Ideal Graphs
View/ Open
Abstract
In this dissertation, we explore various types of graphs that can be associated to a commutative ring with identity. In particular, if R is a commutative ring with identity, we consider a number of graphs with the vertex set being the set of proper ideals; various edge sets defined via different ideal theoretic conditions give visual insights and structure theorems pertaining to the multiplicative ideal theory of R. We characterize the interplay between the ideal theory and various properties of these graphs including diameter and connectivity.