Show simple item record

dc.contributor.authorLekatz, Leslie Ann
dc.description.abstractGlobal nutrient restriction or excess can influence umbilical hemodynamics in sheep fetuses (Chapter 2). We hypothesized that a specific component of the diet, namely maternal metabolizable protein (MP), would alter placental function. When MP restriction during late gestation occurs, we hypothesized that there would be a decrease in the sensitivity to bradykinin (BK) of the placental vascular arteries. In experiment 1, ewes received one of three isocaloric dietary treatments during late gestation: MP60: 60% of MP requirements; MP80: 80% of MP requirements; and MP100: 100% of the MP requirements on a dry matter basis from day 100 to 130 of gestation. In experiment 1, fetal and placental mass were not affected by dietary treatment; however, placental function was altered by a maternal diet low in protein. Ewes not meeting MP requirements during late gestation had fetal placental arteries that were more sensitive to BK-induced vasorelaxation; therefore we reject our hypothesis for experiment 1. In order to understand the mechanism of BK-induced vasodilation in the placental arteries, experiment 2 was designed. We hypothesized that MP level would alter the mechanism of BK-induced vasorelaxation in placental arteries. In experiment 2, ewes received one of three isocaloric dietary treatments during late gestation: MP60: 60% of MP requirements; MP100: 100% of the MP requirements; and MP140: 140% of MP requirements from day 100 to 130 of gestation. Maternal protein level during gestation did not impact the mechanism of BK-induced vasodilation; therefore we reject our hypothesis for experiment 2. However, the maternal and fetal placental vessels responded to BK through different iv mechanisms. In maternal placental arteries, pathways involving endothelium-derived hyperpolarizing factors (EDHF) and nitric oxide (NO) were responsible for BK-induced vasodilation, while the prostacyclin (PGI2) pathway did not greatly contribute to BKinduced vasodilation. The fetal placental arteries responded to BK through a mechanism that does not involve EDHF, NO, or PGI2, indicating that BK-induced vasorelaxation of the fetal placental arteries may be mediated through an unclassified EDHF-like pathway. It is important to realize the maternal and fetal placental arteries may respond to BKinduced vasodilation through different pathways when considering possible therapeutics for compromised pregnancies.en_US
dc.publisherNorth Dakota State Universityen_US
dc.rightsNDSU policy 190.6.2
dc.titleThe Role of Maternal Protein Intake During Late Gestation on Placental Vascular Functionen_US
dc.typeDissertationen_US
dc.date.accessioned2017-12-20T20:29:44Z
dc.date.available2017-12-20T20:29:44Z
dc.date.issued2013
dc.identifier.urihttps://hdl.handle.net/10365/27116
dc.rights.urihttps://www.ndsu.edu/fileadmin/policy/190.pdf
ndsu.degreeDoctor of Philosophy (PhD)en_US
ndsu.collegeAgriculture, Food Systems and Natural Resourcesen_US
ndsu.departmentAnimal Sciencesen_US
ndsu.programAnimal Sciencesen_US
ndsu.advisorVonnahme, Kimberly A.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record