NDSU logo

NDSU Repository

View Item 
  •   NDSU Repository Home
  • NDSU Theses & Dissertations
  • Cellular & Molecular Biology
  • Cellular & Molecular Biology Doctoral Work
  • View Item
  •   NDSU Repository Home
  • NDSU Theses & Dissertations
  • Cellular & Molecular Biology
  • Cellular & Molecular Biology Doctoral Work
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Biology of the Receptor for Advanced Glycation End Products (RAGE) in Cancer

Thumbnail
Author/Creator
Kadasah, Sultan Ftayes Saeed
More Information
Show full item record

View/Open

The Biology of the Receptor for Advanced Glycation End Products (RAGE) in Cancer (5.934Mb)
Sultan Kadasah dissertation video (101.2Mb)
Abstract
Overexpression of the Receptor for Advanced Glycation End Products (RAGE) has been implicated in multiple diseases, including several types of cancer. In different types of cancer, RAGE has been shown to promote cell survival by either autophagy or activation of the transcription factor NF-κB. Based on what is known about RAGE, we hypothesized that the RAGE/ligand interaction at the cell surface promotes pancreatic cancer and melanoma cell survival by both pathways, autophagy and NF-κB activation. To study the role of RAGE in pancreatic cancer resistance to chemotherapy, BxPC-3, MIA PaCa-2, PANC-1, and RAGE overexpressing PANC-1 FLR2 cell-lines were used. A significant decrease in cell viability was observed upon gemcitabine treatment with further significant reduction in cell viability upon combination of gemcitabine with the RAGE inhibitor IgG 2A11. In our studies we showed that RAGE plays a central role in pancreatic cancer cell resistance to gemcitabine by increasing autophagy. To test the importance of RAGE localization in mediating drug resistance, three melanoma cell-lines (WM115, WM266, and SK-MEL2) with their daughters, RAGE overexpressing cells (WM115-RAGE, WM266-RAGE, and SK-MEL2-RAGE) were used. Wild type cell-lines only expressed RAGE intracellularly while RAGE overexpressing cells expressed RAGE both at the cell surface and inside cells. We show in this study that only the cell surface RAGE is involved in melanoma resistance to dacarbazine. We next tested the effects of RAGE/RAGE ligand interaction at the cell surface in pancreatic tumor growth. We used two carcinoma cell-lines, PANC-1 and MIA PaCa-2, for this purpose. Both cell-lines were transiently transfected with a NF-κB/Luciferase reporter plasmid to test the effects of the interaction between RAGE and its ligands on the activation of the NF-κB signaling pathway. We observed higher NF-κB activity upon treatment with RAGE ligands (AGE, S100P, and S100A8/A9) compared to non-treated cells. Higher activity of NF-κB was coupled with a higher expression of cyclin D1 and lower expression of p53, NF-κB target genes.
URI
https://hdl.handle.net/10365/31754
Collections
  • Cellular & Molecular Biology Doctoral Work

Student Focused, Land Grant, Research Institution

  • Campus Map
    • Campus Map (pdf)
    • Building list
    • Campus Offices
  • Equity
  • Employment
  • Phone/Email Directory
  • Online Services
    • Blackboard
    • One Stop
    • Campus Connection
    • IT Help Desk
    • Libraries
    • Email
    • Student Success Collaborative
  • Registration And Records
    • Course Schedule
    • Dates and Deadlines
North Dakota State University - Libraries
Circulation: (701) 231-8888 | Reference: (701) 231-8886
Administration: (701) 231-8753
Main Library address: 1201 Albrecht Boulevard
Mailing address: Dept #2080 PO Box 6050, Fargo, ND 58108-6050
Site manager: Site manager
Contact Us |
 
Advanced Search

Browse

All of NDSU RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Student Focused, Land Grant, Research Institution

  • Campus Map
    • Campus Map (pdf)
    • Building list
    • Campus Offices
  • Equity
  • Employment
  • Phone/Email Directory
  • Online Services
    • Blackboard
    • One Stop
    • Campus Connection
    • IT Help Desk
    • Libraries
    • Email
    • Student Success Collaborative
  • Registration And Records
    • Course Schedule
    • Dates and Deadlines
North Dakota State University - Libraries
Circulation: (701) 231-8888 | Reference: (701) 231-8886
Administration: (701) 231-8753
Main Library address: 1201 Albrecht Boulevard
Mailing address: Dept #2080 PO Box 6050, Fargo, ND 58108-6050
Site manager: Site manager
Contact Us |