Flexible Nanocomposite Thin Films for Electronic Devices
View/ Open
Abstract
Electronic technology is moving towards flexible, durable, and smaller devices with multifunctional capability. To accelerate this movement, creating materials with outstanding properties is critical. Nanocomposites based on single wall carbon nanotubes (SWCNTs) have received considerable attention because of their unique mechanical and electrical properties. When SWCNTs are formed as a sheet, they provide large contact area and ease of control, especially when incorporated into a flexible format. However, when SWCNT films are adhered to an elastic substrate, there are challenges with their use in flexible electronics, such as a reduction Young’s modulus under deformation. SWCNT films can undergo plastic behavior at even a small strain because individual SWCNTs slide past each other in response to deformation. To address these challenges, a strain-induced elastic buckling instability for mechanical measurements (SIEBIMM) method was used to query SWCNT film mechanics. The buckling wavelength and the film thickness are two main factors that influence the mechanics of nanocomposite thin films adhered to elastomeric substrates. SWCNT films coated with a second nanomaterial, such as a polymer thin film or nanocrystals (NCs), have shown a significant enhancement in elasticity. The studies described in this dissertation demonstrate that polymer thin film can reduce the strain softening of SWCNT films, where both yield strain and Young’s modulus increase with the introduction of SWCNT-polymer layers. Specifically, the films started to exhibit a strong synergy between SWCNT and polymer at a film thickness of around 20 nm, which is attributed to the thickness approaching the characteristic interfacial width between the two materials. Both a ‘passive’ polymer thin film (for example, polystyrene-PS) and an ‘active’ polymer thin film, the conducting polymer poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS), were investigated, spanning a bilayer to the bulk limit of SWCNT-polymer multilayers. In addition, ultrathin SWCNT films coated with colloidal NCs have also been investigated. We have utilized two approaches to coat SWCNT films with NCs: Langmuir-Blodgett (LB) and spray coating. Both Si and CdSe nanocrystals showed a roughly two-fold enhancement in film elasticity, which was attributed to an excluded volume effect that prevents the SWCNT rearrangement under an applied strain.