Show simple item record

dc.contributor.authorSchanandore, Thomas Charles
dc.description.abstractSmart materials, within the realm of structural engineering, are mainly used as either sensoric mechanisms or as structural damping mechanisms. For the most part, structural enhancement utilizing smart materials is not seen in main stream structural engineering practices. Piezoelectric ceramics and shape memory alloys are two smart materials that are explored. In comparison shape memory alloys have far greater actuation strain (2% - 7%) than piezoelectric (0.08% - 0.11%) ceramics. Piezoelectric actuators are employed as surface actuators. Shape memory alloys are also explored in this manner, but the analysis is taken a step further where shape memory alloys are explored as beam and column retrofit elements. Because of the low mechanical range of the piezoelectric material, the potential for stress reduction is bound to lower stress applications. The general conclusion for shape memory alloys is that it would be suitable for high stress applications which include main stream steel applications.en_US
dc.publisherNorth Dakota State Universityen_US
dc.rightsNDSU Policy 190.6.2
dc.titleStructural Enhancement Utilizing Smart Materials: Experiments and Applications Involving Piezoelectric Actuators and Shape Memory Alloysen_US
dc.typeThesisen_US
dc.date.accessioned2018-03-09T19:47:41Z
dc.date.available2018-03-09T19:47:41Z
dc.date.issued2015en_US
dc.identifier.urihttps://hdl.handle.net/10365/27693
dc.description.sponsorshipNorth Dakota EPSCoRen_US
dc.rights.urihttps://www.ndsu.edu/fileadmin/policy/190.pdf
ndsu.degreeMaster of Science (MS)en_US
ndsu.collegeEngineeringen_US
ndsu.departmentCivil and Environmental Engineeringen_US
ndsu.advisorKim, Yail


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record