Show simple item record

dc.contributor.authorAchrekar, Omkar Shirish
dc.description.abstractIn this thesis, we investigate how to evacuate people using the available road transportation network efficiently. To successfully do that, we need to design evacuation model that is fast, safe, and seamless. We enable the first two criteria by developing a macroscopic, time-dynamic evacuation model that aims to maximize the number of people in relatively safer areas of the network at each time point; the third criterion is optimized by constructing an evacuation tree, where the vehicles are evacuated using a single path to safety. Divergence and contraflow policies have been incorporated to enhance the network capacity. Divergence enables specific nodes to diverge their flows into two or more streets, while contraflow allows certain streets to reverse their flow, effectively increasing their capacity. We investigate the performance of these policies in the evacuation networks obtained, and present results on two benchmark networks of Sioux Falls and Chicago.en_US
dc.publisherNorth Dakota State Universityen_US
dc.rightsNDSU Policy 190.6.2
dc.titleEvacuation Trees with Contraflow and Divergence Considerationsen_US
dc.typeThesisen_US
dc.date.accessioned2018-07-03T18:38:14Z
dc.date.available2018-07-03T18:38:14Z
dc.date.issued2018en_US
dc.identifier.urihttps://hdl.handle.net/10365/28392
dc.rights.urihttps://www.ndsu.edu/fileadmin/policy/190.pdf
ndsu.degreeMaster of Science (MS)en_US
ndsu.collegeEngineeringen_US
ndsu.departmentIndustrial Engineering and Managementen_US
ndsu.advisorVogiatzis, Chrysafis


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record