Economic Analysis of Packaging Systems
Abstract
Packaging has a significant impact on the efficiency and effectiveness of the supply chain, where improvement can be achieved through the development and selection of an appropriate packaging system. One way to explore this is through the development and use of mathematical models that facilitate economic analysis of packaging systems. Recently, one of the most remarkable trends in logistics is the extensive use of returnable or reusable containers. Returnable container systems have increasingly been introduced in various industries to take advantages of cost savings, but it is very crucial to ensure that a reusable packaging system is an economical packaging choice. In this thesis, an extensive study of an economic analysis of disposable, recyclable, and reusable packaging systems is conducted. This includes identification of significant cost factors and variables involved in the management of disposable, recyclable and reusable packaging systems, and formulation of a mathematical model to compare total cost of packaging systems. The developed mathematical model can be used to choose the most economical packaging system for industries. The linear programming (LP) method is used to develop the mathematical model. The various new factors such as the collapsible ratio of recyclable, disposable and reusable packages have been introduced for the first time in the economic analysis of the packaging systems. The developed mathematical model can be used for a range of industries and for different industry scenarios. The packaging system information of Toyota assembly plant is used for the validation of a mathematical model. The obtained results are compared with previous research based on the same data set and results found in concert with the finding of previous research which validate the model.