis. 

Research by Smids et. al, focused on profiling intestinal T-cells in IBD patients and found higher 
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percentage of CD4+ and Tregs when compared to healthy controls (Smids et al. 2018). These T-

regs for example were also shown to have altered properties in IBD patients (Muzes, Molnar, 

and Sipos 2012). Utilization of animal disease models for IBD, shows an increase in mortality 

when T-cell populations were removed (Kuhl et al. 2002). Similarly, IBD patients who are also 

infected with HIV, and in turn reduce numbers of CD4+ T-cells, demonstrate a reduce 

inflammatory profile compared to controls (Viazis et al. 2010). These reports have resulted in the 

utilization of drugs to target CD4+ T-cell trafficking and reduce cell numbers to manage IBD 

(Mosli, Rivera-Nieves, and Feagan 2014). The intestinal microbiota differs greatly between 

individuals and its composition is greatly dependent on genetics, diet, and the environment. 

Dysregulation of the relationship between the microbiota and the immune system (discussed in 

the previous chapter), plays an important role in determining the immune response during IBD 

(Larmonier et al. 2015). 

3.2. Materials and methods 

3.2.1. Animal cell culture 

Three tissue culture cell lines were used for these experiments all of which were 

purchased from the American Type Culture Collection (ATCC, Manassas, VA). They included, 

Molt-4, Hut-78 and MCF-7 cells. Molt-4 cells are a human T-lymphocyte cell line derived from 

a 19-year-old male patient, and primarily express the VPAC2 receptor mRNA. Hut-78 cells are 

another Homo sapien T lymphocyte cell line, which were derived from a 53-year-old male, and 

solely express the VPAC1 receptor mRNA. The MCF-7 cell line is an epithelial cell like taken 

from the mammary glands of a 69-year-old female. MCF-7 cells express both VPAC1 and 

VPAC2 receptors.  
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These cells were cultured according to ATCC guidelines. Both the Hut-78 and Molt-4 

cells were cultured in 89% Roswell Park Memorial Institute medium (RPMI-1640, GE Life 

Sciences, Pittsburgh, PA), with 10% characterized fetal bovine serum (chFBS) and 1% 

100µg/mL penicillin/streptomycin (penn/strep). During culturing, these non-adherent cells were 

washed off their individual flasks with phosphate buffer solution (PBS) and centrifuged for 5 

minutes at 300 x g. They were then stained with the living cell exclusion dye, trypan blue, 

counted using a hemocytometer and reseeded to continue the culture. Both cell lines were 

cultured twice a week at a concentration of 300,000 cells/mL (M and W), and at 200,000 

cells/mL on Fridays.  

The MCF-7 cells were cultured in ATCC-formulated Eagle's Minimum Essential 

Medium (EMEM, GE Life Sciences, Pittsburgh, PA), also containing 10% chFBS and 1% 

100µg/mL penn/strep. This adherent cell line was cultured three times a week (M, W, and F). 

The cell layer was rinsed with PBS to remove any residual media, and trypsin-EDTA solution is 

added to the flask. After a 5 to 10-minute incubation, the cells were observed to ensure 

dispersion from the flask and centrifuged. These cells were centrifuged at 300 x g for 5 minutes, 

resuspended in fresh EMEM media and reseeded.  

ATCC guidelines were followed for culture conditions and cryopreservation. All three 

cell lines were cultured in an incubator maintained at 37°C with a 95% air and 5% carbon 

dioxide (CO2) atmosphere ratio. Cryopreservation freeze media was composed of 95% complete 

growth media (medium, chFBS and penn/strep) and 5% dimethyl sulfoxide (DMSO), followed 

by storage in liquid nitrogen.  
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3.2.2. cAMP assay 

3.2.2.1. Preparation 

For this experiment, Hut-78, Molt-4 and MCF-7 cells were used. In preparation for the 

cAMP assay, all three cell lines were centrifuged, counted and resuspended into 2 mL of Hank’s 

balanced salt solution (HBSS) buffer (HBSS + 0.5% bovine serum albumin (BSA)) at a 

concentration of 0.5 x 10^6 cells/mL. To each sample 750 µM of isobutylmethylxanthine 

(IBMX), a phosphodiesterase inhibitor, was added to prevent cAMP degradation. The cells were 

then incubated at 37°C for 45 minutes. Seven different sample groups were used for each cell 

type in triplicate. These sample groups included: 

1. HBSS (negative control) 

2. VIP 10^-6 or VIP 10^-10 (test) 

3. VIP 10-28 10^-6 (VIP antagonist) 

4. [Ala2,8,9,11,19,22,24,25,27,28]-VIP (VPAC1 agonist test) 

5. Bay 55-9837 (VPAC2 agonist test) 

6. DMSO (VIP vehicle negative control) 

7. Forskolin (50 uM final concentration) (positive control) 

These samples were incubated at 37°C for 30 minutes in a 24 well plate, before 1 mL of 

0.2 M hydrochloric acid (HCl) was added to each well. The 24 well plate was then placed on a 

shaker for 30 minutes at room temperature. After the thirty minutes, the cells were frozen at -

20°C or kept cool at 4°C before performing the cAMP ELISA. 

3.2.2.2. ELISA 

The Cayman chemical (Ann Arbor, MI) cyclic AMP enzyme-linked immunosorbent 

assay (ELISA) kit was utilized to determine cAMP concentrations within the cultured cells. The 

24 well plate was thawed and the mixture was triturated. The plate was then centrifuged at 1000 
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x g for 10 minutes and the supernatant was used to determine cAMP levels. Eight 1:3 serial 

diluted sample standards were used starting with 750 pmol/mL and ending with 0.3 pmol/mL. 

These standards were used to uncover cAMP levels in each of the test groups. 

3.2.3. Bone-marrow derived eosinophils 

3.2.3.1. Day 0 

The legs from sacrificed mice were isolated with a focus on sterility. The cut was made 

above the head of the femur and at the distal articular surface of the tibia. Once isolated, the tibia 

and the femur were separated, and any tissue remaining and was scraped off. The top and bottom 

of the femur and the tibia where cut, allowing access to the bone marrow inside the tubular 

middle section of the bones. Held by forceps, the bone marrow was flushed out by a needle and 

isolation buffer (PBS with 2% cfFBS and 1 mM EDTA added). Once the redness in the bones 

was no longer visible, the isolation buffer and the cells inside it was passed through a 70 µm 

filter. The media was then centrifuged at 300 x g for 5 minutes. 

Red blood cell removal and cell counts were performed before the bone marrow cells 

were cultured. This was done by removing the media after centrifugation and resuspending the 

pellet in 3 mL of 1x red blood cell (RBC) lysis buffer (eBiosciences ThermoFisher, Waltham, 

MA). This was vortexed and incubated at room temperature with regular hand inversions for 3 

minutes. Forty-seven mL of PBS (1x) was added for a total volume of 50 mL. These 50 mL were 

passed through another 70 µm filter and centrifuged. The pellet was then resuspended in bone 

marrow media (80% RPMI, 20% chFBS, 1% penn/strep, 1% glutamine, 1mM sodium pyruvate 

and 50 µM beta-mercaptoethanol (β-ME). After trituration, the cells were counted and seeded 

into bone marrow media along with 100 ng/mL (1x) stem cell factor (SCF) and 100 ng/mL (1x) 

fms-like tyrosine kinase 3 (FLT-3). This was placed into a 37°C incubator with an atmosphere 
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setting of 5% CO2 and 95% external air. These steps are visualized in figure 40 as shown by 

Madaan et al.. 

3.2.3.2. Day 4, 8, 10, 12 and 14 

Four days after the initial seeding of the bone marrow cells, the cells were centrifuged 

and counted. The cells were removed from the flask and centrifuged at 300 x g for 10 minutes.  

Half of the conditioned media was repurposed for resuspension and reused in the same flask. 

Only on day 8 are the cells moved to a new flask. After counting the cells, they were 

resuspended in half of the total volume of fresh bone marrow media with 2x interleukin-5 (IL-5) 

spiked in. The cells and the new media were added to the conditioned media and incubated for 4 

Figure 41.  Visualized bone marrow isolation protocol. 

Bone marrow isolation steps demonstrated by (Madaan et al. 2014). Each step demonstrates 

the processes of flushing bone to obtain cells for culture.  
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or 2 days. On day 14, the cells were analyzed by flow cytometry and cytospins to ensure 

eosinophil differentiation. The complete protocol is visualized in figures 41 and 42. 

 

 

 

Figure 42.  Bone marrow derived eosinophil generation protocol. 

Steps performed over a 14-day period to obtain eosinophils from bone marrow. 

 

Figure 43.  cAMP ELISA standard curve.Figure 42.  Bone marrow derived eosinophil 

generation protocol. 

Steps performed over a 14-day period to obtain eosinophils from bone marrow. 
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3.2.4. Flow cytometry 

To confirm eosinophil differentiation from bone marrow cells, an anti-sialic acid-binding 

immunoglobulin-like lectin F (Siglec-F) (CD170) -phycoerythrin (PE) and isotype control 

antibodies was used for cellular staining. A total of 30,000 events were counted, with 1 million 

cells resuspended in flow binding buffer (1% BSA and PBS). These cells were incubated with 

their respective antibody, with one cells alone negative control without any antibody, for 30 

minutes at 4°C in the dark to prevent photobleaching. After antibody staining, the cells were 

washed with 3 mL of PBS twice and centrifuged at 300 x g. These cells were resuspended into 

200 µL of binding buffer and analyzed using the BD Accuri C6 Plus (San Jose, CA) flow 

cytometer. 

3.3. Results 

3.3.1. cAMP 

Microarray analysis by the Dorsam laboratory has demonstrated changes in transcriptome 

of activated and resting mouse CD4 T-cells. This revealed that over 530 transcripts were 

modulated by VIP binding (Dorsam et al. 2010). What this study didn’t show, was which 

receptor was responsible for these changes. The two VIP receptors have previously been 

implicated in the chemotaxis of human T cells (Schratzberger et al. 1998). Contrary to this 

finding, the chemotaxis of the Hut-78 cell line, which exclusively express VPAC1 mRNA, are 

repelled by VIP (Xia et al. 1996). This change in cellular motility could be caused by a cAMP 

response due to VIP receptor signaling.  

To discover this, inactivated T-lymphocyte cell lines were used to determine the 

differences in cAMP response between the two VIP receptors. To accomplish this, three cell 

lines, including 2 T-cells and 1 epithelial cell line, were tested. Each cell line was exposed to a 
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concentration of VIP known to elicit the highest cAMP response, along with a VPAC1 agonist 

(V1 in graphs), VPAC2 agonist (V2 in graphs), and positive (Forskolin) and negative controls 

(H2O and DMSO). DMSO is used as a vehicle control for the VIP protein. Forskolin is a tool to 

increase cAMP levels by the direct activation of the adenylyl cyclase enzyme. The standard 

curve generated from one of the ELISA’s is displayed in figure 42 with a linear trend line 

equation of 𝑦 = −0.637 ln 𝑥 + 1.5592 and an r2 values of 0.9961. This r2 value is consistent 

between cAMP assay runs.  

Figures 44, 45 and 46 demonstrate the cAMP changes in each of the three cell lines tested 

with error bars representing SEM values. In the Hut-78 cells, no distinguishable change between 

the different test groups was seen. The Molt-4 cells did demonstrate higher amounts of cAMP 

from the VPAC2 agonist in comparison to the controls but was not statistically significant. To 

remove any concerns over peptide/agonist viability/functionality, the cAMP assay did show an 

increase in cAMP production in MCF-7 cells from VIP, VPAC1 agonist, VPAC2 agonist and 

forskolin. In conclusion the effects of VIP on inactivated T-cells are not statistically significant 

but a slight increase in Molt-4 cells by the VPAC2 agonist is detected. The MCF-7 epithelial cell 

line seems more susceptible to VIP/receptor agonist induced production of cAMP than the T-cell 

lines. 
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Figure 43.  cAMP ELISA standard curve. 

A line graph of known cAMP concentration serial dilutions to determine unknown 

concentrations. Each dot is a plotted point with a plotted trendline with an R2 value of 0.9961.  
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Figure 44.  Changes in cAMP concentration in Hut-78 cells by VIP. 

This bar graph depicts pmol/mL of cAMP levels in the Hut-78 T-cell line which only contains 

VPAC1 receptors. H2O and DMSO are negative controls with forskolin acting as the positive 

control. SEM values are plotted above each bar. 

 

Figure 45.  Effects of VIP signaling on cAMP in Molt-4 cells.Figure 44.  Changes in cAMP 

concentration in Hut-78 cells by VIP. 

This bar graph depicts pmol/mL of cAMP levels in the Hut-78 T-cell line which only contains 

VPAC1 receptors. H2O and DMSO are negative controls with forskolin acting as the positive 

control. SEM values are plotted above each bar. 
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Figure 45.  Effects of VIP signaling on cAMP in Molt-4 cells. 

Bar graphs are representative of cAMP concentration within Molt-4 cells. The small Y-axis 

demonstrates low endogenous cAMP levels. VIP, VPAC2 agonist (V2), and VPAC1 agonist 

(V1) show no significant change over control. Error bars indicate SEM values. 
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Figure 46.  Impact of VIP signaling pathway on MCF-7 epithelial cell line cAMP 

levels. 

MCF7 H2O and DMSO bar graphs demonstrate endogenous cAMP levels and control for 

forskolin respectively. Increases in cAMP are caused by VIP and both receptor agonists with 

forskolin confirming assay functionality. 
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3.3.2. Bone marrow eosinophil differentiation 

To determine the impact of the lack of the VPAC2 receptor on eosinophil differentiation, 

differences in rate of bone marrow eosinophil differentiation were tested using bone marrow 

cells from VPAC2 KO and WT mice. As discussed previously, bone marrow cells were obtained 

from both strains of mice and incubated with cytokines over 14 days. These cells were counted 

during these 14 days to determine changes in differentiation rates. The cells were also visualized 

on a microscope whose pictures are displayed in figure 47. Two different seeding concentrations, 

5 x 106 and 1 x 106 cells/mL were used for the initial seeding of bone marrow cells. Both seeding 

concentrations followed the same culturing protocol.  

The cell count results for 5 x 106 cells/mL from sixteen wild type and twelve knock out 

replicates are displayed in figure 48 with SEM values. Figure 49 shows cell count results from 

nine wild type and three knock out replicates at 1 x 106 cells/mL with SEM values. The p-values 

between the two strains were not statistically different for either initial seeding concentration, for 

any of the five days where the cells were counted. The 5 x 106 cells/mL flasks reduced in total 

cell number over the 14 days and both strains seemed to change numbers in a similar manner. 

The 1 x 106 cells/mL initial seed flasks, seemed to increase in total cell number in the middle of 

the 14-day study and reduced to about half of the initial seeding concentration by day 14. 

Analysis of this data suggests that the rate of in vitro differentiation of eosinophils from bone 

marrow precursor cells is not different between the two strains.  
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Figure 47.  Changes in cell density during the 14-day differentiation protocol. 

Microscopy images of bone marrow cells over the completion of the eosinophil generation 

protocol. Changing flasks, as discussed in figure 41 removes a large number of adherent cells. 

Pictures were taken after completion of steps per day. 



 

148 

 

 

 

 

0 4 8
1
0

1
2

1
4

0

11 0 0 7

21 0 0 7

31 0 0 7

E o s in o p h il d if fe re n t ia t io n  w ith  5 E 6  c e lls /m L

D a y s

T
o

ta
l 

c
e

ll
 n

u
m

b
e

r

W T

V P A C 2  K O

 

 

 

 

 

Figure 48.  Eosinophil generation from bone marrow with 25 million seeded cells in 5 

mL. 

This bar graph depicts cell counts over the 14-day protocol. Black bars are WT samples and 

gray bars are VPAC2 KO samples. Error bars depict SEM values. 
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Figure 49.  Changes in eosinophil numbers over 14 days when seeded at 1 x106 

cells/mL. 

Cell number differences between WT (black) and VPAC2 (gray) differentiation are depicted 

as bar graphs. 
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3.3.3. Eosinophil differentiation verification 

Cytospins and flow cytometry were used to verify that the seeded bone marrow cells 

indeed differentiated into eosinophils. These tests were run on day 14 cells of the experiment. 

The cytospun slides were stained with hematoxylin and eosin (H&E) and viewed on a 

microscope. Figure 50 demonstrates an example of the cytospin results obtained on day 14. Flow 

cytometry experiments were conducted using the BD Accuri C6 with an anti-SIGLEC-F mouse 

antibody used to determine eosinophilic differentiation. Figure 51 is demonstrating the shift in 

SIGLEC-F expression when compared to isotype control for each sample. In this figure a shift of 

96.3% was seen, suggesting a highly enriched eosinophil population. For most of the eosinophil 

differentiation runs, a greater than 90% shift was seen when compared to isotype control. These 

results suggest that although a difference in eosinophil number is not seen, the cells seeded 

initially do become eosinophils by day 14. 
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Figure 50.  Cytospin verification of bone marrow derived eosinophils. 

Changes in bone marrow cell morphology after 14 days. This picture is a cytospin of the cells 

remaining on day 14 stained with H&E stain. The purple bilobed nuclei are characteristic of 

eosinophils. 



 

152 

  

Figure 51.  Flow cytometry analysis of Siglec-F PE expression levels on day 14. 

Utilization of the mouse anti-Siglec-F antibody conjugated to PE in comparison to isotype 

control for both WT and VPAC2 KO samples. A shift of nearly 95% is seen over isotype for 

both mouse genotypes. This is a representative of flow analysis completed on all eosinophil 

differentiation samples.  

 

Siglec-F PE                  


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3.4. Discussion 

3.4.1. cAMP assay 

One of the major finding of this cAMP study was the diminutive cAMP produced by VIP 

signaling for the two human T-cell lines, Hut-78 and Molt-4. The change in cAMP was 

indiscernible in the Hut-78 cell line. Neither VIP or the two receptor agonists created significant 

change in cAMP levels over H2O and DMSO. Previous research by Xia et al. has demonstrated 

that the Hut-78 cell line expresses low levels of VPAC1, which may be the reason that no 

significant cAMP changes were detected (Xia et al. 1996). A similar trend was seen in the Molt-

4 cells, where cAMP levels did not significantly change between the experimental vs control 

groups. As previously reported by Summers et al., the Molt-4 cells only express the VPAC2 

receptor (Summers et al. 2003). A slight upwards trend was detected with the addition of the 

Bay-55-9837 VPAC2 agonist, which seems logical as only the VPAC2 receptor is expressed on 

Molt-4 cells. 

This was confirmed by microarray analysis conducted on these two cell lines by Travis 

Van Der Steen, which showed no changes in gene expression after exposure to VIP (V. D. Steen 

et al. 2016). QRT-PCR analysis by Steve Wanjara with assistance from myself, has demonstrated 

that in mouse CD4 T-cells, the addition of VIP upregulates mRNA levels of an EGFR-pathway 

(currently unpublished data). This pathway was not upregulated when the same analysis was 

done using donor human blood isolated CD4 T-cells. While this makes it difficult to understand 

which receptor is responsible for the chemotactic effects of VIP on these cells, it does tell us that 

VIP performs different functions between human and mouse CD4 T-cells. 

Interestingly, the MCF-7 epithelial cell line demonstrated nearly a 20-fold increase in 

cAMP concentration when exposed to VIP. These cells also responded to both receptor agonists 
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which was not seen in either of the T-cell lines. Previous research with these cells has shown that 

the addition of VIP, inhibits the growth of this breast cancer line (Moody et al. 2002). The drastic 

increase in cAMP in this cell line when compared to the T-cell lines may suggest a greater role 

of VIP in the epithelia than in the immune system. Future studies can include the utilization of 

other T-cell lines. A previous publication by Dorsam et al. contains a comprehensive list of VIP 

receptor expression in human and mouse T-cell lines (Dorsam et al. 2011). This allows for the 

utilization of other lines such as H9, which exclusively expresses the VPAC1 receptor (Xia et al. 

1996), and Sup T1s, which solely express VPAC2 (Goursaud et al. 2005). Also, the utilization of 

CD4 T-cells from VPAC1 and VPAC2 knockout mice, could answer the question as to which 

receptor is responsible for changes in the mouse CD4 T-cells. Obtaining cells from knockout 

mice would allow for the use of just VIP and remove the agonists from future experiments. qRT-

PCR analysis of knockout CD4 T-cells would also answer the question posed by Steve 

Wanjara’s research as to which receptor is altering the EGFR pathway. 

3.4.2. Eosinophil differentiation 

The results of the 14-day differentiation study from donor bone marrow cells tell us that 

between mice lacking VPAC2 and their WT counterparts, there are no significant changes in the 

rate of eosinophil differentiation. This lack of change was observed in both 1 x 106 cells/mL and 

5 x 106 cells/mL concentrations. Interestingly, the slope of the numbers of cells over the 14 days 

differed between these two concentrations. In the 5 x 106 cells/mL experiment a large number of 

cells died off within the first four days, with a slight U-shaped decline over the remaining ten 

days. There was a trend towards an increase in day 14 in VPAC2KO, suggesting that perhaps if 

the experiment was expanded into more days a difference could be visualized.  



 

155 

In the 1 x 106 cells/mL cellular concentration, there was cell death between days 0 and 4 

as well, but not as great a change in total number as in the 5 x 106 cells/mL. Over the remaining 

ten days of the experiment an initial increase in total cell number for both strains was observed, 

with a decrease towards the end. As previously mentioned for 5 x 106 cells/mL, on day 14 of the 

1 x 106 cells/mL experiment, a large margin of error for the VPAC2KO mice with a trend 

towards an increase in that population over WT, was observed. An expansion of the experimental 

days may result in a significant change over time.  

Analysis of cytospins confirmed that the cells observed on day 14 of the experiments 

were indeed eosinophils. The cytospin pictures were very similar to those published by Dyer et 

al. (Dyer et al. 2008) confirming the change from bone marrow progenitors to eosinophils. The 

sickle shaped nucleus of the cells is a hallmark of eosinophils, with pink spots depicting the 

small granules within the eosinophil’s cytoplasm which was observed in bone marrow derived 

eosinophils from both strains. Flow cytometry analysis confirmed the cytospin analysis by using 

Siglec-F antibody against the derived cells. An average shift of 95% for the Siglec-F receptor 

was seen in both WT and VPAC2KO strains throughout the numerous runs. Although Dyer et al. 

did not publish the numerical percent shifts over isotype control, the visual change in Siglec-F 

decades observed for both strains is extremely similar to ours (Dyer et al. 2008).  

This lack in significance of eosinophil differentiation was similar between both strains, 

suggesting that perhaps there is no difference in the ability of stem cell progenitors of either 

strain to differentiate into eosinophils. The total number of these stem cells between VPAC2KO 

and WT may also be similar. A possible explanation for the difference in eosinophilic response 

to fungus induced allergic asthma in the VPAC2 knockout as reported by Samarasinghe et al 

may be differences in IL-5 levels in either mouse strain (Samarasinghe, Hoselton, and Schuh 
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2010a). Preliminary data gathered by myself using a proteome profiler (R&D Systems, 

Minneapolis, MN) has uncovered a fold increase of 2.54 in serum IL-5 levels, which is a major 

regulator of eosinophilic endurance and function. IL-5 ELISA work needs to be conducted to 

confirm the validity of this preliminary data and hypothesis. Changes in the rate of 

differentiation have been published in other knockout mouse models such as miR-223 deficient 

mice reported by Lu et al. (Lu et al. 2013) and CCR3 deficient mice published by Sturm et al. 

(Sturm et al. 2013). Changes in rate of eosinophil growth in the BALB/c mouse strain has been 

demonstrated to be much faster when compared to the C57 BL/6 linage used in our laboratory 

(Dyer et al. 2008). 

Future aims to explain the delayed arrival of eosinophils in the BAL of VPAC2KO mice 

include, the chemotactic capabilities of VIP on eosinophils and the blunted infiltrabilities of 

eosinophils in VPAC2KO mice. This could involve analysis of the degranulability of eosinophils 

for both strains. The addition of VPAC1, VIP and CRTH2 knockout mice to these experiments 

could shed light the functions of VIP and its other receptor. Although eosinophils contain neither 

VPAC1 or VPAC2 receptors, research by El-Shazly et al. has uncovered the association of VIP 

and the CRTH2 receptor (El-Shazly et al. 2013). It seems this prostaglandin-D2 (PGD2) receptor 

(CRTH2) binds VIP (also secreted in an autocrine fashion by eosinophils) and induces 

eosinophilic chemotaxis (eosinophilotactis) at levels just below eotaxin, the benchmark for 

eosinophil chemotaxis (Rothenberg et al. 1996). Taking these knockouts through the allergic 

asthma model could help better understand how these proteins affect eosinophil function. 
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4. ILLUMINATE-MIRNA: PARADIGM FOR HIGH-THROUGHPUT, LOW-COST, AND 

SENSITIVE MIRNA DETECTION IN SERUM SAMPLES AT POINT-OF-CARE 

SETTINGS 

4.1. Introduction 

First discovered in the 1990’s, microRNAs (miRNA) are a class of small, non-coding 

RNA molecules that are involved in translational gene regulation. These non-coding RNAs are 

found in most eukaryotes and account for nearly 5 % of the human genome. Since their 

discovery, researchers have uncovered a great deal about the life cycle of miRNAs, of which this 

chapter provides a brief overview. Mature miRNA molecules bind messenger RNA (mRNA) and 

prevent the translation of mRNA into protein. MiRNAs have also been implicated in various 

stages of cancer progression. The changes in profile expression can be used as cancer biomarkers 

for various tumor types.  

There are many different classifications for small, non-coding RNA molecules, such as 

small interfering RNA (siRNA), small nucleolar RNA (snoRNA), ribosomal RNA (rRNA) and 

micro RNA (miRNA). Each classification describes the function of that individual group of 

small RNA molecules. Between these small RNA molecules are arbitrary distinctions but no 

unified agreement upon classification or differentiation (Li and Liu 2011). This results in some 

small RNA molecules being classified into multiple categories based upon the researcher’s 

discretion. Ribosomal RNA (rRNA) for instance, is a component of the ribosome, which is 

approximately 60% RNA by weight and is crucial for protein synthesis as it acts as the 

enzymatic catalyst for peptide bond formation inside the cell. Small nucleolar RNAs act as 

guides for other RNA molecules (Kiss 2001). For example, the snR30 snoRNA was found by 

Lemay et al. to be essential for the 18S ribosome formation in yeast cells (Lemay et al. 2011). 
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SiRNA are similar to miRNA in size and operate within similar pathways. Discovered by 

Andrew Fire and Craig Mello, whom received the Nobel Prize for this discovery (Fire and Mello 

2006), siRNA interfere with specific gene function and expression by mRNA degradation 

(Yoshizawa et al. 2015). 

MiRNAs, the focus of this research, function in inhibiting mRNA directed protein 

translation. Although similar to other small non-coding RNA molecules, miRNAs form hairpin 

loops upon biosynthesis by folding upon themselves due to intramolecular complementary 

sequences. The first miRNA to be discovered was lin-4, by Lee et al. in 1993. Lin-4 is essential 

in the postembryonic development of the transparent nematode (roundworm) known as C. 

elegans (Lee, Feinbaum, and Ambros 1993). So far, we know that a majority of miRNAs are 

transcribed by RNA polymerase II and a few by RNA polymerase III (Lee et al. 2004). The 

miRNAs transcribed by RNA polymerase III are critical for the regulation of the mammalian cell 

cycle, and the cell’s growth and maintenance (Goodfellow and White 2007). Although the bulk 

of miRNAs function within the cytoplasm, some extracellular miRNAs are found in carriers, 

such as exosomes. Known as circulating microRNA, these molecules are found in whole blood 

and plasma or serum. These are found in exosomes, which are used to deliver miRNAs to nearby 

tissues and cells (Yeh et al. 2015). 

4.1.1. MicroRNA (miRNA) biosynthesis 

RNA polymerase II or III transcribe most eukaryotic microRNA genes, generating a 

primary transcript or pri-microRNA sequence (Borchert, Lanier, and Davidson 2006). After 

transcription, the pri-microRNA sequence folds into a stem loop structure with numerous 

unpaired nucleotide sequences throughout the double strand (visualized in figure 51) (Cramer 

2004). This pri-microRNA is then processed by Drosha (called the microprocessor) and DGCR8 
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(Denli et al. 2004). These two proteins form a complex known as the microprocessor complex, 

which cleaves the 5’ and 3’ ends of the pri-microRNA, releasing a 60 to 70 nucleotide sequence 

known as pre-microRNA (Hutvagner et al. 2001). The pre-microRNA is then recognized by a 

nuclear export factor known as Exportin-5 (Exp5) (Bohnsack, Czaplinski, and Gorlich 2004). 

This Exp5 protein mediates the export of the pre-microRNA molecules from the nucleus and into 

the cytoplasm (Yi et al. 2003). These steps are presented in figure 51. 

In the cytoplasm, the pre-microRNA molecules encounter Dicer, an endonuclease that is 

present in all eukaryotes (Zhang et al. 2002). The product of this Dicer enzyme is known as the 

miR:miR*duplex. This duplex carries two strands, one called the guide strand and the other 

called the passenger strand (Lau et al. 2001; Schwarz et al. 2003). The miR:miR*duplex carries 

two nucleotide 3’ overhangs which are complementary (Rand et al. 2005). The Argonaut enzyme 

grabs the duplex and removes the miR*passenger strand leaving the guide strand with its 

nucleotides exposed. Once the miR*passenger strand is removed, the Argonaut protein and its 

guide strand are known as the miRISC complex (Matranga et al. 2005). This complex then 

searches for complementary RNA or DNA sequence for gene silencing. Once a sequence has 

been found, transcription/translation is repressed and the mRNA sequence is destabilized (Zeng, 

Yi, and Cullen 2003). While recent research has determined how miRNAs are generated, their 

regulation and expression still remains largely unknown (Ha and Kim 2014; He and Hannon 

2004; Hayes, Peruzzi, and Lawler 2014).  
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Figure 52.  Nuclear miRNA biosynthesis steps. 

MicroRNA genes are transcribed by RNA polymerase II or III (cut blue oval) into (70-80 bp) 

Pri-microRNA, where intro-complementary regions cause the molecule to take on a stem-

loop structure. The Drosha and DGCR8 enzymes cleave its 5’ and 3’ ends generating Pre-

microRNA. The Exportion-5 protein present in the nuclear membrane transports the Pre-

microRNA into the cytoplasm.   

Stem Loop 
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Figure 53.  Cytoplasmic modifications and protein translation silencing by miRNA. 

In the cytoplasm, the ends of the pre-microRNA are cleaved by the Dicer enzyme, which 

leaves the miR:miR*duplex with overhangs. This duplex is loaded into the Argonaut protein 

which removes the miR*passenger strand, leaving the Argonaut protein with the miR guide 

strand. This is known as the miRISC complex, which binds complementary DNA or RNA 

sequences silencing translation. 
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4.1.2. MicroRNAs as disease biomarkers 

Over the past decade, researchers have found a link between miRNA expression profiles 

and disease states in the body (Ebert and Sharp 2012). The link between microRNA 

dysregulation and cancer was first established by Calin et. al who demonstrated that more than 

half of leukemia patients suffered from the deletion of a microRNA gene region (Calin et al. 

2002). Since then, the role of microRNA’s in the regulation of oncogenes and tumor suppressors 

has been better established (Stahlhut and Slack 2013). A database linking known microRNAs to 

their cancer targets, known as the Tarbase was established by Sethupathy et al (Sethupathy, 

Corda, and Hatzigeorgiou 2006). MicroRNA-34A for instance, was shown to inhibit the 

metastasis of human gastric cancer, where its expression was down-regulated (Peng et al. 2014).. 

The let-7 microRNA family has also been implicated in cancers and neurological 

diseases. Research into this thirteen-member family has demonstrated a decline in let-7 

expression in lung cancer (Takamizawa et al. 2004), lymphoma and sarcoma (O'Hara et al. 2009) 

and ovarian cancer (Dahiya et al. 2008). A more comprehensive list of cancers affected, and the 

Let-7 family members involved are listed in table 9 below and on the next page. 

Table 9. Let-7 expression levels in different human cancers. 

Family member Cancer type 

 Downregulated ⇊ Up-regulated ⮅ 

7a Breast  

 Lung  

 Melanoma  

 Pancreatic  

 Primary pigmented nodular 

adrenocortical disease (PPNAD) 

 

  Lung 

  Lymphoma 

  Ovarian 



 

163 

Table 9. Let-7 expression levels in different human cancers (continued). 

Family member Cancer type 

 Downregulated ⇊ Up-regulated ⮅ 

7b Childhood acute lymphoblastic 

leukemia (ALL) 

 

 Melanoma  

 Ovarian  

 PPNAD  

 Prostate  

 Retinoblastoma  

  Gastrointestinal stromal 

tumor (GIST) 

  Lymphoma 

7c Burkitt lymphoma  

 Lung  

 PPNAD  

 Prostate  

7d Head and neck squamous cell 

carcinoma (HNSCC) 

 

 Ovarian  

 Prostate  

7e Ovarian  

 Prostate  

7f Lung  

 Ovarian  

 Prostate  

 Sarcoma  

  Breast 

7g Lung  

 PPNAD  

 Prostate  

7i Ovarian  

 Prostate  

  HNSCC 

  Lymphoma 

Modified table compiled by and obtained from (Boyerinas et al. 2010) 
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As reported by Wu et al., the precise expression levels of let-7 are important for tumor 

detection and suppression. These microRNAs are also correlated with numerous oncogenic 

pathways. The overexpression of let-7 microRNAs can result in liver damage, an increased 

susceptibility to hepatic cancers and obstruction of liver regeneration (Wu, Nguyen, et al. 2015). 

This family has also been implicated in the myelination of nerves. Research by Gökbuget et al. 

demonstrated that the suppression of notch1 by let-7 was essential for proper myelination of 

Schwann cells. In mice with reduced levels of let-7 resulted in a demyelination 

phenotype(Gokbuget et al. 2015).  

The importance of these microRNA’s in disease regulation also lends to their importance 

as biomarkers. Over the past few years, researchers have been pursuing numerous different 

methods to quantify microRNA levels in serum as a non-invasive strategy for early diagnosis. 

An approach by Liu et al. utilized magnetic microparticles with complimentary sequences to 

bind target microRNA’s. The researchers claimed that the device was able to detect as low as 1 

fmol of target microRNA in binding buffer (Liu, Zhou, and Xing 2014). Other techniques, such 

as one from the RIKEN biological laboratory have also been published. These engineers utilized 

complementary DNA strands bound to glass slides to capture desired microRNA’s. Secondary 

antibodies with fluorophores were then added to allow for microRNA detection. These 

researchers were able to detect a minimum of 0.5 pM of microRNA sample (Arata, Hosokawa, 

and Maeda 2014). 

In addition to the utilization of hybridization detection methods that are non-enzymatic in 

nature, the gold standard for detection is still the enzymatic based quantitative reverse 

transcription polymerase chain reaction (qRT-PCR) (Costa, Leitao, and Enguita 2014). Due to 

the short length of microRNA samples, additional strategies have been necessary to successfully 
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use qRT-PCR. One of these includes the utilization of stem-loop (SL) primers. The SL primer 

allows for superior binding specificity to short nucleotide sequences and easier 

access/amplification by the taq polymerase (Tong et al. 2015). Another is the improved isolation 

of microRNAs from exosomes. Research by Gallo et al. has demonstrated that in serum a 

majority of detectable microRNAs are tightly associated with exosomes. To demonstrate this, 

serum samples were separated into two fractions, exosome-depleted serum fraction and serum 

containing exosomes fraction. qRT-PCR reactions conducted on both groups showed that the 

exosome intact group contained significantly greater amounts of miRNA than the exosome-

depleted samples (Gallo et al. 2012). 

A fast and accurate detection platform of microRNAs is important for early detection in 

an effort to save lives. However, qRT-PCR reactions are costly and require time (hours/days) to 

detect specific microRNA’s in human serum. In order to provide accurate results in point-of-care 

settings such as hospitals, more rapid and cost-effective methods are required. To fill this void, 

Keerthi Nawarathna Ph.D., an assistant professor at NDSU in the Department of Electrical 

Engineering, alongside his graduate student Logeeshan Velmanickam, developed a novel high-

throughput, low-cost microRNA detection platform called iLluminate-miRNA. A collaborative 

effort between the Nawarathna and the Dorsam labs was initiated for our lab’s expertise in qRT-

PCR technology. My contributions included conducting miRNA isolation, running parallel qRT-

PCR experiments, teaching Logeeshan molecular biology techniques, weekly lab meetings, and 

assistance with writing the manuscript currently under review.  
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4.2. Materials and methods 

4.2.1. Micro RNA isolation 

For isolation of miRNAs from serum and water, the Sigma-Aldrich mirPremier 

microRNA Isolation Column Chromatography kit (St. Louis, MO) was used. Let-7b miRNA (5’ 

-UGAGGUAGUAGGUUGUGUGGUU - 3’) was purchased from the Midland Certified Reagent 

Company (Midland, TX). Let-7b miRNA was spiked into water starting at 1 nM and 10 

subsequent ¼ serial dilutions were performed ending with 11.44 fM. Let-7b was also spiked into 

human serum obtained from Innovate Research (Novi, MI) at concentrations ranging from 12 

nM to 120 fM. Both serum and water samples were also spiked with Let-7c miRNA (5’ -

UGAGGUAGUAGGUUGUAUGGUU - 3’), which differs from Let-7b by a single nucleotide 

change, and a random scrambled miRNA sequence (5’ – UGAGGUAGUAGGUUGUAUGGUU 

– 3’), both purchased from Midland Certified Reagent Company (Midland, TX), to assess 

specificity of the new iLluminate-miRNA detection platform. 

The provided Sigma-Aldrich protocol (2017) was followed for isolation. Each sample 

concentration was placed in a 2 mL microcentrifuge tube with 700 µL of lysis buffer. Samples 

were incubated for 5 minutes with gentle rocking followed by centrifugation at 16,000 x g for 5 

minutes. The supernatant was collected into a fresh tube, diluted with equal volume of 100% 

ethanol, mixed by pipetting and applied to a binding column. Samples were centrifuged at 

16,000 x g for 5 minutes and after decanting the flow-through, a second 100% ethanol solution 

was applied to the column and centrifuged as above. A third centrifugation step was performed 

to dry the column, followed by the addition of 50 µL of elution buffer and centrifugation 

repeated, to eluate purified miRNA. This was stored at -20°C until the first strand cDNA 

synthesis step was performed. 
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4.2.2. First strand cDNA synthesis 

The Agilent Technologies (Santa Clara, CA) miRNA 1st-strand cDNA Synthesis Kit was 

used. First, a polyadenylation reaction was catalyzed by E. coli poly A polymerase and 

performed to add poly(A) tail to isolated miRNA. Complementary DNA was then synthesized 

from the miRNA template molecules using a poly-T primer, for reverse transcription of newly 

generated poly-A tail-miRNA molecules. Samples were placed into a thermocycler for the 

following incubation steps. 

Polyadenylation 

1. 37°C for 30 minutes 

2. 95°C for 5 minutes 

3. Immediate transfer to -20°C for storage or cDNA synthesis 

cDNA synthesis 

1. 55°C for 5 minutes 

2. 25°C for 15 minutes 

3. 42°C for 30 minutes 

4. 95°C for 5 minutes 

5. Stored at -20°C 

4.2.3. qRT-PCR 

Analysis of miRNA was performed by reverse transcription PCR (qRT-PCR) analysis 

utilizing the Aglient miRNA QPCR Master Mix Kit and using cDNA generated from purified 

miRNA samples treated with poly-A polymerase. This kit uses the EvaGreen® dye to analyze 

double-stranded DNA amplification. The miRNA qRT-PCR master mix, a universal reverse 

primer and a Let-7b specific primer were added together to form a master mix, which was added 

to each individual well of a 96-well plate. Complementary DNA samples (4 µL) were added to 
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appropriate wells and the Bio-rad CFX96 Real-Time PCR instrument was used to analyze the 

samples. The incubation steps of the machine were as follows: 

1. 95°C for 10 min 

2. 40 cycles of 95°C for 10 seconds 

3. 60°C for 15 seconds. 

4. Go to 2, 40 x 

5. Melt Curve 

a. 65°C to 95°C, in increments of 0.5°C 

4.2.4. Percent recovery calculations 

Ct values for each diluted sample were subtracted from the lowest Ct value detected in 

water or serum (ΔCt). Fold-differences for each diluted sample were calculated by using: 2(-ΔCt), 

and % recoveries were calculated in an identical manner as the iLluminate-miRNA (Table 10). 

Briefly, fold-differences for each diluted sample (numerator) were divided by its maximum at 12 

nM in water (denominator) and normalized by multiplying by the dilution factor. 

4.2.5. iLluminate-miRNA miRNA detection 

The iLluminate-miRNA platform uses miRNA duplexes in 0.01x TE buffer, containing 

isolated miRNA samples hybridized to their complementary DNA. The fluorescently labeled 

(Fluoresce) probes are added at 10x excess. This mixture is heated up to 95°C for 5 minutes and 

then allowed to cool slowly at room temperature for an hour to allow for complete hybridization. 

These samples are then plated onto a T-shaped interdigitated array of microelectrodes (TIAM) 

electrode array. Evaporation of the buffer increases the concentration of the miRNA/probe 

duplexes within the TIAM electrode array. This focusses the miRNA/probe duplexes into semi-

circle shaped nano-gaps, or “hotspots” within the array where the electric field is enhanced 

(Figure 54). The application of a 1000 kHz non-uniform electric field, or dielectrophoresis, 
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simultaneously pushes single stranded DNA molecules away while attracting double stranded 

complexes towards the nano-gaps on the TIAM array (Velmanickam, Laudenbach, and 

Nawarathna 2016). The size of the nano-gaps also allows for fluorescence enhancement. The 

nano-gaps are smaller than the emission wavelength of Fluorescein (512 nm in water), causing 

the continuous excitement of the fluorophore up to a billion-fold (Velmanickam et al. 2017). 

After hybridization this process took ten minutes for completion. After 10 minutes, images were 

obtained using fluorescent microscopy and enhancement intensity was calculated using the 

MATLAB software (Natick, MA) conducted by professor Nawarathna’s laboratory.  
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Figure 54.  Experimental strategy for miRNA detection method testing. 

This outline describes the scheme used to compare qRT-PCR to iLluminate-miRNA (DEP) 

technologies where Let-7b was spiked into water or human serum and subsequent serial 

dilutions. Eluted miRNA samples were split between the two methods for validation. Time 

required for the completion of iLluminate-miRNA was significantly lower than qRT-PCR as 

indicated. 
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Figure 55.  Nanogap structure and fluorescent enhancement due to nanogap size.  

A scanning electron microscopy picture of the TIAM electrode array discussed in section 

4.2.5 shows the Y and I shaped structures. The light gray color represents the electrode and 

the dark gray color represents the glass slide background. Magnification of the array displays 

the small nanogaps or “hotspots” present within the gold array. An artistic rendition of how 

miRNA-DNA probe duplexes with attached fluorescein are positioned within the nanogaps is 

depicted. The size of the nanogaps in comparison to the excitation wavelength allows for the 

enhancement of the fluorescent signal. 

Y- structure 

I- structure 
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4.3. Results 

4.3.1. MicroRNA detection 

We present proof-of-concept data showing that the iLluminate-miRNA method was able 

to detect Let-7b miRNA in a quantitative and specific manner. To this end, we used water and 

human serum solutions, which were spiked with known concentrations of Let-7b miRNA. 

Samples were divided equally after column chromatography, measured by the iLluminate-

miRNA and compared to qRT-PCR measurements. It is worth noting the rapid measurement 

time and cost-effective nature of the iLluminate-miRNA method relative to qRT-PCR (Figure 

53). This study confirmed that both the iLluminate-miRNA method and qRT-PCR were effective 

at measuring purified Let-7b miRNA (range: 0.0114 pM–12 nM) spiked into water (Figure 55 

and Table 10) or human serum (Figure 56 and Table 10). 

However, comparison of the percent recoveries of spiked-in Let-7b miRNA to a 100% 

predicted recovery (represented as a green line in figures 55 and 56), clearly showed that the 

iLluminate-miRNA method was more accurate and precise at all spiked-in Let-7b miRNA 

concentrations using both water and human serum as solvents. Compared to qRT-PCR, the 

iLluminate-miRNA method resulted in smaller standard errors of the mean (SEM) for Let-7b 

miRNA concentrations (Table 10), especially in water. To ensure specificity, figure 57 illustrates 

the detection of 12 nM of Let-7b miRNA, but not a randomly generated miRNA (22mer called 

scrambled – scr.), for the iLluminate-miRNA technique when spiked into water (set arbitrarily to 

100%) or human serum (52%), respectively.  

The reduction in percent recovery in serum versus water for the same Let-7b miRNA (12 

nM) might not be directly due to the iLluminate-miRNA detection method per se, but rather 

because of a reduction in Let-7b miRNA yield during column chromatography. Lastly, the 
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iLluminate-miRNA method was nearly 10- and 660-fold more sensitive at detecting 12 nM 

spiked-in Let-7b miRNA compared to qRT-PCR in water or serum (Figure 58). Table 11 

summarizes the overall means, +/- SEM and p values for the two methods. These results support 

our conclusion that our miRNA detection technique can successfully quantitate Let-7b miRNA 

molecules after purification from water or biological fluids in an inexpensive, rapid, accurate, 

and precise manner that outperforms the current gold-standard approach of qRT-PCR. 

 

Figure 56.  Let-7b recovery in water sample. 

This line graph depicts the percent recovery of spiked in Let-7b for both iLluminate-miRNA 

(DEP) (black line) and qRT-PCR (red line) in comparison to the predicted value. The 

predicted values were based upon a 100% recovery rate at the 12nM concentration.  



 

174 

 

 

 

 

 

 

 

Figure 57.  Percent recovery of Let-7b spiked into human serum samples. 

Human serum samples spiked in with various concentrations of Let-7b miRNA was detected 

by both iLluminate-miRNA (DEP) (black line) and qRT-PCR (red line). The line graph 

shows the percent recovery values of Let-7b for both techniques compared to 100% predicted 

(green line), based on 100% recovery at 12nM concentration. All subsequent calculations 

were based on this maximum % recovery value. 



 

175 

 

 

S c r . W a te r S e r u m S c r . W A T ER S e r u m

0

5 0

1 0 0

1 5 0

%
 R

e
c

o
v

e
r
y

N D

L e t -7 b

N D

D E P q R T -P C R

N D

 

 

 

 

 

Figure 58.  Scrambled versus Let-7b detection in water and serum by both iLluminate-

miRNA and qRT-PCR platforms. 

Scrambled miRNA (12 nM) or miRNA Let-7b (12 nM) were spiked into water or human 

serum. Samples were subsequently purified by column chromatography and measured by 

iLluminate-miRNA or qRT-PCR. Data is presented as a bar graph with % recovery means +/- 

SEM from 3 independent experiments. The abbreviation of “ND” stands for “not detected.” 
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Figure 59.  Direct percent recovery comparisons at 12nM in water and serum. 

Direct relative comparisons of % recovery calculations at 12 nM are presented in a bar graph 

+/- SEM from 3-4 independent experiments. The fold-difference in % recovery value for 

iLluminate-miRNA versus qRT-PCR is placed above the appropriate bar for both water and 

human serum solvents. 
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Table 11. Comparison to predicted percent recovery to 100%. 

 

4.4. Discussion 

A major finding of this study is the validation of the iLluminate-miRNA platform in 

spiked-in miRNA detection from both water and human serum samples. These results 

demonstrated that while qRT-PCR is able to detect known microRNA concentrations in water, it 

was not able to accurately detect miRNA Let-7b in human serum. The iLluminate-miRNA 

technology on the other hand was able to detect microRNA levels in both solvents and with 

much greater accuracy and precision than qRT-PCR. The ability to accurately measure 

microRNA levels in human serum can greatly improve cancer and other disease diagnosis. The 

sensitivity, quickness, and low cost of this early-detection platform may allow for earlier 

diagnosis of cancers in the future. 

Comparison of the qRT-PCR data to the predicted percent recovery shows a statistical 

loss of Let-7b miRNA in both water and serum sample groups. In water the percent recovered 

(figure 55) decreases gradually, whereas in serum the highest and lowest Let-7b starting 

concentrations are nearly indistinguishable. This could be associated with loss in column 

chromatography, but the higher percent recovery for the iLluminate-miRNA system suggests the 

column was able to isolate more miRNA than recovered. For the qRT-PCR experiments we see a 

steady decline in detection as the sample is diluted with a 0.99 R2 value. This tell us that the 

Water 

Procedure Mean SEM P value Significance 

qRT-PCR 16.85 9.106 0.001 **** 

iLluminate-miRNA 167.3 35.89 0.155 ns 

Serum 

Procedure Mean SEM P value Significance 

qRT-PCR 0.01459 0.01311 0.0001 **** 

iLluminate-miRNA 9.588 8.661 0.0003 *** 



 

179 

dilution of the microRNA samples was well completed with high accuracy. The results show 

nearly a 2-fold Cq change per 1 to 4 dilution confirming the doubling amplification of the target 

cDNA per Cq. To better visualize the data the y-axis was set to 41 – the average Cq to generate a 

downwards slope similar to that observed with the iLluminate-miRNA platform. Many 

researchers set a cutoff for Cq at 35, which was not done for this experiment. The inclusion of 

data below 35 allows for the visualization of the downward trend all the way to 11 fM of total 

let-7b.  

The serum results are quite interesting for qRT-PCR and suggested no detection of the 

microRNA at all. There is no observable change between 100 ng and 0.01ng of spiked in let-7b. 

There may be numerous reasons at play, which could be resulting in this lack of detection. The 

human serum may contain Taq inhibitors that may be preventing amplification of the final 

product. The ability of the primers to anneal to the final product may be an issue, but the same 

sequences were used for detection for the iLluminate-miRNA platform and it was able to detect 

the double stranded duplex samples. The isolation was most likely not an issue, as both 

iLluminate-miRNA and qRT-PCR used the same samples for detection. Previous research by 

Chen et al. has described that the utilization of stem-loop primers may assist in the detection of 

microRNA’s by qRT-PCR (Chen et al. 2005). This may help qRT-PCR amplification, but since 

the same primer sequences were used by iLluminate-miRNA for hybridization, we can be 

confident that the target microRNAs were found and bound by the introduced primers. 

Numerous microRNA detection methods have been purposed. For example Rodríguez-

Dorantes et al. published a method of miRNA analysis from urine to detect prostate cancer 

markers (Rodríguez-Dorantes, Salido-Guadarrama, and García-Tobilla 2014). Another method 

developed at Oregon State University, uses a fluorescent probe to bind to target microRNA 
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complexes and is recognized when excited with a laser (Larkey et al. 2014). Most purposed 

platforms, including iLluminate-miRNA utilize a fluorescently labeled complementary sequence 

to bind target microRNAs, but the pulldown and isolation of these targets differs. As discussed in 

the introduction section of this chapter, approaches include magnetic pulldowns or ELISA type 

secondary antibodies. This is where iLluminate-miRNA’s strategy diverges from the rest. This 

technology is able to concentrate desired samples into “hotspots” on the TIAM array thereby 

allowing for fluorescence amplification due to the shape of the gold-plated electrode. 

The detection capabilities of iLluminate-miRNA are seen in both water and serum 

samples. In the water samples, we can see the detection limits are greater than those of qRT-PCR 

which was reaching the 41 Cq undetectable range at lower concentrations. This did not hold true 

for iLluminate-miRNA which was able to detect the lower amounts. Future experiments using 

water controls could include lower concentrations of spiked in microRNA to determine this 

technology’s lowest detection limit. The human serum samples greatly surpassed expectations 

for this platform when compared to qRT-PCR. The enzymatic assay was unable to detect even 

the highest amounts of let-7b, whereas the iLluminate-miRNA platform was able to detect the 

lowest concentration used equaling 1.2 pM. This data suggests that the iLluminate-miRNA 

platform may be an alternative for early cancer biomarker detection due to its ability to detect 

low concentrations in human serum.  

Future experiments to validate the iLluminate-miRNA technique include the analysis of 

in-serum microRNA samples. The samples tested for these previous experiments included 

spiked-in microRNA, which is excellent for proof-of-concept, but not applicable in the real 

world. The next step would be to test endogenous levels of microRNA present in human serum 

samples which would allow for in vivo validation of its detection. A collaboration with medical 
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researchers from Valley Hospital in Ridgewood, NJ, will assist in completing this goal. 

Hybridization efficiency optimization is another future goal to minimize product loss and reduce 

time during the hybridization step. This involves the testing of different hybridization techniques 

and the utilization of the one that allows for the formation of the most miRNA-probe duplexes. 

Increases in efficiency may be achieved by modification of temperature, pH, substrate 

concentration and time. One final idea is to multiplex this technology using multiple 

fluorophores for detection. 
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APPENDIX. NUMERICAL DATA AND TAXONOMIC TREE EXPANSION 

Table A1. VIP Strains at the phylum taxonomic level. 

Taxonomy Male Female 
 

WT HET KO WT HET KO 

Actinobacteria 0% 0% 0% 0% 0% 0% 

Bacteroidetes 63% 44% 66% 53% 47% 68% 

Chlamydiae 0% 0% 0% 0% 0% 0% 

Cyanobacteria 0% 0% 0% 0% 0% 0% 

Deferribacteres 7% 7% 3% 4% 6% 0% 

Firmicutes 22% 42% 15% 36% 42% 13% 

Proteobacteria 6% 4% 16% 4% 4% 17% 

Saccharibacteria 1% 1% 0% 1% 1% 0% 

Tenericutes 1% 1% 0% 1% 1% 0% 

Verrucomicrobia 1% 0% 0% 0% 0% 1% 

 

Table A2. VIP Strains at the class taxonomic level. 

Taxonomy Male Female  
WT HET KO WT HET KO 

Actinobacteria 0% 0% 0% 0% 0% 0% 

Coriobacteriia 0% 0% 0% 0% 0% 0% 

Bacteroidia 63% 44% 66% 53% 47% 68% 

Chlamydiae 0% 0% 0% 0% 0% 0% 

Chloroplast 0% 0% 0% 0% 0% 0% 

Melainabacteria 0% 0% 0% 0% 0% 0% 

Deferribacteres 7% 7% 3% 4% 6% 0% 

Bacilli 0% 0% 1% 0% 0% 1% 

Clostridia 21% 42% 14% 36% 42% 12% 

Erysipelotrichia 0% 0% 0% 0% 0% 0% 

Alphaproteobacteria 0% 0% 0% 0% 0% 0% 

Betaproteobacteria 4% 1% 5% 2% 2% 4% 

Deltaproteobacteria 1% 1% 1% 1% 1% 1% 

Epsilonproteobacteria 1% 2% 9% 1% 2% 9% 

Gammaproteobacteria 0% 0% 0% 0% 0% 3% 

Saccharibacteria;  

Unknown Class 

1% 1% 0% 1% 1% 0% 

Mollicutes 1% 1% 0% 1% 1% 0% 

Verrucomicrobiae 1% 0% 0% 0% 0% 1% 
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Table A3. VIP Strains at the order taxonomic level. 

Taxonomy Male Female  
WT HET KO WT HET KO 

Bifidobacteriales 0.00% 0.00% 0.20% 0.00% 0.00% 0.10% 

Coriobacteriales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Bacteroidales 62.80% 44.40% 66.30% 53.40% 46.70% 68.30% 

Chlamydiales 0.30% 0.10% 0.10% 0.30% 0.20% 0.30% 

Chloroplast;Ambiguous_taxa 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Gossypium arboreum 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Gastranaerophilales 0.10% 0.10% 0.00% 0.10% 0.00% 0.10% 

Deferribacterales 6.50% 7.20% 2.80% 4.30% 5.70% 0.40% 

Lactobacillales 0.30% 0.10% 0.80% 0.10% 0.10% 0.70% 

Clostridiales 21.40% 41.80% 13.60% 36.00% 41.70% 12.20% 

Erysipelotrichales 0.20% 0.10% 0.30% 0.10% 0.20% 0.40% 

Rhodospirillales 0.20% 0.00% 0.00% 0.00% 0.00% 0.00% 

Burkholderiales 4.10% 1.40% 5.20% 2.00% 1.70% 4.30% 

Desulfovibrionales 0.70% 0.90% 1.00% 0.90% 1.10% 0.80% 

Campylobacterales 1.10% 2.10% 9.20% 0.80% 1.50% 8.50% 

Enterobacteriales 0.20% 0.00% 0.10% 0.00% 0.00% 3.10% 

Saccharibacteria; 

Unknown Order 

0.70% 1.30% 0.20% 1.20% 0.70% 0.00% 

Anaeroplasmatales 0.80% 0.30% 0.00% 0.50% 0.40% 0.00% 

Mollicutes RF9 0.10% 0.10% 0.10% 0.20% 0.10% 0.00% 

Verrucomicrobiales 0.50% 0.00% 0.20% 0.00% 0.00% 0.70% 
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Table A4. VIP Strains at the family taxonomic level. 

Taxonomy Male Female 
 

WT HET KO WT HET KO 

Bifidobacteriaceae 0.00% 0.00% 0.20% 0.00% 0.00% 0.10% 

Coriobacteriaceae 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Bacteroidaceae 16.80% 4.70% 31.90% 6.30% 7.30% 35.80% 

Bacteroidales S24-7 group 28.90% 25.30% 12.80% 32.00% 25.50% 13.20% 

Porphyromonadaceae 6.30% 0.70% 16.30% 1.10% 2.00% 16.30% 

Prevotellaceae 0.80% 1.50% 2.00% 1.30% 0.90% 1.90% 

Rikenellaceae 10.10% 12.10% 3.20% 12.70% 11.00% 1.20% 

Chlamydiaceae 0.30% 0.10% 0.10% 0.30% 0.20% 0.30% 

Chloroplast;Ambiguous_taxa 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Gossypium arboreum 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Gastranaerophilales; 

uncultured bacterium 

0.10% 0.10% 0.00% 0.10% 0.00% 0.10% 

Deferribacteraceae 6.50% 7.20% 2.80% 4.30% 5.70% 0.40% 

Lactobacillaceae 0.20% 0.10% 0.50% 0.10% 0.00% 0.50% 

Lactobacillales; uncultured 0.10% 0.00% 0.20% 0.00% 0.00% 0.20% 

Christensenellaceae 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Clostridiaceae 1 0.10% 0.00% 0.00% 0.10% 0.10% 0.00% 

Clostridiales vadinBB60 

 group 

0.50% 0.70% 0.00% 0.40% 1.40% 0.00% 

Family XIII 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Lachnospiraceae 16.00% 31.70% 11.30% 27.60% 31.90% 10.50% 

Peptococcaceae 0.20% 0.20% 0.10% 0.30% 0.30% 0.10% 

Peptostreptococcaceae 0.00% 0.00% 0.20% 0.00% 0.00% 0.20% 

Ruminococcaceae 4.60% 9.10% 1.90% 7.60% 8.00% 1.50% 

Erysipelotrichaceae 0.20% 0.10% 0.30% 0.10% 0.20% 0.40% 

Rhodospirillaceae 0.20% 0.00% 0.00% 0.00% 0.00% 0.00% 

Alcaligenaceae 4.10% 1.40% 5.20% 2.00% 1.70% 4.30% 

Desulfovibrionaceae 0.70% 0.90% 1.00% 0.90% 1.10% 0.80% 

Helicobacteraceae 1.10% 2.10% 9.20% 0.80% 1.50% 8.50% 

Enterobacteriaceae 0.20% 0.00% 0.10% 0.00% 0.00% 3.10% 

Saccharibacteria; 

Unknown Family 

0.70% 1.30% 0.20% 1.20% 0.70% 0.00% 

Anaeroplasmataceae 0.80% 0.30% 0.00% 0.50% 0.40% 0.00% 

Mollicutes RF9; 

uncultured bacterium 

0.10% 0.10% 0.10% 0.20% 0.10% 0.00% 

Verrucomicrobiaceae 0.50% 0.00% 0.20% 0.00% 0.00% 0.70% 
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Table A5. VIP Strains at the genus taxonomic level. 

Taxonomy Male Female 
 

WT HET KO WT HET KO 

Bifidobacterium 0.00% 0.00% 0.20% 0.00% 0.00% 0.10% 

Coriobacteriaceae UCG-002 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Bacteroides 16.80% 4.70% 31.90% 6.30% 7.30% 35.80% 

Bacteroidales S24-7 group; 

Ambiguous_taxa 

0.50% 0.40% 0.10% 0.40% 0.30% 0.10% 

Bacteroidales S24-7 group; 

uncultured Bacteroidales 

2.20% 1.70% 0.40% 2.40% 1.90% 0.60% 

Bacteroidales S24-7 group; 

uncultured bacterium 

26.30% 23.20% 12.30% 29.10% 23.20% 12.40% 

Bacteroidales S24-7 group; 

unidentified 

0.00% 0.00% 0.00% 0.10% 0.20% 0.00% 

Parabacteroides 4.80% 0.30% 7.70% 0.30% 0.50% 7.40% 

Porphyromonadaceae; uncultured 1.40% 0.40% 8.60% 0.70% 1.50% 8.80% 

Alloprevotella 0.50% 1.00% 0.70% 0.50% 0.50% 1.80% 

Prevotella 9 0.00% 0.00% 0.00% 0.00% 0.30% 0.00% 

Prevotellaceae NK3B31 group 0.10% 0.10% 1.00% 0.20% 0.00% 0.10% 

Prevotellaceae UCG-001 0.20% 0.40% 0.30% 0.60% 0.20% 0.10% 

Alistipes 9.60% 11.70% 3.20% 12.20% 10.30% 1.10% 

Rikenellaceae RC9 gut group 0.50% 0.40% 0.00% 0.60% 0.70% 0.10% 

Chlamydia 0.30% 0.10% 0.10% 0.30% 0.20% 0.30% 

Chloroplast;Ambiguous_taxa 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Gossypium arboreum 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Gastranaerophilales; uncultured 

bacterium 

0.10% 0.10% 0.00% 0.10% 0.00% 0.10% 

Mucispirillum 6.50% 7.20% 2.80% 4.30% 5.70% 0.40% 

Lactobacillus 0.20% 0.10% 0.50% 0.10% 0.00% 0.50% 

Lactobacillales; uncultured bacterium 0.10% 0.00% 0.20% 0.00% 0.00% 0.20% 

Christensenellaceae; uncultured 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Candidatus Arthromitus 0.10% 0.00% 0.00% 0.10% 0.10% 0.00% 

Clostridiales vadinBB60 

group;Ambiguous_taxa 

0.40% 0.60% 0.00% 0.30% 1.20% 0.00% 

Clostridiales vadinBB60 group; 

uncultured bacterium 

0.10% 0.10% 0.00% 0.10% 0.30% 0.00% 

Family XIII UCG-001 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

[Eubacterium] nodatum group 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Acetatifactor 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Anaerosporobacter 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Anaerostipes 0.00% 0.00% 0.40% 0.00% 0.00% 0.20% 

Blautia 0.40% 0.60% 1.50% 0.70% 0.80% 0.30% 

Coprococcus 1 0.10% 0.20% 0.10% 0.20% 0.10% 0.10% 

Lachnoclostridium 0.20% 0.30% 1.20% 0.30% 0.20% 1.70% 
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Table A5.  VIP Strains at the genus taxonomic level (continued). 

Taxonomy Male  Female  

 WT HET KO WT HET KO 

Lachnospiraceae FCS020 group 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Lachnospiraceae NK4A136 group 7.60% 17.20% 3.20% 16.50% 15.10% 3.20% 

Lachnospiraceae UCG-001 0.10% 0.30% 0.20% 0.20% 0.20% 0.20% 

Lachnospiraceae UCG-004 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Lachnospiraceae UCG-006 0.10% 0.10% 0.00% 0.10% 0.00% 0.00% 

Lachnospiraceae UCG-008 0.80% 3.50% 0.30% 2.70% 5.60% 0.20% 

Marvinbryantia 0.10% 0.20% 0.00% 0.10% 0.20% 0.10% 

Roseburia 1.20% 1.30% 2.20% 0.40% 1.60% 2.00% 

Tyzzerella 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

[Eubacterium] oxidoreducens group 0.00% 0.20% 0.00% 0.10% 0.10% 0.00% 

[Eubacterium] xylanophilum group 0.10% 0.10% 0.10% 0.00% 0.10% 0.00% 

Lachnospiraceae; 

mouse gut metagenome 

0.10% 0.20% 0.00% 0.10% 0.10% 0.00% 

Lachnospiraceae; uncultured 5.10% 7.50% 2.00% 5.90% 7.60% 2.60% 

Peptococcus 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Peptococcaceae; uncultured 0.10% 0.20% 0.10% 0.30% 0.20% 0.00% 

Peptoclostridium 0.00% 0.00% 0.20% 0.00% 0.00% 0.20% 

Anaerotruncus 0.60% 0.90% 0.50% 0.60% 1.00% 0.50% 

Butyricicoccus 0.30% 0.50% 0.10% 0.50% 0.40% 0.10% 

Flavonifractor 0.00% 0.00% 0.10% 0.00% 0.00% 0.00% 

Oscillibacter 0.60% 1.40% 0.20% 0.90% 1.20% 0.20% 

Ruminiclostridium 0.60% 1.90% 0.10% 1.20% 1.20% 0.10% 

Ruminiclostridium 5 0.10% 0.10% 0.00% 0.20% 0.20% 0.00% 

Ruminiclostridium 6 0.10% 0.30% 0.00% 0.30% 0.20% 0.00% 

Ruminiclostridium 9 0.80% 1.40% 0.20% 1.40% 1.50% 0.20% 

Ruminococcaceae NK4A214 group 0.00% 0.10% 0.00% 0.10% 0.00% 0.00% 

Ruminococcaceae UCG-003 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Ruminococcaceae UCG-009 0.00% 0.10% 0.00% 0.10% 0.10% 0.00% 

Ruminococcaceae UCG-014 0.20% 0.70% 0.20% 0.60% 0.40% 0.00% 

Ruminococcus 1 0.10% 0.20% 0.00% 0.20% 0.20% 0.00% 

[Eubacterium] coprostanoli genes 

group 

0.10% 0.00% 0.00% 0.00% 0.00% 0.00% 

Ruminococcaceae; uncultured 1.00% 1.50% 0.40% 1.60% 1.70% 0.20% 

Erysipelatoclostridium 0.00% 0.00% 0.10% 0.00% 0.10% 0.10% 

Faecalibaculum 0.00% 0.00% 0.00% 0.10% 0.00% 0.20% 

[Clostridium] innocuum group 0.00% 0.00% 0.10% 0.00% 0.00% 0.00% 

Erysipelotrichaceae; uncultured 0.00% 0.00% 0.00% 0.00% 0.10% 0.00% 

Erysipelotrichaceae; 

uncultured bacterium 

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Rhodospirillaceae; uncultured 0.20% 0.00% 0.00% 0.00% 0.00% 0.00% 
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Table A5.  VIP Strains at the genus taxonomic level (continued). 

Taxonomy Male Female 

 WT HET KO WT HET KO 

Parasutterella 4.10% 1.40% 5.20% 2.00% 1.70% 4.30% 

Bilophila 0.10% 0.10% 0.00% 0.10% 0.10% 0.00% 

Desulfovibrio 0.60% 0.70% 1.00% 0.90% 0.90% 0.80% 

Helicobacter 1.10% 2.10% 9.20% 0.80% 1.50% 8.50% 

Escherichia-Shigella 0.00% 0.00% 0.00% 0.00% 0.00% 0.30% 

Raoultella 0.00% 0.00% 0.00% 0.00% 0.00% 0.10% 

Serratia 0.20% 0.00% 0.10% 0.00% 0.00% 2.70% 

Saccharimonas 0.70% 1.30% 0.20% 1.20% 0.70% 0.00% 

Anaeroplasma 0.80% 0.30% 0.00% 0.50% 0.40% 0.00% 

Mollicutes RF9; uncultured bacterium 0.10% 0.10% 0.10% 0.20% 0.10% 0.00% 

Akkermansia 0.50% 0.00% 0.20% 0.00% 0.00% 0.70% 
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Figure A1. Changes at the class level in VIP strains. 
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Figure A2. VIP male and female order level taxonomic changes. 
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Figure A3. Changes in abundance between individual bacterial families. 
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Figure A3. Changes in abundance between individual bacterial families (continued). 

 

 

 


