The Half-Factorial Property in Polynomial Rings
Abstract
This dissertation investigates the following question: If R is a half-factorial domain (HFD) and x is an indeterminate, under what conditions is the polynomial ring R[x] an HFD? The question has been answered in a few special cases. A classical result of Gauss states that if R is a UFD, then R[x] is a UFD. Also, Zaks showed that if R is a Krull domain with class group Cl(R), then R[x] is an HFD if and only if jCl(R)j 6 2. In the proof of his result, Zaks did not use Gauss's methods. We give a new proof that does. We also study the question in domains other than Krull domains.