Show simple item record

dc.contributor.authorHe, Yangbo
dc.description.abstractConducting a 1 :5 soil:water extract to measure electrical conductivity (EC) is an approach to assess salinity and is the preferred method used in Australia. However, the influence of salinity on plant growth is predominantly based on saturated paste extract electrical conductivity (ECe) and ECe is recommended as a general method for estimating soil salinity internationally, so it is necessary to convert EC1:s to ECe, The objectives of this research were to 1) compare methods of agitation (shaking plus centrifuging (shaking/centrifuging), shaking, and stirring) for determining EC1: 5; 2) determine optimal times for equilibration for each method across a range of salinity levels determined from saturated paste extracts (ECe) (objectives 1 and 2 are for paper 1); and 3) develop predictive models to convert ECu data to ECe based on four different 1 :5 extraction methods listed above and a USDA-NRCS equilibration technique ( objective 3 is for paper 2). The soils evaluated for the two studies were from north central North Dakota, USA, where 20 soil samples having ECe values ranging from 0.96 to 21 dS m-1were used for the first study (objectives 1 and 2), and 100 samples having ECe values ranging from 0.30 to 17.9 dS m-1were used in the second study (objective 3). In the first study, for each method, nine equilibrium times were used up to 48 hrs. In the second study, a uniform agitation time (8 hrs) was applied to the first three agitation methods, and 1 hr was also used for the USDA-NRCS method. For the first study, significant relationships (p < 0.05) existed between values ofEC1:s and agitation time across the three methods. Agitation methods were significantly different (p S 0.05) from each other for 65% of the soils and shaking/centrifuging was significantly different (p < 0.05) from stirring for all soils. In addition, for 75% of the soils, shaking/centrifuging was significantly different (p :S 0.05) from shaking. Based on these results, methods were analyzed separately for optimal equilibration times. The agitation times required for the three methods to reach 95 and 98% of equilibration were a function of the level of soil salinity. For soils with ECe values less than 4 dS m·1, over 24 hrs was needed to obtain both 95 and 98% of equilibration for the three methods. However, less than 3 and 8 hrs were needed to reach 95 and 98% equilibration, respectively, across methods for soils having ECe values greater than 4 dS m·1. These results indicate that establishing a standard method is necessary to help reduce variation across EC1:s measurements. In the second study, the value ofECe was highly correlated with EC1:s (p < 0.0001) across four agitation methods in non-transformed, log10- transformed, and dilution ratio models through regression analysis. The values of coefficient of determination (r2 ) were greatly improved and average about 0.87 using log10- transformation compared to other two models (r2 values of about 0.68 for the nontransformed models and 0.69 for the dilution ratio models). Since agitation methods were determined to be highly correlated with each other, any regression model determined under the four agitation methods were applicable for the estimation of ECe from another method. The results from this research indicate that comparing data across studies should be done with caution because both agitation method and time can influence results. Also, estimation ofECe from EC1:5 can be done with confidence, but models may not be transferrable across different soil orders or across various salt types.en_US
dc.publisherNorth Dakota State Universityen_US
dc.rightsNDSU policy 190.6.2en_US
dc.titleEvaluation of 1:5 Soil to Water Extract Electrical Conductivity Methods and Comparison to Electrical Conductivity of Saturated Paste Extracten_US
dc.typeThesisen_US
dc.date.accessioned2023-12-22T16:15:45Z
dc.date.available2023-12-22T16:15:45Z
dc.date.issued2011
dc.identifier.urihttps://hdl.handle.net/10365/33447
dc.subject.lcshSoils, Salts in -- Measurement.en_US
dc.subject.lcshSoils -- Electric properties.en_US
dc.subject.lcshWater -- Electric properties.en_US
dc.rights.urihttps://www.ndsu.edu/fileadmin/policy/190.pdfen_US
ndsu.degreeMaster of Science (MS)en_US
ndsu.collegeAgriculture, Food Systems and Natural Resourcesen_US
ndsu.departmentSoil Scienceen_US
ndsu.programSoil Scienceen_US
ndsu.advisorDesutter, Thomas M.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record