A Linear Delay Algorithm for Enumerating All Connected Induced Subgraphs
Abstract
Real biological and social data is increasingly being represented as graphs. Pattern-mining-based graph learning and analysis techniques report meaningful biological subnetworks that elucidate important interactions among entities. At the backbone of these algorithms is the enumeration of pattern space. In this work, we propose an efficient algorithm for enumerating all connected induced subgraphs of an undirected graph. Building on this enumeration approach, we propose an algorithm for mining maximal cohesive subgraphs that integrates vertices' attributes with subgraph enumeration. To efficiently mine all maximal cohesive subgraphs, we propose two pruning techniques that remove futile search nodes in the enumeration tree. Experiments on synthetic and real graphs show the effectiveness of the proposed algorithm and the pruning techniques. On enumerating all connected induced subgraphs, our algorithm is several times faster than existing approaches. On dense graphs, the proposed approach is at least an order of magnitude faster than the best existing algorithm.