dc.contributor.author | Mandke, Rhishikesh Subhash | |
dc.description.abstract | The goal of proposed study was to contribute towards the development of a nano size, high efficiency and low toxicity non-viral polymeric vector for gene delivery in vitro and in vivo. A series of fatty acid grafted low-molecular-weight chitosan (N-acyl LMWCs) were synthesized, purified and characterized for their physicochemical properties using various analytical techniques such as infrared spectroscopy, elemental analysis and dynamic light scattering. The formulation parameters including pH, sonication duration, and filtration altered the physicochemical characteristics of N-acyl LMWC nanomicelles. The acyl chain length and degree of unsaturation in fatty acids also had an impact on the physicochemical properties and the transfection efficiency of nanomicelles. N-acyl LMWC nanomicelles showed efficient in vitro transfection as visualized and quantified using a reporter plasmid (encoding green fluorescent protein), and therapeutic plasmids (encoding for interleukin-4 and interleukin-10), respectively. The in vitro transfection efficiencies of N-acyl LMWCs with 18:1 and 18:2 grafts (oleic and linoleic acids) were comparable with FuGENE® HD (marketed non-viral vector) but were ~8-fold and 35-fold higher as compared to LMWC and naked DNA, respectively. The in vivo transfection efficiency of N-acyl LMWC to deliver plasmids individually encoding IL-4 and IL-10 as well as a bicistronic plasmid encoding both IL-4 and IL-10 was studied in a multiple, low-dose streptozotocin induced diabetic mouse model. The transfection efficiency of pDNA/N-acyl LMWC polyplexes injected via intramuscular route showed significant improvement (p<0.05) over passive (naked DNA) or positive (FuGENE HD) controls. Additionally, a sustained and efficient expression of IL-4 and IL-10 was observed, accompanied by a reduction in interferon-gamma (INF-γ), and tumor necrosis factor-alpha (TNF-α) levels. The pancreas of pDNA/N-acyl LMWC polyplex treated animals exhibited protection from streptozotocin-induced insulitis and the delivery systems were biocompatible. Histological studies revealed that there were no signs of chronic inflammation at the injection site. The bicistronic plasmid exhibited significantly (p<0.05) greater expression of IL-4 and IL-10, and demonstrated the feasibility of bicistronic IL-4/IL-10 plasmid/N-acyl LMWC nanomicelles-based polyplexes as an efficient and biocompatible system for the prevention of autoimmune diabetes. | en_US |
dc.publisher | North Dakota State University | en_US |
dc.rights | NDSU Policy 190.6.2 | |
dc.title | Synthesis and Evaluation of Cationic Nanomicelles for In Vitro and In Vivo Gene Delivery | en_US |
dc.type | Dissertation | en_US |
dc.date.accessioned | 2017-11-09T21:17:09Z | |
dc.date.available | 2017-11-09T21:17:09Z | |
dc.date.issued | 2013 | |
dc.identifier.uri | https://hdl.handle.net/10365/26812 | |
dc.description.sponsorship | Presidential Fellowship | en_US |
dc.description.sponsorship | National Institutes of Health (NIH) | en_US |
dc.description.sponsorship | Fraternal Order of Eagles | en_US |
dc.rights.uri | https://www.ndsu.edu/fileadmin/policy/190.pdf | |
ndsu.degree | Doctor of Philosophy (PhD) | en_US |
ndsu.college | Health Professions | en_US |
ndsu.department | School of Pharmacy | en_US |
ndsu.program | Pharmaceutical Sciences | |
ndsu.advisor | Singh, Jagdish | |