Applied Nonparametric Statistical Tests to Compare Evolutionary and Swarm Intelligence Approaches
View/ Open
Abstract
Recently, in many experimental studies, the statistical analysis of nonparametric comparisons has grown in the area of computational intelligence. The research refers to application of different techniques that are used to show comparison among the algorithms in an experimental study. Pairwise statistical technique perform individual comparison between two algorithms and multiple statistical technique perform comparison between more than two algorithms. Techniques include the Sign test, Wilcoxon signed ranks test, the multiple sign test, the Friedman test, the Friedman aligned ranks test and the Quade test.
In this paper, we used these tests to analyze the results obtained in an experimental study comparing well-known algorithms and optimization functions. The analyses showed that the application of statistical tests helps to identify the algorithm that is significantly different than the remaining algorithms in a comparison. Different statistical analyses were conducted on the results of an experimental study obtained with varying dimension size.