NDSU logo

NDSU Repository

View Item 
  •   NDSU Repository Home
  • NDSU Theses & Dissertations
  • Plant Sciences
  • Plant Sciences Masters Theses
  • View Item
  •   NDSU Repository Home
  • NDSU Theses & Dissertations
  • Plant Sciences
  • Plant Sciences Masters Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Strategies for Optimizing Nitrogen Use in Corn with and without Subsurface Drainage

Thumbnail
Author/Creator
Twedt, Evan Jacob
More Information
Show full item record

View/Open

Strategies for Optimizing Nitrogen Use in Corn with and without Subsurface Drainage (2.383Mb)
Abstract
Excessive soil moisture can impact planting date, plant establishment, and N availability, resulting in reduced yields and N use efficiency. Nitrogen management practices such as use of urease and nitrification inhibitors, and split applications may be used to reduce N lost during the growing season, improving N use efficiency and crop productivity. The objective of this study was to determine whether N management practices could improve corn (Zea mays L.) productivity with or without subsurface drainage on a fine-textured clay soil in eastern North Dakota. Five field trials were conducted in 2009 and 2010 in eastern North Dakota. Treatments consisted of a factorial combination of N management practices [urease inhibitor n-(n-butyl) thiophosphoric triamide (NBPT), starter fertilizer, nitrification inhibitor 2-Chloro-6-(trichloromethyl) pyridine (nitrapyrin), and split applications], N rates (56, 112, 168, and 224 kg N ha-1), and the presence of subsurface drainage (two environments). In both 2009 and 2010 there was no grain yield differences among drainage treatments. Differences in grain yield were observed with different N rates. Nitrogen management practices also affected grain yield. The interactions between N management practices and drainage were not significant. End of season stalk nitrate content showed differences in N availability with different N rates, but not N management practices. Neither NBPT nor the starter fertilizer significantly increased yield over the untreated check in any environment. Nitrapyrin significantly increased yield over the untreated check at Fargo in 2010. Increased N rates resulted in greater corn grain protein.
URI
https://hdl.handle.net/10365/28903
Collections
  • Plant Sciences Masters Theses

Student Focused, Land Grant, Research Institution

  • Campus Map
    • Campus Map (pdf)
    • Building list
    • Campus Offices
  • Equity
  • Employment
  • Phone/Email Directory
  • Online Services
    • Blackboard
    • One Stop
    • Campus Connection
    • IT Help Desk
    • Libraries
    • Email
    • Student Success Collaborative
  • Registration And Records
    • Course Schedule
    • Dates and Deadlines
North Dakota State University - Libraries
Circulation: (701) 231-8888 | Reference: (701) 231-8886
Administration: (701) 231-8753
Main Library address: 1201 Albrecht Boulevard
Mailing address: Dept #2080 PO Box 6050, Fargo, ND 58108-6050
Site manager: Site manager
Contact Us |
 
Advanced Search

Browse

All of NDSU RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Student Focused, Land Grant, Research Institution

  • Campus Map
    • Campus Map (pdf)
    • Building list
    • Campus Offices
  • Equity
  • Employment
  • Phone/Email Directory
  • Online Services
    • Blackboard
    • One Stop
    • Campus Connection
    • IT Help Desk
    • Libraries
    • Email
    • Student Success Collaborative
  • Registration And Records
    • Course Schedule
    • Dates and Deadlines
North Dakota State University - Libraries
Circulation: (701) 231-8888 | Reference: (701) 231-8886
Administration: (701) 231-8753
Main Library address: 1201 Albrecht Boulevard
Mailing address: Dept #2080 PO Box 6050, Fargo, ND 58108-6050
Site manager: Site manager
Contact Us |