Show simple item record

dc.contributor.authorCrouse, Matthew Scott Pennell
dc.description.abstractCrossbred Angus heifers (n = 14) were bred via AI, assigned to nutritional treatment (CON = 100% of requirements for 0.45 kg/d gain and RES = 60% of CON) and ovariohysterectomized on d 50 of gestation. Fetal liver, muscle from the hind limb, and cerebrum were analyzed by RNA-sequencing, and a total of 548, 317, and 151 genes, respectively (P < 0.01) were differentially expressed. Functional categories affected by nutritional treatment included: 1) Liver: metabolic pathways and nucleosome core, 2) Muscle: skeletal muscle and embryogenesis, and 3) Cerebrum: hippocampus and neurogenesis. Bovine embryonic fibroblast cells were cultured in Eagle’s Minimum Essential Medium with 1 g/L glucose (LOW) or 4.5 g/L glucose (HIGH). Control medium contained basal concentrations of one-carbon metabolites (Choline, folate, vitamin B12, and methionine). One-carbon metabolites (OCM: methionine, choline, folate, vitamin B12) were supplemented to the media at 2.5, 5, and 10 times (2.5X, 5X, and 10X, respectively) the control media, except for methionine, which was limited to 2X. One-carbon metabolites increased (P < 0.01) basal respiration and Reserve Capacity in HIGH 2.5X and 10X compared with all other treatments. ATP-linked respiration was greater (P < 0.01) in HIGH OCM supplemented cells compared to Control and was greater in LOW 2.5X compared with LOW Control, 5X, and 10X cells. Total growth rate was greater (P < 0.01) for HIGH 2.5X and 10X compared with LOW Control, 2.5X, and 10X. At 24, 36, 48, and 72 h, cell proliferation in HIGH 10X was always greater (P ≤ 0.03) than Low 10X. Therefore, these data are interpreted to imply that a moderate maternal nutrient restriction during the first 50 d of gestation in beef heifers alters the transcript abundance of genes impacting tissue accretion, function, and metabolism suggesting potential alterations to fetal physiology which should be further investigated. Lastly, supplementation of OCM may improve fetal growth and program increased metabolic efficiency in the offspring, and thus should be a focus of future research into the effects of maternal nutrition on postnatal physiology.en_US
dc.publisherNorth Dakota State Universityen_US
dc.rightsNDSU policy 190.6.2en_US
dc.titleMaternal Nutrition, One-Carbon Metabolites, and Programming of Fetal Development During Early Gestationen_US
dc.typeDissertationen_US
dc.typeVideoen_US
dc.date.accessioned2021-01-05T22:16:42Z
dc.date.available2021-01-05T22:16:42Z
dc.date.issued2019
dc.identifier.urihttps://hdl.handle.net/10365/31684
dc.rights.urihttps://www.ndsu.edu/fileadmin/policy/190.pdfen_US
ndsu.degreeDoctor of Philosophy (PhD)en_US
ndsu.collegeAgriculture, Food Systems and Natural Resourcesen_US
ndsu.departmentAnimal Sciencesen_US
ndsu.programAnimal Sciencesen_US
ndsu.advisorWard, Alison
ndsu.advisorCaton, Joel


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record