Show simple item record

dc.contributor.authorIjaz, Bilal
dc.description.abstractOne of the biggest challenges in modern day wireless communication systems is to attain agility and provide more degrees of freedom in parameters such as frequency, radiation pattern and polarization. Existing phased array antenna technology has limitations in frequency bandwidth and scan angle. So it is important to design frequency reconfigurable antenna arrays which can provide two different frequency bandwidths with a broadside radiation pattern having a lower sidelobe and reduced frequency scanning. The reconfigurable antenna array inspired by the properties of metamaterials presented here provides a solution to attain frequency agility in a wireless communication system. The adaptive change in operating frequency is attained by using RF p-i-n diodes on the antenna array. The artificially made materials having properties of negative permeability and negative permittivity have antiparallel group and phase velocities, and, in consequence of that, they support backward wave propagation. The key idea of this work is to demonstrate that the properties of metamaterial non-radiating phase shifting transmission lines can be utilized to design a series-fed antenna array to operate at two different frequency bands with a broadside radiation pattern in both configurations. In this research, first, a design of a series-fed microstrip array with composite right/left-handed transmission lines (CRLH-TLs) is proposed. To ensure that each element in the array is driven with the same voltage phase, dual-band CRLH-TLs are adopted instead of meander-line microstrip lines to provide a compact interconnect with a zero phase-constant at the frequency of operation. Next, the work is extended to design a reconfigurable series-fed antenna array with reconfigurable metamaterial interconnects, and the expressions for array factor are derived for both switching bands.en_US
dc.publisherNorth Dakota State Universityen_US
dc.rightsNDSU Policy 190.6.2
dc.titleMetamaterial-Inspired Reconfigurable Series-Fed Arraysen_US
dc.typeDissertationen_US
dc.date.accessioned2018-02-16T20:17:19Z
dc.date.available2018-02-16T20:17:19Z
dc.date.issued2014
dc.identifier.urihttps://hdl.handle.net/10365/27593
dc.rights.urihttps://www.ndsu.edu/fileadmin/policy/190.pdf
ndsu.degreeDoctor of Philosophy (PhD)en_US
ndsu.collegeEngineeringen_US
ndsu.departmentElectrical and Computer Engineeringen_US
ndsu.programElectrical and Computer Engineeringen_US
ndsu.advisorBraaten, Benjamin Davis


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record