Show simple item record

dc.contributor.authorMiska, Dylan
dc.description.abstractThis study introduces a novel application of natural language generation (NLG) models to improve database table retrieval. Unlike previous works primarily utilizing embeddings and natural language processing (NLP) models, this work explores using NLGs to generate database column descriptions to enhance search accuracy. The evaluation involves two main aspects: firstly, assessing the accuracy of AI-generated column descriptions compared to ground truth descriptions; secondly, examining the impact of these descriptions when integrated into existing search models to evaluate accuracy improvements. Results indicate improved semantic alignment when comparing generated descriptions to ground truth over column names alone and improved scores for established work.en_US
dc.publisherNorth Dakota State Universityen_US
dc.rightsNDSU policy 190.6.2en_US
dc.titleSemantic enrichment of database columns using generative language models for advanced query searchesen_US
dc.typeMaster's Paperen_US
dc.date.accessioned2024-08-06T17:02:54Z
dc.date.available2024-08-06T17:02:54Z
dc.date.issued2024
dc.identifier.urihttps://hdl.handle.net/10365/33899
dc.rights.urihttps://www.ndsu.edu/fileadmin/policy/190.pdfen_US
ndsu.degreeMaster of Science (MS)en_US
ndsu.collegeEngineeringen_US
ndsu.departmentComputer Scienceen_US
ndsu.advisorStraub, Jeremy


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record