Show simple item record

dc.contributor.authorNahire, Rahul
dc.description.abstractLipid and polymeric nanoparticles, although proven to be effective drug delivery systems compared to free drugs, have shown considerable limitations pertaining to their uptake and release at tumor sites. Spatial and temporal control over the delivery of anticancer drugs has always been challenge to drug delivery scientists. Here, we have developed and characterized multifunctional nanoparticles (liposomes and polymersomes) which are targeted specifically to cancer cells, and release their contents with tumor specific internal triggers. To enable these nanoparticles to be tracked in blood circulation, we have imparted them with echogenic characteristic. Echogenicity of nanoparticles is evaluated using ultrasound scattering and imaging experiments. Nanoparticles demonstrated effective release with internal triggers such as elevated levels of MMP-9 enzyme found in the extracellular matrix of tumor cells, decreased pH of lysosome, and differential concentration of reducing agents in cytosol of cancer cells. We have also successfully demonstrated the sensitivity of these particles towards ultrasound to further enhance the release with internal triggers. To ensure the selective uptake by folate receptor- overexpressing cancer cells, we decorated these nanoparticles with folic acid on their surface. Fluorescence microscopic images showed significantly higher uptake of folate-targeted nanoparticles by MCF-7 (breast cancer) and PANC-1 (pancreatic cancer) cells compared to particles without any targeting ligand on their surface. To demonstrate the effectiveness of these nanoparticles to carry the drugs inside and kill cancer cells, we encapsulated doxorubicin and/or gemcitabine employing the pH gradient method. Drug loaded nanoparticles showed significantly higher killing of the cancer cells compared to their non-targeted counterparts and free drugs. With further development, these nanoparticles certainly have potential to be used as a multifunctional nanocarriers for image guided, targeted delivery of anticancer drugs.en_US
dc.publisherNorth Dakota State Universityen_US
dc.rightsNDSU Policy 190.6.2
dc.titleDevelopment and Characterization of Multifunctional Nanoparticles for Drug Delivery to Cancer Cellsen_US
dc.typeDissertationen_US
dc.typeVideoen_US
dc.date.accessioned2018-01-31T19:14:46Z
dc.date.available2018-01-31T19:14:46Z
dc.date.issued2014
dc.identifier.urihttps://hdl.handle.net/10365/27378
dc.rights.urihttps://www.ndsu.edu/fileadmin/policy/190.pdf
ndsu.degreeDoctor of Philosophy (PhD)en_US
ndsu.collegeHealth Professionsen_US
ndsu.departmentSchool of Pharmacyen_US
ndsu.programPharmaceutical Sciences
ndsu.advisorMallik, Sanku


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record