dc.contributor.author | Suryawanshi, Abhijit Jagnnath | |
dc.description.abstract | Electroactive polymers (EAP) such as polypyrrole (PPy) and polyaniline (PANI) are being explored intensively in the scientific community. Nanostructures of EAPs have low dimensions and high surface area enabling them to be considered for various useful applications. These applications are in several fields including corrosion inhibition, capacitors, artificial muscles, solar cells, polymer light emitting diodes, and energy storage devices. Nanostructures of EAPs have been synthesized in different morphologies such as nanowires, nanorods, nanotubes, nanospheres, and nanocapsules. This variety in morphology is traditionally achieved using soft templates, such as surfactant micelles, or hard templates, such as anodized aluminum oxide (AAO). Templates provide stability and groundwork from which the polymer can grow, but the templates add undesirable expense to the process and can change the properties of the nanoparticles by integrating its own properties. In this study a template free method is introduced to synthesize EAP nanostructures of PPy and PANI utilizing ozone oxidation. The simple techniques involve ozone exposure to the monomer solution to produce aqueous dispersions of EAP nanostructures. The synthesized nanostructures exhibit uniform morphology, low particle size distribution, and stability against agglomeration. Ozone oxidation is further explored for the synthesis of silver-PPy (Ag-PPy) core-shell nanospheres (CSNs). Coatings containing PPy nanospheres were formulated to study the corrosion inhibition efficiency of PPy nanospheres. Investigation of the coatings using electrochemical techniques revealed that the PPy nanospheres may provide corrosion inhibition against filiform corrosion by oxygen scavenging mechanism. Finally, organic corrosion inhibitors were incorporated in PPy to develop efficient corrosion inhibiting systems, by using the synergistic effects from PPy and organic corrosion inhibitors. | en_US |
dc.publisher | North Dakota State University | en_US |
dc.rights | NDSU Policy 190.6.2 | |
dc.title | Synthesis, Characterization, and Applications of Electroactive Polymeric Nanostructures for Organic Coatings | en_US |
dc.type | Dissertation | en_US |
dc.date.accessioned | 2018-01-18T20:28:02Z | |
dc.date.available | 2018-01-18T20:28:02Z | |
dc.date.issued | 2015 | |
dc.identifier.uri | https://hdl.handle.net/10365/27263 | |
dc.description.sponsorship | Army Research Laboratory (Grant No. W911NF-11-2-0027) | en_US |
dc.rights.uri | https://www.ndsu.edu/fileadmin/policy/190.pdf | |
ndsu.degree | Doctor of Philosophy (PhD) | en_US |
ndsu.college | Science and Mathematics | en_US |
ndsu.department | Coatings and Polymeric Materials | en_US |
ndsu.program | Coatings and Polymeric Materials | en_US |
ndsu.advisor | Gelling, Victoria J. | |