Show simple item record

dc.contributor.authorAnar, Mohammad Jahidul
dc.description.abstractSugarbeet (Beta vulgaris) is considered as one of the most viable alternatives to corn for biofuel production as it may be qualified as “advanced” biofuel feedstocks under the ‘EISA 2007’. Production of deep rooted sugarbeet may play a significant role in enhancing utilization of deeper layer soil water and nutrients, and thus may significantly affect soil health and water quality through recycling of water and nutrients. A model can be useful in predicting the sugarbeet growth, and its effect on soil and water quality. A sugarbeet model was developed by adopting and modifying the Crop Environment and Resource Synthesis-Beet (CERES-Beet) model. It was linked to the Cropping System Model (CSM) of the Decision Support System for Agrotechnology (DSSAT) and was termed as CSM-CERES-Beet. The CSM-CERES-Beet model was then linked to the plant growth module of the Root Zone Water Quality Model (RZWQM2) to simulate crop growth, soil water and NO3-N transport in crop fields. For both DSSAT and RZWQM2, parameter estimation (PEST) software was used for model calibration, evaluation, predictive uncertainty analysis, sensitivity, and identifiability. The DSSAT model was evaluated with two sets of experimental data collected in two different regions and under different environmental conditions, one in Bucharest, Romania and the other in Carrington, ND, USA, while RZWQM2 was evaluated for only Carrington, ND experimental data. Both DSSAT and RZWQM2 performed well in simulating leaf area index, leaf or top weight, and root weight for the datasets used (d-statistic = 0.783-0.993, rRMSE = 0.006-1.014). RZWQM2 was also used to evaluate soil water and NO3-N contents and did well (d-statistic = 0.709-0.992, rRMSE = 0.066-1.211). The RZWQM2 was applied for simulating the effects of crop rotation and tillage operations on sugarbeet production. Hypothetical crop rotation and tillage operation scenarios identified wheat as the most suitable previous year crop for sugarbeet and moldboard plow as the most suitable tillage operation method. Both DSSAT and RZWQM2 enhanced with CSM-CERES-Beet may be used to simulate sugarbeet production under different management scenarios for different soils and under different climatic conditions in the Red River Valley.en_US
dc.publisherNorth Dakota State Universityen_US
dc.rightsNDSU policy 190.6.2
dc.titleSugarbeet Model Development for Soil and Water Quality Assessmenten_US
dc.typeDissertationen_US
dc.typeVideoen_US
dc.date.accessioned2018-03-27T19:34:13Z
dc.date.available2018-03-27T19:34:13Z
dc.date.issued2018en_US
dc.identifier.urihttps://hdl.handle.net/10365/27896
dc.description.sponsorshipUSDA National Institute of Food and Agriculture Foundational Program (Award No.: 2013-67020-21366)en_US
dc.rights.urihttps://www.ndsu.edu/fileadmin/policy/190.pdf
ndsu.degreeDoctor of Philosophy (PhD)en_US
ndsu.collegeGraduate and Interdisciplinary Studiesen_US
ndsu.departmentAgricultural and Biosystems Engineeringen_US
ndsu.programAgricultural and Biosystems Engineeringen_US
ndsu.advisorLin, Zhulu


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record